mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: [Comment](https://github.com/pytorch/pytorch/pull/62445/files#r680132022) claims, it got added for consistency with top level CMakeLists.txt, but `-Wno-unused-variable` is not mentioned there. Modify violations in 50+ files that were added in the interim by either removing unused variables, or decorating the code with `C10_UNUSED` if local variable is likely used to extend object lifetime until the end of the block. Caused preventable revert in https://github.com/pytorch/pytorch/pull/72633#issuecomment-1092300787 Pull Request resolved: https://github.com/pytorch/pytorch/pull/75538 Reviewed By: anjali411 Differential Revision: D35747333 Pulled By: malfet fbshipit-source-id: 3fc5828e44a4c05ba0e89e92613e6ebbdb260626 (cherry picked from commit c179fba21cfa2a0093fad50ccad5a22dd7cff52c)
1883 lines
64 KiB
C++
1883 lines
64 KiB
C++
#include <torch/csrc/jit/codegen/cuda/codegen.h>
|
|
#include <torch/csrc/jit/codegen/cuda/expr_evaluator.h>
|
|
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
|
|
#include <torch/csrc/jit/codegen/cuda/kernel_expr_evaluator.h>
|
|
#include <torch/csrc/jit/codegen/cuda/kernel_ir.h>
|
|
#include <torch/csrc/jit/codegen/cuda/kernel_ir_dispatch.h>
|
|
#include <torch/csrc/jit/codegen/cuda/scheduler/mma_utils.h>
|
|
#include <torch/csrc/jit/codegen/cuda/type.h>
|
|
#include <torch/csrc/jit/codegen/cuda/utils.h>
|
|
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <sstream>
|
|
#include <vector>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace fuser {
|
|
namespace cuda {
|
|
namespace codegen {
|
|
|
|
namespace {
|
|
|
|
std::string ptrType(DataType dt) {
|
|
std::stringstream ss;
|
|
ss << dt << "*";
|
|
return ss.str();
|
|
}
|
|
|
|
std::string refType(DataType dt) {
|
|
std::stringstream ss;
|
|
ss << dt << "&";
|
|
return ss.str();
|
|
}
|
|
|
|
//! Utility class to build an argument list
|
|
class ArgumentBuilder {
|
|
public:
|
|
//! Build an argument list where each argument is separated with a comma
|
|
ArgumentBuilder() = default;
|
|
|
|
//! Build an argument list where each argument has its own line
|
|
ArgumentBuilder(int indent_level, const char* tab) {
|
|
std::stringstream ss;
|
|
for (const auto i : c10::irange(indent_level)) {
|
|
(void)i; // Suppress unused variable warning
|
|
ss << tab;
|
|
}
|
|
sep_ = ",\n" + ss.str();
|
|
}
|
|
|
|
//! Add a new argument
|
|
template <typename T>
|
|
ArgumentBuilder& arg(const T& x) {
|
|
addSeparator();
|
|
return append(x);
|
|
}
|
|
|
|
//! Append to the last argument
|
|
template <typename T>
|
|
ArgumentBuilder& append(const T& arg) {
|
|
ss_ << arg;
|
|
return *this;
|
|
}
|
|
|
|
//! Get a string of the argument list
|
|
std::string str() const {
|
|
return ss_.str();
|
|
}
|
|
|
|
friend std::ostream& operator<<(std::ostream& os, const ArgumentBuilder& ab) {
|
|
return os << ab.str();
|
|
}
|
|
|
|
private:
|
|
void addSeparator() {
|
|
if (ss_.tellp() != 0) {
|
|
ss_ << sep_;
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::string sep_ = ", ";
|
|
std::stringstream ss_;
|
|
};
|
|
|
|
//! Append to the last argument
|
|
template <>
|
|
ArgumentBuilder& ArgumentBuilder::append<bool>(const bool& arg) {
|
|
ss_ << (arg ? "true" : "false");
|
|
return *this;
|
|
}
|
|
|
|
//! Returns "template_name<template_arg>"
|
|
template <typename TemplateNameT, typename TemplateArgT>
|
|
std::string genTemplate(
|
|
const TemplateNameT& template_name,
|
|
const TemplateArgT& template_arg) {
|
|
std::stringstream ss;
|
|
ss << template_name << "<" << template_arg << ">";
|
|
return ss.str();
|
|
}
|
|
|
|
//! Returns "func_name(func_arg)"
|
|
template <typename FuncNameT, typename FuncArgT>
|
|
std::string genCall(const FuncNameT& func_name, const FuncArgT& func_arg) {
|
|
std::stringstream ss;
|
|
ss << func_name << "(" << func_arg << ")";
|
|
return ss.str();
|
|
}
|
|
|
|
//! Returns "func_name<template_arg>(func_arg)"
|
|
template <typename FuncNameT, typename TemplateArgT, typename FuncArgT>
|
|
std::string genCall(
|
|
const FuncNameT& func_name,
|
|
const TemplateArgT& template_arg,
|
|
const FuncArgT& func_arg) {
|
|
std::stringstream ss;
|
|
ss << func_name << "<" << template_arg << ">(" << func_arg << ")";
|
|
return ss.str();
|
|
}
|
|
|
|
class CudaKernelGenerator : private OptOutConstDispatch {
|
|
static constexpr const char* kTab = " ";
|
|
|
|
public:
|
|
static std::string generateKernelDefinition(
|
|
const kir::Kernel* kernel,
|
|
const std::string& kernel_name) {
|
|
CudaKernelGenerator codegen(kernel);
|
|
codegen.genDeclaration(kernel_name);
|
|
codegen.startBlock();
|
|
codegen.genPrologue();
|
|
codegen.genBody();
|
|
codegen.endBlock();
|
|
TORCH_CHECK(codegen.block_nest_level_ == 0);
|
|
return codegen.code_.str();
|
|
}
|
|
|
|
private:
|
|
explicit CudaKernelGenerator(const kir::Kernel* kernel) : kernel_(kernel) {}
|
|
|
|
// Generates the kernel function declaration
|
|
void genDeclaration(const std::string& kernel_name) {
|
|
const auto& kernel_summary = kernel_->summary();
|
|
|
|
code_ << "__global__ void " << kernel_name << "(";
|
|
|
|
std::unordered_set<Val*> unique_args;
|
|
|
|
std::vector<Val*> params;
|
|
|
|
// Inputs & Outputs
|
|
for (auto val : kernel_->inputs()) {
|
|
params.push_back(val);
|
|
}
|
|
for (auto val : kernel_->outputs()) {
|
|
TORCH_INTERNAL_ASSERT(
|
|
!val->isScalar(), "No scalar output is allowed: ", val->toString());
|
|
params.push_back(val);
|
|
}
|
|
|
|
// Generate parameter declarations
|
|
unsigned int duplicate_counter = 0;
|
|
for (auto i : c10::irange(params.size())) {
|
|
std::stringstream var_name_ss;
|
|
if (params[i]->isA<TensorView>()) {
|
|
var_name_ss << varName(params[i]->as<TensorView>());
|
|
} else {
|
|
var_name_ss << gen(params[i]);
|
|
}
|
|
|
|
// If value is duplicate in arguments change the name to avoid name
|
|
// conflicts in args.
|
|
if (!unique_args.emplace(params[i]).second) {
|
|
var_name_ss << "_duplicate_" << duplicate_counter++;
|
|
}
|
|
|
|
if (const auto tv = dynamic_cast<TensorView*>(params[i])) {
|
|
if (tv->isCpuScalar()) {
|
|
code_ << " CpuScalarTensor<" << params[i]->dtype() << "> "
|
|
<< var_name_ss.str();
|
|
} else {
|
|
code_
|
|
<< "Tensor<" << params[i]->dtype() << ", "
|
|
<< TensorDomain::noReductions(tv->getMaybeRFactorDomain()).size()
|
|
<< "> " << var_name_ss.str();
|
|
}
|
|
} else {
|
|
TORCH_INTERNAL_ASSERT(params[i]->isScalar()); // NOLINT (LLVM bug 48525)
|
|
TORCH_INTERNAL_ASSERT(params[i]->definition() == nullptr);
|
|
code_ << params[i]->dtype() << " " << var_name_ss.str();
|
|
}
|
|
|
|
if (i + 1 != params.size()) {
|
|
code_ << ", ";
|
|
}
|
|
}
|
|
|
|
// Global buffers
|
|
for (auto allocate : kernel_summary.global_allocations) {
|
|
TORCH_INTERNAL_ASSERT(allocate->buffer()->isA<TensorView>());
|
|
const auto tv = allocate->buffer()->as<TensorView>();
|
|
const auto& maybe_rfactor_domain = tv->domain()->hasRFactor()
|
|
? tv->domain()->getRFactorDomain()
|
|
: tv->domain()->getRootDomain();
|
|
const auto nDims = std::count_if(
|
|
maybe_rfactor_domain.begin(),
|
|
maybe_rfactor_domain.end(),
|
|
[](const IterDomain* id) {
|
|
return !id->isReduction() &&
|
|
id->getIterType() != IterType::BroadcastWithoutStride;
|
|
});
|
|
code_ << ", Tensor<" << tv->dtype() << ", " << nDims << "> "
|
|
<< varName(tv);
|
|
}
|
|
|
|
// Kernels generating random numbers take extra (seed, offset) arguments
|
|
if (kernel_summary.is_stochastic) {
|
|
code_ << ", at::PhiloxCudaState philox_args";
|
|
}
|
|
|
|
code_ << ") ";
|
|
}
|
|
|
|
// Generates setup code which is executed before the kernel body
|
|
void genPrologue() {
|
|
const auto& kernel_summary = kernel_->summary();
|
|
|
|
// Random number generator (optional)
|
|
if (kernel_summary.is_stochastic) {
|
|
indent()
|
|
<< "const auto idx = ((((blockIdx.z * gridDim.y + blockIdx.y) * gridDim.x + blockIdx.x) * blockDim.z + threadIdx.z) * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x;";
|
|
indent() << "auto offset = philox_args.captured_ ?\n";
|
|
indent()
|
|
<< " static_cast<uint64_t>(*(philox_args.offset_.ptr) + philox_args.offset_intragraph_) :\n";
|
|
indent() << " philox_args.offset_.val;\n";
|
|
indent() << "Philox rnd(philox_args.seed_, idx, offset);\n";
|
|
}
|
|
|
|
// Do we have any dynamic shared memory buffers?
|
|
const bool has_dynamic_smem =
|
|
!kernel_summary.dynamic_smem_allocations.empty();
|
|
|
|
// Do we have any reductions?
