mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: The PR clang-formats everything in `torch/csrc/jit/` and adds it to the pre-commit hook. Here is a list of non-mechanical changes: - I went over each file and fixed up whenever I could tell that clang-format was clobbering comment formatting. - Made the macros in register_prim_ops a little more clang-format friendly by omitting trailing commas - Refactored autodiff.cpp to use a helper class with explicit state rather than a bunch of capturing lambdas - Small improvements to the precommit hook clang-format Pull Request resolved: https://github.com/pytorch/pytorch/pull/15524 Differential Revision: D13547989 Pulled By: suo fbshipit-source-id: 3ff1541bb06433ccfe6de6e33f29227a2b5bb493
243 lines
7.4 KiB
C++
243 lines
7.4 KiB
C++
#include <torch/csrc/jit/fuser/compiler.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <torch/csrc/jit/assertions.h>
|
|
#include <torch/csrc/jit/code_template.h>
|
|
#include <torch/csrc/jit/fuser/codegen.h>
|
|
#include <torch/csrc/jit/fuser/interface.h>
|
|
#include <torch/csrc/jit/fuser/kernel_cache.h>
|
|
#include <torch/csrc/jit/fuser/tensor_desc.h>
|
|
#include <torch/csrc/jit/ir.h>
|
|
#include <torch/csrc/jit/passes/canonicalize.h>
|
|
#include <torch/csrc/jit/passes/shape_analysis.h>
|
|
#include <torch/csrc/jit/type.h>
|
|
#include "torch/csrc/jit/fuser/interface.h"
|
|
|
|
#if USE_CUDA_FUSER
|
|
#include <torch/csrc/jit/fuser/cuda/fused_kernel.h>
|
|
#endif // USE_CUDA_FUSER
|
|
|
|
#if USE_CPU_FUSER
|
|
#include <torch/csrc/jit/fuser/cpu/fused_kernel.h>
|
|
#endif // USE_CUDA_FUSER
|
|
|
|
#include <atomic>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <sstream>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace fuser {
|
|
|
|
// Counter for number of kernels compiled, used for debugging and
|
|
// creating arbitrary kernel names.
|
|
static std::atomic<size_t> next_kernel_id{0};
|
|
static int debug_fusion{-1};
|
|
|
|
size_t nCompiledKernels() {
|
|
return next_kernel_id.load();
|
|
}
|
|
|
|
int debugFuser() {
|
|
if (debug_fusion < 0) {
|
|
const char* debug_env = getenv("PYTORCH_FUSION_DEBUG");
|
|
debug_fusion = debug_env ? atoi(debug_env) : 0;
|
|
}
|
|
return debug_fusion;
|
|
}
|
|
|
|
// If the given node is used once by a chunk node, returns that node.
|
|
// Returns nullptr otherwise.
|
|
static const Node* usedInFusedChunk(const Value* input) {
|
|
const auto& uses = input->uses();
|
|
if (uses.size() == 1) {
|
|
const Node* user = uses[0].user;
|
|
if (user->kind() == prim::ConstantChunk) {
|
|
return user;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static void setInputChunkDescriptors(KernelSpec& spec) {
|
|
spec.inputChunks().reserve((spec.graph())->inputs().size());
|
|
for (const Value* input : (spec.graph())->inputs()) {
|
|
if (const Node* chunk = usedInFusedChunk(input)) {
|
|
spec.inputChunks().emplace_back(
|
|
chunk->i(attr::chunks), chunk->i(attr::dim));
|
|
} else {
|
|
spec.inputChunks().emplace_back(1, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Run a DFS traversal to find all inputs that affect a given output value
|
|
static std::vector<int64_t> getInputDependencies(const Value* output) {
|
|
std::vector<const Value*> queue{output};
|
|
std::unordered_set<const Value*> inputs;
|
|
std::unordered_set<const Value*> seen;
|
|
while (!queue.empty()) {
|
|
const Value* val = queue.back();
|
|
queue.pop_back();
|
|
const Node* producer = val->node();
|
|
if (producer->kind() == prim::Param) {
|
|
inputs.insert(val);
|
|
continue;
|
|
}
|
|
for (const Value* input : producer->inputs()) {
|
|
if (/*bool inserted = */ seen.insert(input).second) {
|
|
queue.push_back(input);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert Value* into offsets into the graph's input list
|
|
std::vector<int64_t> offsets;
|
|
offsets.reserve(inputs.size());
|
|
for (const Value* input : inputs) {
|
|
offsets.push_back(input->offset());
|
|
}
|
|
|
|
std::sort(offsets.begin(), offsets.end());
|
|
return offsets;
|
|
}
|
|
|
|
static void setInputBroadcastGroups(KernelSpec& spec) {
|
|
std::unordered_set<std::vector<int64_t>, torch::hash<std::vector<int64_t>>>
|
|
broadcast_groups;
|
|
for (const Value* output : (spec.graph())->outputs()) {
|
|
if (output->node()->kind() == prim::FusedConcat) {
|
|
for (const Value* concat_input : output->node()->inputs()) {
|
|
broadcast_groups.insert(getInputDependencies(concat_input));
|
|
}
|
|
} else {
|
|
broadcast_groups.insert(getInputDependencies(output));
|
|
}
|
|
}
|
|
std::copy(
|
|
broadcast_groups.begin(),
|
|
broadcast_groups.end(),
|
|
std::back_inserter(spec.inputBroadcastGroups()));
|
|
}
|
|
|
|
// Performs "upfront" compilation where storage is known but shapes are not.