|
|
const bool has_reductions = kernel_summary.has_block_reductions ||
|
|
kernel_summary.has_grid_reductions;
|
|
const bool has_parallel_welford =
|
|
kernel_summary.has_block_welford || kernel_summary.has_grid_welford;
|
|
|
|
// Shared memory
|
|
if (has_dynamic_smem || has_reductions || has_parallel_welford) {
|
|
indent() << "alignas("
|
|
#ifndef __HIP_PLATFORM_HCC__
|
|
<< dataTypeSize(kernel_summary.largest_smem_data_type)
|
|
#else
|
|
<< 8 // for HIP, we want 8-aligned even for smaller datatypes
|
|
#endif
|
|
<< ") extern __shared__ char array[];\n";
|
|
|
|
if (has_dynamic_smem) {
|
|
indent() << "unsigned offset = 0;\n";
|
|
}
|
|
|
|
if (has_reductions || has_parallel_welford) {
|
|
indent() << "void* shared_mem = array;\n";
|
|
if (has_dynamic_smem) {
|
|
if (has_parallel_welford) {
|
|
indent() << "offset += "
|
|
<< "((blockDim.x * blockDim.y * blockDim.z) * 3 * sizeof("
|
|
<< kernel_summary.largest_smem_data_type << "));\n";
|
|
} else {
|
|
indent() << "offset += "
|
|
<< "((blockDim.x * blockDim.y * blockDim.z) * sizeof("
|
|
<< kernel_summary.largest_smem_data_type << "));\n";
|
|
}
|
|
}
|
|
|
|
if (has_parallel_welford) {
|
|
// Unpack shared mem pointer
|
|
auto space_type = kernel_summary.largest_smem_data_type;
|
|
indent()
|
|
<< "nvfuser_index_t block_size = blockDim.x*blockDim.y*blockDim.z;\n";
|
|
indent() << space_type << " *shared_mem_var = "
|
|
<< "static_cast<" << space_type << "*>("
|
|
<< "shared_mem);\n";
|
|
indent() << space_type
|
|
<< " *shared_mem_avg = shared_mem_var + block_size;\n";
|
|
indent() << space_type
|
|
<< " *shared_mem_n = shared_mem_avg + block_size;\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
// Call the initialization function if using a custom block sync
|
|
if (std::getenv("PYTORCH_NVFUSER_USE_BLOCK_SYNC_ATOMIC")) {
|
|
indent() << "block_sync::init();\n";
|
|
}
|
|
}
|
|
|
|
void genBody() {
|
|
for (auto expr : kernel_->topLevelExprs()) {
|
|
OptOutConstDispatch::handle(expr);
|
|
}
|
|
}
|
|
|
|
void startBlock(bool continuation = false) {
|
|
if (continuation) {
|
|
code_ << "{\n";
|
|
} else {
|
|
indent() << "{\n";
|
|
}
|
|
++block_nest_level_;
|
|
}
|
|
|
|
void endBlock(const char* sep = "\n") {
|
|
--block_nest_level_;
|
|
TORCH_CHECK(block_nest_level_ >= 0);
|
|
indent() << "}" << sep;
|
|
}
|
|
|
|
std::ostream& indent() {
|
|
for (const auto i : c10::irange(block_nest_level_)) {
|
|
(void)i; // Suppress unused variable warning
|
|
code_ << kTab;
|
|
}
|
|
return code_;
|
|
}
|
|
|
|
std::string gen(const Statement* stmt) {
|
|
std::stringstream tmp_code;
|
|
std::swap(tmp_code, code_);
|
|
OptOutConstDispatch::handle(stmt);
|
|
std::swap(tmp_code, code_);
|
|
return tmp_code.str();
|
|
}
|
|
|
|
std::string varName(const Val* val) {
|
|
std::stringstream name;
|
|
if (val->isA<TensorView>()) {
|
|
name << "T";
|
|
} else {
|
|
name << typePrefix(val->dtype());
|
|
}
|
|
name << val->name();
|
|
return name.str();
|
|
}
|
|
|
|
std::string genInline(const Statement* stmt) {
|
|
const bool saved_inline = print_inline_;
|
|
print_inline_ = true;
|
|
auto result = gen(stmt);
|
|
print_inline_ = saved_inline;
|
|
// NOLINTNEXTLINE(performance-no-automatic-move)
|
|
return result;
|
|
}
|
|
|
|
void handle(const kir::Predicate* pred) final {
|
|
TORCH_INTERNAL_ASSERT(pred->hasValue());
|
|
code_ << gen(pred->value());
|
|
}
|
|
|
|
void handle(const Bool* pred) final {
|
|
const auto def = pred->definition();
|
|
const bool has_alloc = alloc_map_.find(pred) != alloc_map_.end();
|
|
if (def != nullptr && !has_alloc) {
|
|
code_ << "(" << gen(def) << ")";
|
|
} else if (pred->isConst()) {
|
|
code_ << (*pred->value() ? "true" : "false");
|
|
} else {
|
|
code_ << varName(pred);
|
|
}
|
|
}
|
|
|
|
void handle(const Double* d) final {
|
|
const auto def = d->definition();
|
|
const bool has_alloc = alloc_map_.find(d) != alloc_map_.end();
|
|
if (def != nullptr && !has_alloc) {
|
|
code_ << "(" << gen(def) << ")";
|
|
} else if (d->isConst()) {
|
|
auto val = *d->value();
|
|
// note: default inf/nan doesn't work and should be replaced with macros
|
|
// `NAN`, `POS_INFINITY` and `NEG_INFINITY` instead.
|
|
if (std::isinf(val)) {
|
|
if (val > 0) {
|
|
code_ << "POS_INFINITY";
|
|
} else {
|
|
code_ << "NEG_INFINITY";
|
|
}
|
|
} else if (std::isnan(val)) {
|
|
code_ << "NAN";
|
|
} else {
|
|
const int digits =
|
|
std::numeric_limits<Double::ScalarType>::max_digits10;
|
|
code_ << std::setprecision(digits) << val;
|
|
}
|
|
} else {
|
|
code_ << varName(d);
|
|
}
|
|
}
|
|
|
|
void handle(const Int* i) final {
|
|
const auto def = i->definition();
|
|
const bool has_alloc = alloc_map_.find(i) != alloc_map_.end();
|
|
if (def != nullptr && !has_alloc) {
|
|
code_ << "(" << genInline(def) << ")";
|
|
} else if (i->isConst()) {
|
|
code_ << *i->value();
|
|
} else {
|
|
code_ << varName(i);
|
|
}
|
|
}
|
|
|
|
void handle(const ComplexDouble* c) final {
|
|
const auto def = c->definition();
|
|
const bool has_alloc = alloc_map_.find(c) != alloc_map_.end();
|
|
if (def != nullptr && !has_alloc) {
|
|
code_ << "(" << gen(def) << ")";
|
|
} else if (c->isConst()) {
|
|
const int digits = std::numeric_limits<double>::max_digits10;
|
|
code_ << "std::complex<double>" << std::setprecision(digits)
|
|
<< *c->value();
|
|
} else {
|
|
code_ << varName(c);
|
|
}
|
|
}
|
|
|
|
void handle(const NamedScalar* ns) final {
|
|
// dim3 components are unsigned int. Cast to signed integer to
|
|
// support negative indexing
|
|
if (ns->getParallelIndex().has_value() ||
|
|
ns->getParallelDim().has_value()) {
|
|
code_ << "((nvfuser_index_t)" << ns->name() << ")";
|
|
} else {
|
|
code_ << ns->name();
|
|
}
|
|
}
|
|
|
|
void handle(const kir::TensorIndex* ti) final {
|
|
bool first = true;
|
|
std::stringstream index;
|
|
for (auto* ind : ti->indices()) {
|
|
if (!ind->isZeroInt()) {
|
|
if (!first) {
|
|
index << " + ";
|
|
}
|
|
index << genInline(ind);
|
|
first = false;
|
|
}
|
|
}
|
|
|
|
if (first) {
|
|
index << "0";
|
|
}
|
|
bool is_volatile = ti->view()->getMemoryType() == MemoryType::Global &&
|
|
kernel_->summary().sync_map.needsRawSync(ti->view()).hasBID();
|
|
if (is_volatile) {
|
|
code_ << "*(volatile " << ti->getDataType().value() << "*)&";
|
|
}
|
|
code_ << varName(ti->view()) << "[" << index.str() << "]";
|
|
}
|
|
|
|
void handle(const IterDomain*) final {
|
|
TORCH_INTERNAL_ASSERT(false, "Unreachable");
|
|
}
|
|
|
|
void handle(const TensorDomain*) final {
|
|
TORCH_INTERNAL_ASSERT(false, "Unreachable");
|
|
}
|
|
|
|
void handle(const TensorView*) final {
|
|
TORCH_INTERNAL_ASSERT(false, "Unreachable");
|
|
}
|
|
|
|
void handle(const UnaryOp* uop) final {
|
|
bool is_vector_op = false;
|
|
size_t vector_word_size = 1;
|
|
|
|
if (uop->out()->isA<kir::TensorIndex>()) {
|
|
auto out_tv = uop->out()->as<kir::TensorIndex>()->view();
|
|
if (std::any_of(
|
|
out_tv->domain()->domain().begin(),
|
|
out_tv->domain()->domain().end(),
|
|
[&](IterDomain* id) { return id->isMma(); })) {
|
|
auto mma = dynamic_cast<MmaOp*>(
|
|
uop->out()->as<kir::TensorIndex>()->view()->definition());
|
|
TORCH_INTERNAL_ASSERT(
|
|
mma != nullptr, "CodeGen: mma op not in mma loop");
|
|
genMmaInitialization(mma, uop);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (vectorize_scope_ && uop->out()->isA<kir::TensorIndex>()) {
|
|
auto ti = uop->out()->as<kir::TensorIndex>();
|
|
|
|
bool vectorize_op = false;
|
|
bool misaligned_op = false;
|
|
|
|
for (auto id : ti->view()->domain()->domain()) {
|
|
if (!isParallelTypeVectorize(id->getParallelType())) {
|
|
continue;
|
|
}
|
|
|
|
ExpressionEvaluator expr_eval(id->fusion());
|
|
auto vector_size_optional = expr_eval.evaluate(id->extent());
|
|
|
|
TORCH_INTERNAL_ASSERT(
|
|
vector_size_optional.has_value(),
|
|
"Could not evaluate constant value bound to vectorized dim.");
|
|
|
|
vector_word_size = vector_size_optional.value();
|
|
|
|
vectorize_op = id->getParallelType() == ParallelType::Vectorize;
|
|
misaligned_op =
|
|
id->getParallelType() == ParallelType::MisalignedVectorize;
|
|
break;
|
|
}
|
|
|
|
if (vectorize_op) {
|
|
TORCH_INTERNAL_ASSERT(
|
|
uop->getUnaryOpType() == UnaryOpType::Set,
|
|
"Cannot vectorize operations that are not sets. ",
|
|
"Use cache_before and cache_after to store/load with vectorized reads into buffers.");
|
|
is_vector_op = true;
|
|
}
|
|
|
|
if (misaligned_op) {
|
|
is_vector_op = (uop->getUnaryOpType() == UnaryOpType::Set);
|
|
}
|
|
|
|
if (is_vector_op && !uop->in()->isScalar()) {
|
|
TORCH_INTERNAL_ASSERT(
|
|
uop->out()->dtype() == uop->in()->dtype(),
|
|
"Vectorized store/load requires input and output datatypes match.");
|
|
}
|
|
|
|
if (is_vector_op) {
|
|
auto out_tv = uop->out()->as<kir::TensorIndex>()->view();
|
|
if (uop->in()->isScalar()) {
|
|
// Note:
|
|
// Double buffered local tensors need indexed initialization,
|
|
// so will need to use `arraySet` option.
|
|
if (out_tv->getMemoryType() == MemoryType::Local &&
|
|
!out_tv->isDoubleBuffered()) {
|
|
// Vectorized initialization
|
|
indent() << varName(out_tv) << ".set(" << gen(uop->in()) << ");\n";
|
|
} else {
|
|
// Note: currently arraySet option is not vectorized, so it will
|
|
// rely on auto vectorization pass of cuda compiler.
|
|
indent() << "arraySet<" << out_tv->getDataType().value() << ", "
|
|
<< vector_word_size << ">(&" << gen(uop->out()) << ", "
|
|
<< "(" << out_tv->getDataType().value() << ")"
|
|
<< gen(uop->in()) << ");\n";
|
|
}
|
|
} else {
|
|
// Vectorized load
|
|
TORCH_INTERNAL_ASSERT(
|
|
uop->in()->isA<kir::TensorIndex>(),
|
|
"Invalid input to unary op with tensor output, found: ",
|
|
uop->in()->toString());
|
|
|
|
auto in_tv = uop->in()->as<kir::TensorIndex>()->view();
|
|
bool localToGlobal = out_tv->getMemoryType() == MemoryType::Global &&
|
|
in_tv->getMemoryType() == MemoryType::Local;
|
|
|
|
bool globalToLocal = out_tv->getMemoryType() == MemoryType::Local &&
|
|
in_tv->getMemoryType() == MemoryType::Global;
|
|
|
|
bool globalToGlobal = out_tv->getMemoryType() == MemoryType::Global &&
|
|
in_tv->getMemoryType() == MemoryType::Global;
|
|
|
|
bool is_volatile_to = out_tv->getMemoryType() == MemoryType::Global &&
|
|
kernel_->summary().sync_map.needsRawSync(out_tv).hasBID();
|
|
|
|
bool is_volatile_from =
|
|
in_tv->getMemoryType() == MemoryType::Global &&
|
|
kernel_->summary().sync_map.needsRawSync(in_tv).hasBID();
|
|
|
|
if (localToGlobal) {
|
|
indent() << "loadLocalToGlobal<" << uop->out()->dtype() << ", "
|
|
<< vector_word_size << ", "
|
|
<< (is_volatile_to ? "true" : "false") << ">(";
|
|
code_ << " &" << gen(uop->out()) << ", &" << gen(uop->in())
|
|
<< ");\n";
|
|
} else if (globalToLocal) {
|
|
indent() << "loadGlobalToLocal<" << uop->out()->dtype() << ", "
|
|
<< vector_word_size << ", "
|
|
<< (is_volatile_from ? "true" : "false") << ">(&"
|
|
<< gen(uop->out()) << ", ";
|
|
code_ << " &" << gen(uop->in()) << ");\n";
|
|
} else if (globalToGlobal) {
|
|
indent() << "loadGlobalToGlobal<" << uop->out()->dtype() << ", "
|
|
<< vector_word_size << ", "
|
|
<< (is_volatile_to ? "true" : "false") << ", "
|
|
<< (is_volatile_from ? "true" : "false") << ">(";
|
|
code_ << " &" << gen(uop->out()) << ", ";
|
|
code_ << " &" << gen(uop->in()) << ");\n";
|
|
} else {
|
|
indent() << "loadGeneric<" << uop->out()->dtype() << ", "
|
|
<< vector_word_size << ">(";
|
|
code_ << " &" << gen(uop->out()) << ", ";
|
|
code_ << " &" << gen(uop->in()) << ");\n";
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (uop->out()->isA<NamedScalar>()) {
|
|
const auto op_type = uop->getUnaryOpType();
|
|
if (auto op = inline_op_str(op_type)) {
|
|
indent() << gen(uop->out()) << " = " << *op << genInline(uop->in())
|
|
<< ";\n";
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!print_inline_) {
|
|
indent() << gen(uop->out());
|
|
if (!uop->out()->isScalar() && !uop->in()->isScalar()) {
|
|
code_ << "\n";
|
|
indent() << kTab;
|
|
}
|
|
code_ << " = ";
|
|
}
|
|
|
|
const auto op_type = uop->getUnaryOpType();
|
|
if (auto op = inline_op_str(op_type)) {
|
|
if (alsoBooleanOperator(op_type) &&
|
|
uop->out()->dtype() == DataType::Bool) {
|
|
code_ << stringifyBooleanOp(op_type) << gen(uop->in());
|
|
} else {
|
|
code_ << *op << gen(uop->in());
|
|
}
|
|
} else {
|
|
if (op_type == UnaryOpType::Cast) {
|
|
const auto cast_str =
|
|
cast_func_str({uop->in()->dtype(), uop->out()->dtype()});
|
|
TORCH_INTERNAL_ASSERT(
|
|
cast_str.has_value(),
|
|
"Invalid cast. Input type: ",
|
|
uop->in()->dtype(),
|
|
", output type: ",
|
|
uop->out()->dtype());
|
|
code_ << cast_str.value();
|
|
} else {
|
|
code_ << op_type;
|
|
if (needFloatSuffix(op_type) &&
|
|
uop->out()->dtype() == DataType::Float) {
|
|
code_ << "f";
|
|
}
|
|
}
|
|
|
|
code_ << "(";
|
|
if (op_type == UnaryOpType::RandLike) {
|
|
code_ << "rnd";
|
|
} else {
|
|
code_ << gen(uop->in());
|
|
}
|
|
code_ << ")";
|
|
}
|
|
|
|
if (!print_inline_) {
|
|
code_ << ";\n";
|
|
}
|
|
}
|
|
|
|
std::string genBinaryOp(
|
|
BinaryOpType op_type,
|
|
Val* out,
|
|
const std::string& lhs,
|
|
const std::string& rhs) {
|
|
std::stringstream expr;
|
|
if (auto op = inline_op_str(op_type)) {
|
|
expr << lhs << " ";
|
|
if (alsoBooleanOperator(op_type) && out->dtype() == DataType::Bool) {
|
|
expr << stringifyBooleanOp(op_type);
|
|
} else {
|
|
expr << *op;
|
|
}
|
|
expr << " " << rhs;
|
|
} else {
|
|
if (integer_op_str(op_type) && isIntegralType(out->dtype())) {
|
|
auto int_op = integer_op_str(op_type);
|
|
expr << *int_op;
|
|
} else if (bool_op_str(op_type) && isBooleanType(out->dtype())) {
|
|
auto bool_op = bool_op_str(op_type);
|
|
expr << *bool_op;
|
|
} else {
|
|
expr << op_type;
|
|
if (needFloatSuffix(op_type) && out->dtype() == DataType::Float) {
|
|
expr << "f";
|
|
}
|
|
}
|
|
expr << "(" << lhs << ", " << rhs << ")";
|
|
}
|
|
return expr.str();
|
|
}
|
|
|
|
// If one argument is a tensorview and the other is a scalar, make sure we
|
|
// cast the scalar to the tensorview type
|
|
std::string scalarCast(Val* lhs, Val* rhs) {
|
|
// If neither are scalars return
|
|
if (!((lhs->isScalar() || rhs->isScalar()) &&
|
|
(lhs->isA<kir::TensorIndex>() || rhs->isA<kir::TensorIndex>()))) {
|
|
return "";
|
|
}
|
|
|
|
// Looking for mixed tensorview scalar options where types don't match
|
|
// but are either both floating or both int types. We should cast
|
|
// scalar to tensorview type in these instances.
|
|
auto lhs_t = lhs->dtype();
|
|
auto rhs_t = rhs->dtype();
|
|
|
|
// If same type, don't cast anything
|
|
if (lhs_t == rhs_t) {
|
|
return "";
|
|
}
|
|
|
|
// Don't do anything when dealing with bools
|
|
if (lhs_t == DataType::Bool || rhs_t == DataType::Bool) {
|
|
return "";
|
|
}
|
|
|
|
// Mixing floating and int combination
|
|
if ((isFloatingPointType(lhs_t) != isFloatingPointType(rhs_t)) ||
|
|
(isIntegralType(lhs_t) != isIntegralType(rhs_t))) {
|
|
return "";
|
|
}
|
|
|
|
std::stringstream cast;
|
|
cast << "(" << (lhs->isA<kir::TensorIndex>() ? lhs_t : rhs_t) << ") ";
|
|
return cast.str();
|
|
}
|
|
|
|
// If possible, replace pow with mul. Return true when successful.