|
|
// Currently identifies how to expand all tensors so that all intermediate
|
|
// tensors are the same shape, simplifying code generation.
|
|
// Broadcast groups and chunks are identified without shape information
|
|
// using logical properties of how each works. In particular, tensors
|
|
// are always expandable to the outputs of pointwise operations they
|
|
// or their descendants are involved in, which means that in a DAG of
|
|
// pointwise operations all tensors are expandable to the (single) output.
|
|
// Note: The logic is slightly complicated by concatenation and chunking.
|
|
static void upfrontCompilation(KernelSpec& spec) {
|
|
setInputBroadcastGroups(spec);
|
|
setInputChunkDescriptors(spec);
|
|
}
|
|
|
|
int64_t registerFusion(const Node* fusion_group) {
|
|
auto graph = normalizeGraphForCache(fusion_group->g(attr::Subgraph));
|
|
|
|
// Don't re-register the fusion if we can use a pre-existing one
|
|
const auto maybe_spec = lookupGraph(graph);
|
|
if (maybe_spec) {
|
|
return (*maybe_spec)->key();
|
|
}
|
|
|
|
// Unconditionally create and register the fusion
|
|
// This is necessary to support our global disable fusions flag: if someone
|
|
// runs some code under no-fusions mode and then runs some code with fusions
|
|
// enabled, the second time around the returned spec from the cache should
|
|
// be a valid spec (must have had upfrontCompilation run on it).
|
|
const auto key = store(graph);
|
|
const auto maybe_retrieved_spec = retrieve(key);
|
|
JIT_ASSERT(maybe_retrieved_spec);
|
|
upfrontCompilation(**maybe_retrieved_spec);
|
|
|
|
return key;
|
|
}
|
|
|
|
std::shared_ptr<FusedKernel> compileKernel(
|
|
const KernelSpec& spec,
|
|
const ArgSpec& arg_spec,
|
|
const std::vector<int64_t>& map_size,
|
|
const at::Device device) {
|
|
const std::vector<TensorDesc>& input_desc = arg_spec.descs();
|
|
|
|
auto graph = spec.graph()->copy();
|
|
|
|
c10::optional<at::ScalarType> scalar_type;
|
|
for (size_t i = 0; i < input_desc.size(); i++) {
|
|
const auto& desc = input_desc[i];
|
|
graph->inputs()[i]->setType(TensorType::create(
|
|
desc.scalar_type,
|
|
device,
|
|
desc.nDim())); // TODO: nDim is bad, as it is collapsed
|
|
}
|
|
|
|
PropagateInputShapes(graph);
|
|
|
|
// Creates output descriptions
|
|
std::vector<TensorDesc> output_desc;
|
|
for (const Value* output : graph->outputs()) {
|
|
std::vector<int64_t> sizes = map_size;
|
|
if (output->node()->kind() == prim::FusedConcat) {
|
|
sizes.at(output->node()->i(attr::dim)) *= output->node()->inputs().size();
|
|
}
|
|
auto scalar_type =
|
|
output->type()->expect<c10::TensorType const>()->scalarType();
|
|
auto type = CompleteTensorType::create(scalar_type, device, sizes);
|
|
output_desc.emplace_back(std::move(type));
|
|
}
|
|
|
|
const std::string name = "kernel_" + std::to_string(next_kernel_id++);
|
|
const bool use_cuda = device.is_cuda();
|
|
std::string code;
|
|
std::vector<PartitionDesc> chunk_desc;
|
|
std::vector<PartitionDesc> concat_desc;
|
|
bool has_random;
|
|
std::tie(code, chunk_desc, concat_desc, has_random) =
|
|
generateKernel(name, *graph, input_desc, output_desc, use_cuda);
|
|
|
|
std::shared_ptr<FusedKernel> fused_kernel;
|
|
if (use_cuda) {
|
|
#if USE_CUDA_FUSER
|
|
fused_kernel = std::make_shared<cuda::FusedKernelCUDA>(
|
|
device.index(),
|
|
name,
|
|
code,
|
|
input_desc,
|
|
output_desc,
|
|
chunk_desc,
|
|
concat_desc,
|
|
has_random);
|
|
#else
|
|
throw std::runtime_error("CUDA Fusion is not supported on this build.");
|
|
#endif // USE_CUDA_FUSER
|
|
} else {
|
|
#if USE_CPU_FUSER
|
|
fused_kernel = std::make_shared<cpu::FusedKernelCPU>(
|
|
name,
|
|
code,
|
|
input_desc,
|
|
output_desc,
|
|
chunk_desc,
|
|
concat_desc,
|
|
has_random);
|
|
#else
|
|
throw std::runtime_error("CPU Fusion is not supported on this build.");
|
|
#endif // USE_CPU_FUSER
|
|
}
|
|
|
|
return fused_kernel;
|
|
}
|
|
|
|
} // namespace fuser
|
|
} // namespace jit
|
|
} // namespace torch
|