|
|
bool genPowerWithMul(const BinaryOp* bop) {
|
|
if (bop->getBinaryOpType() != BinaryOpType::Pow) {
|
|
return false;
|
|
}
|
|
|
|
auto rhs = bop->rhs();
|
|
c10::optional<double> exponent;
|
|
if (auto val_int = dynamic_cast<Int*>(rhs)) {
|
|
if (val_int->isConst()) {
|
|
exponent = val_int->value().value();
|
|
}
|
|
} else if (auto val_float = dynamic_cast<Double*>(rhs)) {
|
|
if (val_float->isConst()) {
|
|
auto fp_exp = val_float->value().value();
|
|
double int_exp = 0;
|
|
if (std::modf(fp_exp, &int_exp) == 0) {
|
|
exponent = int_exp;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!exponent.has_value()) {
|
|
return false;
|
|
}
|
|
|
|
// Only **2 and **3 are considered
|
|
if (!(exponent.value() == 2 || exponent.value() == 3)) {
|
|
return false;
|
|
}
|
|
|
|
auto lhs = gen(bop->lhs());
|
|
|
|
if (print_inline_) {
|
|
code_ << lhs << " * " << lhs;
|
|
if (exponent.value() == 3) {
|
|
code_ << " * " << lhs;
|
|
}
|
|
} else {
|
|
indent() << gen(bop->out());
|
|
if (bop->out()->isScalar()) {
|
|
code_ << " = " << lhs << " * " << lhs;
|
|
if (exponent.value() == 3) {
|
|
code_ << " * " << lhs;
|
|
}
|
|
} else {
|
|
code_ << "\n";
|
|
indent() << kTab << "= " << lhs << "\n";
|
|
indent() << kTab << "* " << lhs;
|
|
if (exponent.value() == 3) {
|
|
code_ << "\n";
|
|
indent() << kTab << "* " << lhs;
|
|
}
|
|
}
|
|
}
|
|
|
|
code_ << ";\n";
|
|
return true;
|
|
}
|
|
|
|
void handle(const BinaryOp* bop) final {
|
|
// Try replacing pow with mul
|
|
if (genPowerWithMul(bop)) {
|
|
return;
|
|
}
|
|
|
|
const auto op_type = bop->getBinaryOpType();
|
|
if (print_inline_) {
|
|
// Inline expression: `lhs op rhs`
|
|
code_ << genBinaryOp(
|
|
op_type, bop->out(), gen(bop->lhs()), gen(bop->rhs()));
|
|
} else {
|
|
indent() << gen(bop->out());
|
|
if (bop->out()->isScalar()) {
|
|
// Single line: `out = lhs op rhs;`
|
|
code_ << " = "
|
|
<< genBinaryOp(
|
|
op_type, bop->out(), gen(bop->lhs()), gen(bop->rhs()));
|
|
} else {
|
|
// Split TensorView expressions across multiple lines:
|
|
//
|
|
// out
|
|
// = lhs
|
|
// op rhs;
|
|
//
|
|
|
|
auto cast = scalarCast(bop->lhs(), bop->rhs());
|
|
if (auto op = inline_op_str(op_type)) {
|
|
code_ << "\n";
|
|
indent() << kTab << "= " << (bop->lhs()->isScalar() ? cast : "")
|
|
<< gen(bop->lhs()) << "\n";
|
|
indent() << kTab;
|
|
if (alsoBooleanOperator(op_type) &&
|
|
bop->out()->dtype() == DataType::Bool) {
|
|
code_ << stringifyBooleanOp(op_type);
|
|
} else {
|
|
code_ << *op;
|
|
}
|
|
code_ << " " << (bop->rhs()->isScalar() ? cast : "")
|
|
<< gen(bop->rhs());
|
|
} else {
|
|
if (integer_op_str(op_type) && isIntegralType(bop->out()->dtype())) {
|
|
auto int_op = integer_op_str(op_type);
|
|
code_ << " = " << *int_op << "(\n";
|
|
} else if (
|
|
bool_op_str(op_type) && isBooleanType(bop->out()->dtype())) {
|
|
auto bool_op = bool_op_str(op_type);
|
|
code_ << " = " << *bool_op << "(\n";
|
|
} else {
|
|
std::stringstream op_str;
|
|
op_str << op_type;
|
|
if (needFloatSuffix(op_type) &&
|
|
bop->out()->dtype() == DataType::Float) {
|
|
op_str << "f";
|
|
}
|
|
code_ << " = " << op_str.str() << "(\n";
|
|
}
|
|
indent() << kTab << (bop->lhs()->isScalar() ? cast : "")
|
|
<< gen(bop->lhs()) << ",\n";
|
|
indent() << kTab << (bop->rhs()->isScalar() ? cast : "")
|
|
<< gen(bop->rhs()) << ")";
|
|
}
|
|
}
|
|
code_ << ";\n";
|
|
}
|
|
}
|
|
|
|
void handle(const TernaryOp* top) final {
|
|
if (!print_inline_) {
|
|
indent() << gen(top->out());
|
|
if (!top->out()->isScalar()) {
|
|
code_ << "\n";
|
|
indent() << kTab;
|
|
}
|
|
code_ << " = ";
|
|
}
|
|
|
|
code_ << top->getTernaryOpType() << "(" << gen(top->in1()) << ", ";
|
|
|
|
// Make sure the two operands of where has the same
|
|
// type. Note that compiling "where(0.0f, 0.0)" fails because of
|
|
// the overloading ambiguity.
|
|
if (top->getTernaryOpType() == TernaryOpType::Where) {
|
|
auto cast = scalarCast(top->in2(), top->in3());
|
|
code_ << (top->in2()->isScalar() ? cast : "") << gen(top->in2()) << ", "
|
|
<< (top->in3()->isScalar() ? cast : "") << gen(top->in3()) << ")";
|
|
} else {
|
|
code_ << gen(top->in2()) << ", " << gen(top->in3()) << ")";
|
|
}
|
|
|
|
if (!print_inline_) {
|
|
code_ << ";\n";
|
|
}
|
|
}
|
|
|
|
std::string genArchString(MmaOptions options) {
|
|
std::stringstream ss;
|
|
if (isVolta(options.macro)) {
|
|
ss << "Volta";
|
|
} else if (isTuring(options.macro)) {
|
|
ss << "Turing";
|
|
} else if (isAmpere(options.macro)) {
|
|
ss << "Ampere";
|
|
} else {
|
|
TORCH_INTERNAL_ASSERT(false, "mma macro unknown arch");
|
|
}
|
|
return ss.str();
|
|
}
|
|
|
|
std::string genMmaOp(const MmaOp* mma, bool init = false) {
|
|
std::stringstream ss;
|
|
auto options = mma->options();
|
|
ss << genArchString(options) << "::";
|
|
if (init) {
|
|
ss << "init";
|
|
}
|
|
ss << toString(options.macro) << toString(options.operand_layout);
|
|
// TODO: additional parameter could be removed by swizzling iterdomain
|
|
auto acc_stride = mma->accStride();
|
|
TORCH_INTERNAL_ASSERT(acc_stride > 0);
|
|
ss << "<" << acc_stride << ">";
|
|
return ss.str();
|
|
}
|
|
|
|
void genMmaOperands(const MmaOp* mma) {
|
|
std::stringstream ss;
|
|
auto options = mma->options();
|
|
auto in_a = mma->inA()->as<kir::TensorIndex>()->view();
|
|
auto dtype = in_a->getDataType().value();
|
|
indent() << kTab << "reinterpret_cast<Array<" << dtype << ","
|
|
<< getInputARegisterSize(options.macro) << ","
|
|
<< getInputARegisterSize(options.macro) << ">*>(&"
|
|
<< gen(mma->inA()) << "),\n";
|
|
indent() << kTab << "reinterpret_cast<Array<" << dtype << ","
|
|
<< getInputBRegisterSize(options.macro) << ","
|
|
<< getInputBRegisterSize(options.macro) << ">*>(&"
|
|
<< gen(mma->inB()) << ")";
|
|
}
|
|
|
|
void genMmaInitialization(const MmaOp* mma, const UnaryOp* uop) {
|
|
auto options = mma->options();
|
|
|
|
indent() << genMmaOp(mma, true) << "(reinterpret_cast<Array<"
|
|
<< mma->out()->getDataType().value() << ","
|
|
<< getOutputRegisterSize(options.macro) << ","
|
|
<< getOutputRegisterSize(options.macro) << ">*>"
|
|
<< "(&" << gen(uop->out()) << "));\n";
|
|
}
|
|
|
|
void handle(const MmaOp* mma) final {
|
|
auto options = mma->options();
|
|
auto out = mma->out()->as<kir::TensorIndex>();
|
|
indent() << genMmaOp(mma) << "(\n";
|
|
indent() << kTab << "reinterpret_cast<Array<"
|
|
<< out->view()->getDataType().value() << ","
|
|
<< getOutputRegisterSize(options.macro) << ","
|
|
<< getOutputRegisterSize(options.macro) << ">*>(&"
|
|
<< gen(mma->out()) << "),\n";
|
|
genMmaOperands(mma);
|
|
code_ << ");\n";
|
|
}
|
|
|
|
std::string genReductionOp(BinaryOpType op_type, Val* out) {
|
|
std::stringstream lambda;
|
|
DataType data_type = out->dtype();
|
|
lambda << "[](" << data_type << " &a, " << data_type << " b) "
|
|
<< "{ a = " << genBinaryOp(op_type, out, "a", "b") << "; }";
|
|
return lambda.str();
|
|
}
|
|
|
|
void handle(const BroadcastOp* stmt) final {
|
|
TORCH_INTERNAL_ASSERT(stmt->out()->isA<kir::TensorIndex>());
|
|
|
|
const ParallelTypeBitmap parallel_types =
|
|
kernel_->summary().broadcast_parallel_types.at(stmt);
|
|
|
|
if (parallel_types.none()) {
|
|
// Not parallelized
|
|
indent() << gen(stmt->out()) << "\n";
|
|
indent() << kTab << " = " << gen(stmt->in()) << ";\n";
|
|
return;
|
|
}
|
|
|
|
TORCH_INTERNAL_ASSERT(
|
|
!parallel_types.hasBID(),
|
|
"Parallel broadcast across blocks should have been translated to a GridBroadcast IR node");
|
|
|
|
std::stringstream flags_str;
|
|
for (const ParallelType pt : kParallelTypeTIDs) {
|
|
const bool parallel_bcast = parallel_types.get(pt);
|
|
if (pt != kParallelTypeTIDs[0]) {
|
|
flags_str << ", ";
|
|
}
|
|
flags_str << (parallel_bcast ? "true" : "false");
|
|
}
|
|
|
|
const auto data_type = stmt->out()->dtype();
|
|
indent() << "broadcast::blockBroadcast<" << flags_str.str() << ">(\n";
|
|
indent() << kTab << gen(stmt->out()) << ",\n";
|
|
indent() << kTab << gen(stmt->in()) << ",\n";
|
|
indent() << kTab << "static_cast<" << data_type << "*>(shared_mem),\n";
|
|
TORCH_INTERNAL_ASSERT(
|
|
stmt->predicate() != nullptr && stmt->predicate()->hasValue());
|
|
indent() << kTab << genInline(stmt->predicate()) << ");\n";
|
|
}
|
|
|
|
void genWarpReductionOp(
|
|
const ReductionOp* rop,
|
|
const IterDomain* reduction_id) {
|
|
bool is_single_warp =
|
|
kernel_->getWarpPaddedParallelInfo().is_tidx_single_warp;
|
|
|
|
indent() << "warp::warpReduceTIDX";
|
|
if (is_single_warp) {
|
|
code_ << "<true>(\n";
|
|
} else {
|
|
code_ << "<false>(\n";
|
|
}
|
|
indent() << kTab << gen(rop->out()) << ",\n";
|
|
indent() << kTab << gen(rop->in()) << ",\n";
|
|
indent() << kTab << genReductionOp(rop->getReductionOpType(), rop->out())
|
|
<< ",\n";
|
|
indent() << kTab << "threadIdx,\n";
|
|
indent() << kTab << "blockDim,\n";
|
|
indent() << kTab << "static_cast<" << rop->out()->dtype()
|
|
<< "*>(shared_mem),\n";
|
|
TORCH_INTERNAL_ASSERT(
|
|
rop->predicate() != nullptr && rop->predicate()->hasValue());
|
|
indent() << kTab << genInline(rop->predicate()) << ",\n";
|
|
indent() << kTab << rop->out()->dtype() << "(" << genInline(rop->init())
|
|
<< "));\n";
|
|
}
|
|
|
|
void handle(const ReductionOp* rop) final {
|
|
TORCH_INTERNAL_ASSERT(rop->out()->isA<kir::TensorIndex>());
|
|
|
|
const auto out = rop->out()->as<kir::TensorIndex>();
|
|
const auto domain = out->view()->domain();
|
|
|
|
const bool has_block_reduce = domain->hasBlockReduction();
|
|
const bool has_grid_reduce = domain->hasGridReduction();
|
|
|
|
if (!has_block_reduce && !has_grid_reduce) {
|
|
const auto gen_out = gen(out);
|
|
const auto op_type = rop->getReductionOpType();
|
|
indent() << gen_out << " = "
|
|
<< genBinaryOp(op_type, out, gen_out, gen(rop->in())) << ";\n";
|
|
return;
|
|
}
|
|
|
|
if (auto reduction_id = ir_utils::getMaybeWarpReductionDim(rop)) {
|
|
genWarpReductionOp(rop, reduction_id.value());
|
|
return;
|
|
}
|
|
|
|
const auto par_domains = ir_utils::getParallelDomains(rop->out());
|
|
// Get parallel reduction domains
|
|
const bool tidx =
|
|
par_domains.find(ParallelType::TIDx) != par_domains.end() &&
|
|
par_domains.at(ParallelType::TIDx)->isReduction();
|
|
const bool tidy =
|
|
par_domains.find(ParallelType::TIDy) != par_domains.end() &&
|
|
par_domains.at(ParallelType::TIDy)->isReduction();
|
|
const bool tidz =
|
|
par_domains.find(ParallelType::TIDz) != par_domains.end() &&
|
|
par_domains.at(ParallelType::TIDz)->isReduction();
|
|
|
|
const auto data_type = rop->out()->dtype();
|
|
const auto op_type = rop->getReductionOpType();
|
|
|
|
if (has_block_reduce) {
|
|
if (has_grid_reduce) {
|
|
indent() << data_type << " "
|
|
<< "block_result_" << block_reduce_name_ << "="
|
|
<< gen(rop->init()) << ";\n";
|
|
}
|
|
indent() << "blockReduce<" << (tidx ? "true" : "false") << ", "
|
|
<< (tidy ? "true" : "false") << ", " << (tidz ? "true" : "false")
|
|
<< ">(\n";
|
|
if (has_grid_reduce) {
|
|
indent() << kTab << "block_result_" << block_reduce_name_ << ",\n";
|
|
} else {
|
|
indent() << kTab << gen(rop->out()) << ",\n";
|
|
}
|
|
indent() << kTab << gen(rop->in()) << ",\n";
|
|
indent() << kTab << genReductionOp(op_type, rop->out()) << ",\n";
|
|
indent() << kTab << "threadIdx,\n";
|
|
indent() << kTab << "blockDim,\n";
|
|
indent() << kTab << "static_cast<" << data_type << "*>(shared_mem),\n";
|
|
TORCH_INTERNAL_ASSERT(
|
|
rop->predicate() != nullptr && rop->predicate()->hasValue());
|
|
auto read_pred = genInline(rop->predicate());
|
|
indent() << kTab << read_pred << ",\n";
|
|
// Pass the write predicate if available and different from the
|
|
// default predicate. The blockReduce runtime function uses the
|
|
// default predicate for both read and write when only the
|
|
// default one is given.
|
|
if (rop->writePredicate() != nullptr) {
|
|
TORCH_INTERNAL_ASSERT(rop->writePredicate()->hasValue());
|
|
auto write_pred = genInline(rop->writePredicate());
|
|
indent() << kTab << write_pred << ",\n";
|
|
}
|
|
indent() << kTab << data_type << "(" << genInline(rop->init()) << "));\n";
|
|
}
|
|
}
|
|
|
|
void handle(const WelfordOp* wop) final {
|
|
TORCH_INTERNAL_ASSERT(wop->out()->isA<kir::TensorIndex>());
|
|
|
|
const auto out = wop->out()->as<kir::TensorIndex>();
|
|
const auto domain = out->view()->domain();
|
|
|
|
const auto out_var = wop->outVar();
|
|
const auto out_avg = wop->outAvg();
|
|
const auto out_N = wop->outN();
|
|
|
|
const auto in_var = wop->inVar();
|
|
const auto in_avg = wop->inAvg();
|
|
const auto in_N = wop->inN();
|
|
|
|
const bool has_block_reduce = domain->hasBlockReduction();
|
|
const bool has_grid_reduce = domain->hasGridReduction();
|
|
|
|
// Serial WelfordOp generation
|
|
if (!has_block_reduce && !has_grid_reduce) {
|
|
indent() << "welfordCombine ("
|
|
<< "\n";
|
|
indent() << " " << gen(out_avg) << ",\n";
|
|
indent() << " " << gen(out_var) << ",\n";
|
|
indent() << " " << gen(out_N) << ",\n";
|
|
indent() << " " << gen(in_avg) << ",\n";
|
|
if (in_var) {
|
|
indent() << " " << gen(in_var) << ",\n";
|
|
} else {
|
|
indent() << " (" << in_avg->dtype() << ") 0"
|
|
<< ",\n";
|
|
}
|
|
indent() << " (" << out_N->dtype() << ")" << gen(in_N) << ");\n";
|
|
return;
|
|
}
|
|
|
|
const auto par_domains = ir_utils::getParallelDomains(wop->out());
|
|
// Get parallel reduction domains
|
|
const bool tidx =
|
|
par_domains.find(ParallelType::TIDx) != par_domains.end() &&
|
|
par_domains.at(ParallelType::TIDx)->isReduction();
|
|
const bool tidy =
|
|
par_domains.find(ParallelType::TIDy) != par_domains.end() &&
|
|
par_domains.at(ParallelType::TIDy)->isReduction();
|
|
const bool tidz =
|
|
par_domains.find(ParallelType::TIDz) != par_domains.end() &&
|
|
par_domains.at(ParallelType::TIDz)->isReduction();
|
|
|
|
const auto data_type = wop->out()->dtype();
|
|
|
|
if (has_block_reduce) {
|
|
if (has_grid_reduce) {
|
|
// allocate block result
|
|
indent() << data_type << " "
|
|
<< "block_result_avg_" << block_reduce_name_ << " = "
|
|
<< gen(wop->initAvg()) << ";\n";
|
|
indent() << data_type << " "
|
|
<< "block_result_var_" << block_reduce_name_ << " = "
|
|
<< gen(wop->initVar()) << ";\n";
|
|
indent() << out_N->dtype() << " "
|
|
<< "block_result_n_" << block_reduce_name_ << " = "
|
|
<< gen(wop->initN()) << ";\n";
|
|
}
|
|
indent() << "blockWelford<" << (tidx ? "true" : "false") << ", "
|
|
<< (tidy ? "true" : "false") << ", " << (tidz ? "true" : "false")
|
|
<< ">(\n";
|
|
if (has_grid_reduce) {
|
|
indent() << kTab << "block_result_avg_" << block_reduce_name_ << ",\n"
|
|
<< kTab << "block_result_var_" << block_reduce_name_ << ",\n"
|
|
<< kTab << "block_result_n_" << block_reduce_name_ << ",\n";
|
|
} else {
|
|
indent() << kTab << gen(wop->outAvg()) << ",\n";
|
|
indent() << kTab << gen(wop->outVar()) << ",\n";
|
|
indent() << kTab << gen(wop->outN()) << ",\n";
|
|
}
|
|
indent() << " " << gen(in_avg) << ",\n";
|
|
if (in_var) {
|
|
indent() << " " << gen(in_var) << ",\n";
|
|
} else {
|
|
indent() << " (" << in_avg->dtype() << ") 0"
|
|
<< ",\n";
|
|
}
|
|
indent() << out_N->dtype() << "(" << gen(in_N) << "),\n";
|
|
indent() << kTab << "threadIdx,\n";
|
|
indent() << kTab << "blockDim,\n";
|
|
indent() << kTab << "reinterpret_cast<" << data_type
|
|
<< "*>(shared_mem_avg),\n";
|
|
indent() << kTab << "reinterpret_cast<" << data_type
|
|
<< "*>(shared_mem_var),\n";
|
|
indent() << kTab << "reinterpret_cast<" << out_N->dtype()
|
|
<< "*>(shared_mem_n),\n";
|
|
TORCH_INTERNAL_ASSERT(wop->predicate() != nullptr);
|
|
TORCH_INTERNAL_ASSERT(
|
|
wop->predicate() != nullptr && wop->predicate()->hasValue());
|
|
auto read_pred = genInline(wop->predicate());
|
|
indent() << kTab << read_pred << ",\n";
|
|
if (wop->writePredicate() != nullptr) {
|
|
TORCH_INTERNAL_ASSERT(wop->writePredicate()->hasValue());
|
|
auto write_pred = genInline(wop->writePredicate());
|
|
indent() << kTab << write_pred << ",\n";
|
|
}
|
|
indent() << kTab << data_type << "(0));\n";
|
|
}
|
|
}
|
|
|
|
// Support ReductionOp and WelfordOp
|
|
template <typename REDUCTION_OP>
|
|
std::string generateGridReduceTemplateFlags(
|
|
const REDUCTION_OP* rop,
|
|
const ParallelTypeBitmap& thread_pred) {
|
|
TORCH_INTERNAL_ASSERT(
|
|
!rop->isFused(), "This is not for the fused reduction kernel\n");
|
|
|
|
const auto par_domains = ir_utils::getParallelDomains(rop->outputs()[0]);
|
|
ArgumentBuilder flags;
|
|
for (const ParallelType pt : kParallelTypeThreads) {
|
|
const bool parallel_reduction =
|
|
par_domains.find(pt) != par_domains.end() &&
|
|
par_domains.at(pt)->isReduction();
|
|
const bool pred = thread_pred.get(pt);
|
|
TORCH_INTERNAL_ASSERT(
|
|
!(parallel_reduction && pred), "Cannot reduce predicated axis: ", pt);
|
|
bool flag = false;
|
|
// Currently assumed that no dimensions parallelized with blocks
|
|
// are predicated. This assumption may be lifted, but
|
|
// gridReduction would need some changes.
|
|
if (isParallelTypeBlockDim(pt)) {
|
|
TORCH_INTERNAL_ASSERT(
|
|
!pred, "Predication on block dimensions not allowed: ", pt);
|
|
flag = parallel_reduction;
|
|
} else {
|
|
flag = !pred && !parallel_reduction;
|
|
}
|
|
flags.arg(flag);
|
|
}
|
|
return flags.str();
|
|
}
|
|
|
|
void handle(const kir::GridReduction* grop) final {
|
|
const auto rop = grop->reduction_op();
|
|
TORCH_INTERNAL_ASSERT(rop->out()->isA<kir::TensorIndex>());
|
|
|
|
const auto out = rop->out()->as<kir::TensorIndex>();
|
|
const auto domain = out->view()->domain();
|
|
TORCH_INTERNAL_ASSERT(domain->hasGridReduction());
|
|
|
|
const auto data_type = rop->out()->dtype();
|
|
const auto op_type = rop->getReductionOpType();
|
|
|
|
TORCH_INTERNAL_ASSERT(
|
|
grop->reduction_buffer()->buffer()->isA<TensorView>());
|
|
TORCH_INTERNAL_ASSERT(grop->sync_buffer()->buffer()->isA<TensorView>());
|
|
const auto work_buffer =
|
|
grop->reduction_buffer()->buffer()->as<TensorView>();
|
|
const auto sync_buffer = grop->sync_buffer()->buffer()->as<TensorView>();
|
|
|
|
if (rop->isFused()) {
|
|
generateFusedGridReduction(grop);
|
|
return;
|
|
}
|
|
|
|
const std::string flags_str =
|
|
generateGridReduceTemplateFlags(rop, grop->threadPredicate());
|
|
|
|
const bool persistent_sync =
|
|
kernel_->summary().has_cooperative_grid_reduction;
|
|
|
|
// Since block-level reduction is already done, those dimensions
|
|
// with tidx/y/z being true do not participate in the grid
|
|
// reduction.
|
|
ArgumentBuilder template_args;
|
|
template_args.arg(flags_str).arg(persistent_sync);
|
|
|
|
ArgumentBuilder func_args(block_nest_level_ + 1, kTab);
|
|
func_args.arg(gen(rop->out()));
|
|
if (domain->hasBlockReduction()) {
|
|
func_args.arg("block_result_").append(block_reduce_name_);
|
|
block_reduce_name_++;
|
|
} else {
|
|
func_args.arg(gen(rop->in()));
|
|
}
|
|
func_args.arg(genReductionOp(op_type, out));
|
|
func_args.arg("&").append(varName(work_buffer)).append("[0]");
|
|
func_args.arg(varName(sync_buffer));
|
|
func_args.arg(genCall("static_cast", ptrType(data_type), "shared_mem"));
|
|
// read and write predicates
|
|
TORCH_INTERNAL_ASSERT(
|
|
grop->predicate() != nullptr && grop->predicate()->hasValue());
|
|
const auto read_pred = genInline(grop->predicate());
|
|
func_args.arg(read_pred);
|
|
if (grop->writePredicate() != nullptr) {
|
|
TORCH_INTERNAL_ASSERT(grop->writePredicate()->hasValue());
|
|
func_args.arg(genInline(grop->writePredicate()));
|
|
} else {
|
|
func_args.arg(read_pred);
|
|
}
|
|
// Init val
|
|
func_args.arg(genCall(data_type, genInline(grop->reduction_op()->init())));
|
|
|
|
indent() << "reduction::gridReduce<" << template_args << ">(\n";
|
|
indent() << kTab << func_args << ");\n";
|
|
}
|
|
|
|
std::string genFusedReductionName(const kir::TensorIndex* reduction_out) {
|
|
return varName(reduction_out->view()) + "_reduction";
|
|
}
|
|
|
|
void generateFusedGridReduction(const kir::GridReduction* grop) {
|
|
const auto rop = grop->reduction_op();
|
|
TORCH_INTERNAL_ASSERT(rop->isFused());
|
|
|
|
const auto out = rop->out()->as<kir::TensorIndex>();
|
|
|
|
const auto data_type = rop->out()->dtype();
|
|
const auto op_type = rop->getReductionOpType();
|
|
|
|
const auto work_buffer =
|
|
grop->reduction_buffer()->buffer()->as<TensorView>();
|
|
const auto sync_buffer = grop->sync_buffer()->buffer()->as<TensorView>();
|
|
|
|
const auto reduction_name = genFusedReductionName(out);
|
|
|
|
// template <typename Func, typename... Types>
|
|
// __device__ __inline__ void reduce(
|
|
// RefTuple<Types...> out,
|
|
// const LocalTuple<Types...>& inp,
|
|
// VolatilePtrTuple<Types...> global_work_buffer,
|
|
// int64_t* global_sync_buffer, // Allocated as product of all
|
|
// // non-participating Grid dimension
|
|
// PtrTuple<Types...> shared_buf,
|
|
// bool read_pred, // Prevent reading from out of bounds memory
|
|
// bool write_pred, // Prevent from writing out of bounds
|
|
// const LocalTuple<Types...>& init_val,
|
|
// Func reduction_op);
|
|
|
|
indent() << reduction_name << ".reduce(\n";
|
|
|
|
ArgumentBuilder func_args(block_nest_level_ + 1, kTab);
|
|
// out
|
|
func_args.arg(genCall("RefTuple", data_type, gen(rop->out())));
|
|
// inp
|
|
func_args.arg(genCall("ConstRefTuple", data_type, gen(rop->in())));
|
|
// global_work_buffer
|
|
func_args.arg(genCall(
|
|
"VolatilePtrTuple", data_type, "&" + varName(work_buffer) + "[0]"));
|
|
// global_sync_buffer
|
|
func_args.arg("&").append(varName(sync_buffer)).append("[0]");
|
|
// shared_buf
|
|
func_args.arg(genCall(
|
|
"PtrTuple",
|
|
data_type,
|
|
genCall("static_cast", ptrType(data_type), "shared_mem")));
|
|
// read and write predicates
|
|
TORCH_INTERNAL_ASSERT(
|
|
grop->predicate() != nullptr && grop->predicate()->hasValue());
|
|
const auto read_pred = genInline(grop->predicate());
|
|
auto write_pred = read_pred;
|
|
if (grop->writePredicate() != nullptr) {
|
|
TORCH_INTERNAL_ASSERT(grop->writePredicate()->hasValue());
|
|
write_pred = genInline(grop->writePredicate());
|
|
}
|
|
func_args.arg(read_pred).arg(write_pred);
|
|
// init_val
|
|
func_args.arg(genCall(
|
|
"LocalTuple", data_type, genInline(grop->reduction_op()->init())));
|
|
// reduction_op
|
|
func_args.arg(genReductionOp(op_type, out));
|
|
|
|
indent() << kTab << func_args << ");\n";
|
|
}
|
|
|
|
void handle(const kir::GridBroadcast* grop) final {
|
|
const auto bop = grop->broadcast_op();
|
|
TORCH_INTERNAL_ASSERT(bop->out()->isA<kir::TensorIndex>());
|
|
|
|
const ParallelTypeBitmap parallel_types =
|
|
kernel_->summary().broadcast_parallel_types.at(bop);
|
|
|
|
TORCH_INTERNAL_ASSERT(
|
|
parallel_types.hasBID(),
|
|
"GridBroadcast needs to be used with a broadcast op that is parallelized with the BID parallel types");
|
|
|
|
TORCH_INTERNAL_ASSERT(
|
|
grop->broadcast_buffer()->buffer()->isA<TensorView>());
|
|
TORCH_INTERNAL_ASSERT(grop->sync_buffer()->buffer()->isA<TensorView>());
|
|
const auto work_buffer =
|
|
grop->broadcast_buffer()->buffer()->as<TensorView>();
|
|
const auto sync_buffer = grop->sync_buffer()->buffer()->as<TensorView>();
|
|
|
|
std::stringstream flags_str;
|
|
for (const ParallelType pt : kParallelTypeThreads) {
|
|
const bool parallel_bcast = parallel_types.get(pt);
|
|
if (pt != kParallelTypeThreads[0]) {
|
|
flags_str << ", ";
|
|
}
|
|
flags_str << (parallel_bcast ? "true" : "false");
|
|
}
|
|
|
|
// Since block-level broadcast has not necessarily been performed before
|
|
// this function call, so grid broadcast may be broadcasting across both
|
|
// the grid and the block level.
|
|
indent() << "grid_broadcast::broadcast<" << flags_str.str() << ">(\n";
|
|
indent() << kTab << gen(bop->out()) << ",\n";
|
|
indent() << kTab << gen(bop->in()) << ",\n";
|
|
indent() << kTab << "&" << varName(work_buffer) << "[0],\n";
|
|
indent() << kTab << varName(sync_buffer) << ",\n";
|
|
TORCH_INTERNAL_ASSERT(
|
|
grop->predicate() != nullptr && grop->predicate()->hasValue());
|
|
indent() << kTab << genInline(grop->predicate()) << ");\n";
|
|
}
|
|
|
|
void handle(const kir::GridWelford* gwop) final {
|
|
const auto wop = gwop->welford_op();
|
|
TORCH_INTERNAL_ASSERT(wop->outAvg()->isA<kir::TensorIndex>());
|
|
|
|
const auto out = wop->out()->as<kir::TensorIndex>();
|
|
const auto domain = out->view()->domain();
|
|
TORCH_INTERNAL_ASSERT(domain->hasGridReduction());
|
|
|
|
const auto data_type = out->dtype();
|
|
|
|
TORCH_INTERNAL_ASSERT(gwop->var_buffer()->buffer()->isA<TensorView>());
|
|
TORCH_INTERNAL_ASSERT(gwop->sync_buffer()->buffer()->isA<TensorView>());
|
|
|
|
const auto avg_buffer = gwop->avg_buffer()->buffer()->as<TensorView>();
|
|
const auto var_buffer = gwop->var_buffer()->buffer()->as<TensorView>();
|
|
const auto n_buffer = gwop->N_buffer()->buffer()->as<TensorView>();
|
|
const auto sync_buffer = gwop->sync_buffer()->buffer()->as<TensorView>();
|
|
|
|
if (wop->isFused()) {
|
|
generateFusedGridWelford(gwop);
|
|
return;
|
|
}
|
|
|
|
const bool persistent_sync =
|
|
kernel_->summary().has_cooperative_grid_reduction;
|
|
|
|
const std::string flags_str =
|
|
generateGridReduceTemplateFlags(wop, gwop->threadPredicate());
|
|
|
|
// Since block-level reduction is already done, those dimensions
|
|
// with tidx/y/z being true do not participate in the grid reduction.
|
|
indent() << "welford::gridWelford<" << flags_str << ", "
|
|
<< (persistent_sync ? "true" : "false") << ">(\n";
|
|
indent() << kTab << gen(wop->outAvg()) << ",\n"
|
|
<< kTab << gen(wop->outVar()) << ",\n"
|
|
<< kTab << gen(wop->outN()) << ",\n";
|
|
if (domain->hasBlockReduction()) {
|
|
indent() << kTab << "block_result_avg_" << block_reduce_name_ << ",\n"
|
|
<< kTab << "block_result_var_" << block_reduce_name_ << ",\n"
|
|
<< kTab << "block_result_n_" << block_reduce_name_ << ",\n";
|
|
block_reduce_name_++;
|
|
} else {
|
|
indent() << kTab << gen(wop->inAvg()) << ",\n";
|
|
if (wop->inVar() == nullptr) {
|
|
indent() << kTab << "(" << data_type << ") 0,\n";
|
|
} else {
|
|
indent() << kTab << gen(wop->inVar()) << ",\n";
|
|
}
|
|
indent() << kTab << "(" << wop->outN()->dtype() << ")" << gen(wop->inN())
|
|
<< ",\n";
|
|
}
|
|
indent() << kTab << "&" << varName(avg_buffer) << "[0],\n";
|
|
indent() << kTab << "&" << varName(var_buffer) << "[0],\n";
|
|
indent() << kTab << "&" << varName(n_buffer) << "[0],\n";
|
|
indent() << kTab << varName(sync_buffer) << ",\n";
|
|
indent() << kTab << "reinterpret_cast<" << data_type
|
|
<< "*>(shared_mem_avg),\n";
|
|
indent() << kTab << "reinterpret_cast<" << data_type
|
|
<< "*>(shared_mem_var),\n";
|
|
indent() << kTab << "reinterpret_cast<" << wop->outN()->dtype()
|
|
<< "*>(shared_mem_n),\n";
|
|
TORCH_INTERNAL_ASSERT(
|
|
gwop->predicate() != nullptr && gwop->predicate()->hasValue());
|
|
auto read_pred = genInline(gwop->predicate());
|
|
indent() << kTab << read_pred << ",\n";
|
|
if (gwop->writePredicate() != nullptr) {
|
|
TORCH_INTERNAL_ASSERT(gwop->writePredicate()->hasValue());
|
|
auto write_pred = genInline(gwop->writePredicate());
|
|
indent() << kTab << write_pred << ",\n";
|
|
} else {
|
|
indent() << kTab << read_pred << ",\n";
|
|
}
|
|
// TODO : init value support or remove.
|
|
indent() << kTab << data_type << "(0));\n";
|
|
}
|
|
|
|
void generateFusedGridWelford(const kir::GridWelford* gwop) {
|
|
const auto wop = gwop->welford_op();
|
|
TORCH_INTERNAL_ASSERT(wop->isFused());
|
|
|
|
const auto out = wop->out()->as<kir::TensorIndex>();
|
|
|
|
const auto data_type = wop->outAvg()->dtype();
|
|
const auto index_type = wop->outN()->dtype();
|
|
TORCH_INTERNAL_ASSERT(wop->outAvg()->dtype() == wop->outVar()->dtype());
|
|
|
|
ArgumentBuilder data_type_args;
|
|
data_type_args.arg(data_type).arg(data_type).arg(index_type);
|
|
|
|
const auto sync_buffer = gwop->sync_buffer()->buffer()->as<TensorView>();
|
|
|
|
const auto reduction_name = genFusedReductionName(out);
|
|
|
|
// template <typename Func, typename... Types>
|
|
// __device__ __inline__ void reduce(
|
|
// RefTuple<Types...> out,
|
|
// const LocalTuple<Types...>& inp,
|
|
// VolatilePtrTuple<Types...> global_work_buffer,
|
|
// int64_t* global_sync_buffer, // Allocated as product of all
|
|
// // non-participating Grid dimension
|
|
// PtrTuple<Types...> shared_buf,
|
|
// bool read_pred, // Prevent reading from out of bounds memory
|
|
// bool write_pred, // Prevent from writing out of bounds
|
|
// const LocalTuple<Types...>& init_val,
|
|
// Func reduction_op);
|
|
|
|
ArgumentBuilder out_args;
|
|
out_args.arg(gen(wop->outAvg()));
|
|
out_args.arg(gen(wop->outVar()));
|
|
out_args.arg(gen(wop->outN()));
|
|
|
|
ArgumentBuilder in_args;
|
|
in_args.arg(gen(wop->inAvg()));
|
|
if (wop->inVar() != nullptr) {
|
|
in_args.arg(gen(wop->inVar()));
|
|
} else {
|
|
in_args.arg("(").append(data_type).append(")0");
|
|
}
|
|
in_args.arg(gen(wop->inN()));
|
|
|
|
ArgumentBuilder init_args;
|
|
init_args.arg(gen(wop->initAvg()));
|
|
init_args.arg(gen(wop->initVar()));
|
|
init_args.arg(gen(wop->initN()));
|
|
|
|
ArgumentBuilder work_buffer_args;
|
|
work_buffer_args.arg("&")
|
|
.append(varName(gwop->avg_buffer()->buffer()->as<TensorView>()))
|
|
.append("[0]");
|
|
work_buffer_args.arg("&")
|
|
.append(varName(gwop->var_buffer()->buffer()->as<TensorView>()))
|
|
.append("[0]");
|
|
work_buffer_args.arg("&")
|
|
.append(varName(gwop->N_buffer()->buffer()->as<TensorView>()))
|
|
.append("[0]");
|
|
|
|
ArgumentBuilder smem_buffer_args;
|
|
smem_buffer_args.arg(
|
|
genCall("reinterpret_cast", ptrType(data_type), "shared_mem_avg"));
|
|
smem_buffer_args.arg(
|
|
genCall("reinterpret_cast", ptrType(data_type), "shared_mem_var"));
|
|
smem_buffer_args.arg(
|
|
genCall("reinterpret_cast", ptrType(index_type), "shared_mem_n"));
|
|
|
|
ArgumentBuilder func_args(block_nest_level_ + 1, kTab);
|
|
// out
|
|
func_args.arg(genCall("RefTuple", data_type_args, out_args));
|
|
// inp
|
|
func_args.arg(genCall("ConstRefTuple", data_type_args, in_args));
|
|
// global_work_buffer
|
|
func_args.arg(
|
|
genCall("VolatilePtrTuple", data_type_args, work_buffer_args));
|
|
// global_sync_buffer
|
|
func_args.arg("&").append(varName(sync_buffer)).append("[0]");
|
|
// shared_buf
|
|
func_args.arg(genCall("PtrTuple", data_type_args, smem_buffer_args));
|
|
// read and write predicates
|
|
TORCH_INTERNAL_ASSERT(
|
|
gwop->predicate() != nullptr && gwop->predicate()->hasValue());
|
|
const auto read_pred = genInline(gwop->predicate());
|
|
auto write_pred = read_pred;
|
|
if (gwop->writePredicate() != nullptr) {
|
|
TORCH_INTERNAL_ASSERT(gwop->writePredicate()->hasValue());
|
|
write_pred = genInline(gwop->writePredicate());
|
|
}
|
|
func_args.arg(read_pred).arg(write_pred);
|
|
// init_val
|
|
func_args.arg(genCall("LocalTuple", data_type_args, init_args));
|
|
// reduction_op
|
|
func_args.arg(genTemplate(
|
|
"welfordCombine", ArgumentBuilder().arg(data_type).arg(index_type)));
|
|
|
|
indent() << reduction_name << ".reduce(\n";
|
|
indent() << kTab << func_args << ");\n";
|
|
}
|
|
|
|
void handle(const kir::AllocateFusedReduction* alloc_fused_reduction) final {
|
|
// See the runtime file of the fused reduction
|
|
enum class ReductionParallelTypeState { Reduce, Iter, Pred, Inactive };
|
|
|
|
using ReductionParallelTypeStateArray =
|
|
ParallelTypeMap<ReductionParallelTypeState>;
|
|
|
|
ReductionParallelTypeStateArray states(
|
|
ReductionParallelTypeState::Inactive);
|
|
|
|
for (const ParallelType pt : kParallelTypeThreads) {
|
|
// It may be better to predicate grid reductions on dimensions they don't
|
|
// actively use, however since that should generally be discouraged (they
|
|
// should be part of the iter portion of the operation, or they should be
|
|
// predciated out) we're just going to assume they're part of the iter
|
|
// dimension. This would cause more communication than strictly necessary
|
|
// but should not be a common use case.
|
|
auto pt_dim = kernel_->summary().parallel_dimension_map_.get(pt);
|
|
if (pt_dim == nullptr || pt_dim->isOneInt()) {
|
|
continue;
|
|
}
|
|
// Initialize pt_dim if used to an iter dimension. It may change to a
|
|
// reduction or predicated dimension later.
|
|
states[pt] = ReductionParallelTypeState::Iter;
|
|
}
|
|
|
|
for (auto id : alloc_fused_reduction->out()->view()->domain()->domain()) {
|
|
auto pt = id->getParallelType();
|
|
if (isParallelTypeThread(pt)) {
|
|
auto state = id->isReduction() ? ReductionParallelTypeState::Reduce
|
|
: ReductionParallelTypeState::Iter;
|
|
states[pt] = state;
|
|
}
|
|
}
|
|
|
|
for (const auto predicated_pt : alloc_fused_reduction->threadPredicate()) {
|
|
auto& state = states[predicated_pt];
|
|
TORCH_INTERNAL_ASSERT(
|
|
state != ReductionParallelTypeState::Reduce,
|
|
"Invalid thread predication: ",
|
|
predicated_pt);
|
|
state = ReductionParallelTypeState::Pred;
|
|
}
|
|
|
|
ArgumentBuilder flags;
|
|
for (auto pt : kParallelTypeThreads) {
|
|
flags.arg(static_cast<int>(states[pt]));
|
|
}
|
|
|
|
// Persistent
|
|
flags.arg(true);
|
|
|
|
// Broadcast is fused
|
|
flags.arg(true);
|
|
|
|
const auto reduction_name =
|
|
genFusedReductionName(alloc_fused_reduction->out());
|
|
|
|
indent() << genTemplate("fused_reduction::ParallelReduce", flags) << " "
|
|
<< reduction_name << ";\n";
|
|
}
|
|
|
|
void handleScope(const kir::Scope& scope) {
|
|
for (auto expr : scope.exprs()) {
|
|
OptOutConstDispatch::handle(expr);
|
|
}
|
|
}
|
|
|
|
void handleTrivialLoop(const kir::ForLoop* loop) {
|
|
if (loop->vectorize()) {
|
|
vectorize_scope_ = loop->vectorize();
|
|
}
|
|
handleScope(loop->body());
|
|
if (loop->vectorize()) {
|
|
vectorize_scope_ = false;
|
|
}
|
|
}
|
|
|
|
void handle(const kir::ForLoop* loop) final {
|
|
if (loop->isTrivial()) {
|
|
handleTrivialLoop(loop);
|
|
return;
|
|
}
|
|
|
|
const auto gen_index = gen(loop->index());
|
|
const auto gen_start = genInline(loop->start());
|
|
const auto gen_stop = genInline(loop->stop());
|
|
const auto gen_step = genInline(loop->step());
|
|
|
|
std::stringstream step_code;
|
|
if (loop->step()->isOneInt()) {
|
|
step_code << "++" << gen_index;
|
|
} else {
|
|
step_code << gen_index << " += " << gen_step;
|
|
}
|
|
if (loop->isUnrolled()) {
|
|
indent() << "#pragma unroll\n";
|
|
} else {
|
|
indent() << "#pragma unroll 1\n";
|
|
}
|
|
|
|
indent() << "for(nvfuser_index_t " << gen_index;
|
|
if (loop->iter_domain()->isParallelized()) {
|
|
code_ << " = " << gen_start << "; ";
|
|
} else {
|
|
// Do not start at the start of the ID when not parallelized. Instead,
|
|
// start at 0. Predicates will protect buffers between 0 and ID->start(),
|
|
// however if we started at ID->start and extent == ID->start, we could
|
|
// have a "degenerate" loop (loop with no iterations). It may not be an
|
|
// issue to have a 0-sized loop, but all potential consequences haven't
|
|
// been covered. One example is WAR analysis which could incorrectly think
|
|
// a barrier inside a 0-sized loop actually provides protection.
|
|
code_ << " = 0; ";
|
|
}
|
|
code_ << gen_index << " < " << gen_stop << "; " << step_code.str() << ") ";
|
|
startBlock(true);
|
|
handleScope(loop->body());
|
|
endBlock();
|
|
}
|
|
|
|
void handle(const kir::IfThenElse* ite) final {
|
|
auto conditional = ite->predicate()->value();
|
|
if (conditional->isConst()) {
|
|
// If the conditional is a constant, then the IfThenElse is not required
|
|
if (conditional->value().value()) {
|
|
handleScope(ite->thenBody());
|
|
} else {
|
|
handleScope(ite->elseBody());
|
|
}
|
|
return;
|
|
}
|
|
|
|
indent() << "if (" << genInline(conditional) << ") ";
|
|
|
|
// "then" block
|
|
startBlock(true);
|
|
handleScope(ite->thenBody());
|
|
|
|
// "else" block (optional)
|
|
if (ite->hasElse()) {
|
|
endBlock(" else ");
|
|
startBlock(true);
|
|
handleScope(ite->elseBody());
|
|
}
|
|
|
|
endBlock();
|
|
}
|
|
|
|
void handle(const kir::Allocate* alloc) final {
|
|
const auto buffer_dtype = alloc->buffer()->dtype();
|
|
|
|
TORCH_INTERNAL_ASSERT(alloc->buffer() != nullptr);
|
|
alloc_map_.emplace(alloc->buffer(), alloc);
|
|
|
|
if (!alloc->buffer()->isA<TensorView>()) {
|
|
indent() << buffer_dtype << " " << gen(alloc->buffer()) << ";\n";
|
|
return;
|
|
}
|
|
|
|
const auto tv = alloc->buffer()->as<TensorView>();
|
|
|
|
const auto size = alloc->size();
|
|
TORCH_INTERNAL_ASSERT(size != nullptr);
|
|
|
|
if (alloc->alias() != nullptr) {
|
|
// Allocate alias another Allocate stmt
|
|
const auto alias_tv = alloc->alias()->buffer()->as<TensorView>();
|
|
indent() << "// Alias Allocation - " << alloc->memoryType() << "\n";
|
|
indent() << "auto& " << varName(tv) << " = " << varName(alias_tv)
|
|
<< ";\n";
|
|
|
|
} else {
|
|
// Standard Memory Allocation
|
|
switch (tv->getMemoryType()) {
|
|
case MemoryType::Global:
|
|
indent() << "// Allocate global tensor " << varName(tv) << "\n";
|
|
break;
|
|
case MemoryType::Shared:
|
|
if (kir::ExpressionEvaluator::isConst(size)) {
|
|
// Static shared memory
|
|
// Always align to 16B for tensorview buffers
|
|
// with any vectorized access.
|
|
// TODO:
|
|
// This path will be less commonly exercised once we
|
|
// start dynamically allocate all the tensors and
|
|
// might be removed in a follow up.
|
|
auto va = kernel_->summary().vectorized_accesses;
|
|
if (va.count(tv)) {
|
|
indent() << "__align__(16) ";
|
|
} else {
|
|
indent();
|
|
}
|
|
code_ << "__shared__ " << buffer_dtype << " " << varName(tv) << "["
|
|
<< genInline(size) << "];\n";
|
|
} else {
|
|
// Align Offset Position
|
|
indent() << "offset = alignBufferSize(offset, "
|
|
<< dataTypeSize(buffer_dtype) << ");\n";
|
|
// Shared Memory Pointer
|
|
indent() << buffer_dtype << "* " << varName(tv)
|
|
<< " = reinterpret_cast<" << buffer_dtype << "*>"
|
|
<< "(array + offset);\n";
|
|
// Increment Offset Position
|
|
indent() << "offset += (" << genInline(size) << " * sizeof("
|
|
<< buffer_dtype << "));\n";
|
|
}
|
|
break;
|
|
case MemoryType::Local: {
|
|
auto va = kernel_->summary().vectorized_accesses;
|
|
if (va.find(tv) != va.end()) {
|
|
indent() << "Array<" << buffer_dtype << ", " << genInline(size)
|
|
<< ", " << va.at(tv) << "> " << varName(tv) << ";\n";
|
|
} else {
|
|
indent() << buffer_dtype << " " << varName(tv) << "["
|
|
<< genInline(size) << "];\n";
|
|
}
|
|
} break;
|
|
default:
|
|
TORCH_INTERNAL_ASSERT(false, "Unexpected memory type");
|
|
}
|
|
}
|
|
}
|
|
|
|
void handle(const kir::BlockSync*) final {
|
|
// Use a custom synchronization method if enabled
|
|
if (std::getenv("PYTORCH_NVFUSER_USE_BLOCK_SYNC_ATOMIC")) {
|
|
indent() << "block_sync::sync();\n";
|
|
} else {
|
|
indent() << "__barrier_sync(0);\n";
|
|
}
|
|
}
|
|
|
|
void handle(const kir::GridSync* sync) final {
|
|
// Use a custom synchronization method if enabled
|
|
bool bidx = sync->syncDims().get(ParallelType::BIDx);
|
|
bool bidy = sync->syncDims().get(ParallelType::BIDy);
|
|
bool bidz = sync->syncDims().get(ParallelType::BIDz);
|
|
auto bool2str = [](bool b) { return (b ? "true" : "false"); };
|
|
std::stringstream sync_str;
|
|
sync_str << bool2str(bidx) << ", " << bool2str(bidy) << ", "
|
|
<< bool2str(bidz);
|
|
|
|
std::stringstream sync_segment_size;
|
|
sync_segment_size << "index_utils::maskedSize<" << sync_str.str()
|
|
<< ">(gridDim)";
|
|
|
|
std::stringstream sync_idx;
|
|
sync_idx << "index_utils::maskedOffset<" << bool2str(!bidx) << ", "
|
|
<< bool2str(!bidy) << ", " << bool2str(!bidz)
|
|
<< ">(gridDim, blockDim)";
|
|
|
|
indent() << "grid_sync::sync<" << sync_str.str() << ", true>(\n";
|
|
indent() << " " << varName(sync->syncBuffer()) << "[" << sync_idx.str()
|
|
<< "],\n";
|
|
indent() << " " << sync_segment_size.str() << ");\n";
|
|
}
|
|
|
|
void handle(const kir::InitMagicZero*) final {
|
|
indent() << "NVFUSER_DEFINE_MAGIC_ZERO\n";
|
|
}
|
|
|
|
void handle(const kir::UpdateMagicZero*) final {
|
|
indent() << "NVFUSER_UPDATE_MAGIC_ZERO\n";
|
|
}
|
|
|
|
private:
|
|
std::stringstream code_;
|
|
const kir::Kernel* kernel_;
|
|
int block_nest_level_ = 0;
|
|
int block_reduce_name_ = 0;
|
|
bool print_inline_ = false;
|
|
|
|
// Mark when we are inside of a vectorized for-loop
|
|
bool vectorize_scope_ = false;
|
|
|
|
//! Keep track of Allocate node for Val. Used to determine if Val
|
|
//! should be inlined.
|
|
std::unordered_map<const Val*, const kir::Allocate*> alloc_map_;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::string generateCudaKernel(
|
|
const kir::Kernel* kernel,
|
|
const std::string& kernel_name) {
|
|
FUSER_PERF_SCOPE("generateCudaKernel");
|
|
return CudaKernelGenerator::generateKernelDefinition(kernel, kernel_name);
|
|
}
|
|
|
|
} // namespace codegen
|
|
} // namespace cuda
|
|
} // namespace fuser
|
|
} // namespace jit
|
|
} // namespace torch
|