mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This reverts commit517eebc1dd. Reverted https://github.com/pytorch/pytorch/pull/158928 on behalf of https://github.com/ZainRizvi due to Sorry but this breaks trunk test_jit_fuser_te.py::TestNNCOpInfoCPU::test_nnc_correctness_frac_cpu_bfloat16 [GH job link](https://github.com/pytorch/pytorch/actions/runs/16534544469/job/46768022799) [HUD commit link](517eebc1dd) ([comment](https://github.com/pytorch/pytorch/pull/158928#issuecomment-3122158944))
243 lines
6.9 KiB
C++
243 lines
6.9 KiB
C++
#pragma once
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include <c10/util/irange.h>
|
|
#include "torch/csrc/jit/tensorexpr/eval.h"
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace tensorexpr {
|
|
|
|
template <typename T>
|
|
struct DefaultPaddedValue;
|
|
|
|
template <>
|
|
struct DefaultPaddedValue<int> {
|
|
static const int kValue = static_cast<int>(0xDEADBEEF);
|
|
};
|
|
|
|
template <>
|
|
struct DefaultPaddedValue<int8_t> {
|
|
static const int8_t kValue = static_cast<int8_t>(0xBE);
|
|
};
|
|
|
|
template <>
|
|
struct DefaultPaddedValue<uint8_t> {
|
|
static const uint8_t kValue = static_cast<uint8_t>(0xBE);
|
|
};
|
|
|
|
template <>
|
|
struct DefaultPaddedValue<int16_t> {
|
|
static const int16_t kValue = static_cast<int16_t>(0xBEEF);
|
|
};
|
|
|
|
template <>
|
|
struct DefaultPaddedValue<int64_t> {
|
|
static const int64_t kValue = static_cast<int64_t>(0xDEADBEEF);
|
|
};
|
|
|
|
template <>
|
|
struct DefaultPaddedValue<float> {
|
|
static constexpr float kValue = 0.1357;
|
|
};
|
|
|
|
template <>
|
|
struct DefaultPaddedValue<at::Half> {
|
|
// at::Half ctor isn't constexpr, so just fill it with bits.
|
|
static constexpr uint16_t kValue = 1357;
|
|
};
|
|
|
|
template <>
|
|
struct DefaultPaddedValue<double> {
|
|
static constexpr double kValue = 0.1357;
|
|
};
|
|
|
|
// A concrete base to be used in PaddedBase.
|
|
class PaddedBufferBase {
|
|
public:
|
|
const std::string& name() const {
|
|
return name_;
|
|
}
|
|
|
|
int size() const {
|
|
return total_size_;
|
|
}
|
|
|
|
int raw_size() const {
|
|
return total_size_ + 2 * kPaddingSize;
|
|
}
|
|
|
|
virtual ~PaddedBufferBase() {}
|
|
|
|
protected:
|
|
explicit PaddedBufferBase(
|
|
const std::vector<int>& dims,
|
|
const std::string& name);
|
|
int Index(const std::vector<int>& indices) const;
|
|
|
|
std::vector<int> dims_;
|
|
std::string name_;
|
|
std::vector<int> strides_;
|
|
int total_size_; // total number of useful element, does not include the
|
|
// paddings
|
|
static constexpr int kPaddingSize = 64;
|
|
};
|
|
|
|
// A padded buffer with wartermarks for testing.
|
|
// The buffer carries padded watermarks on both sides to catch potential
|
|
// out-of-bounds writes. For read-only data that are not supposed to change, it
|
|
// can also make a backup and be compared later.
|
|
template <typename T>
|
|
class PaddedBuffer : public PaddedBufferBase {
|
|
public:
|
|
PaddedBuffer(int d0, const std::string& name = "")
|
|
: PaddedBuffer(std::vector<int>({d0}), name) {}
|
|
PaddedBuffer(int d0, int d1, const std::string& name = "")
|
|
: PaddedBuffer(std::vector<int>({d0, d1}), name) {}
|
|
PaddedBuffer(int d0, int d1, int d2, const std::string& name = "")
|
|
: PaddedBuffer(std::vector<int>({d0, d1, d2}), name) {}
|
|
PaddedBuffer(int d0, int d1, int d2, int d3, const std::string& name = "")
|
|
: PaddedBuffer(std::vector<int>({d0, d1, d2, d3}), name) {}
|
|
PaddedBuffer(const std::vector<int>& dims, const std::string& name = "")
|
|
: PaddedBufferBase(dims, name) {
|
|
data_.resize(total_size_ + 2 * kPaddingSize, kPaddingValue);
|
|
}
|
|
PaddedBuffer(const PaddedBuffer& other, const std::string& name)
|
|
: PaddedBuffer(other) {
|
|
this->name_ = name;
|
|
}
|
|
|
|
T* data() {
|
|
return data_.data() + kPaddingSize;
|
|
}
|
|
const T* data() const {
|
|
return const_cast<PaddedBuffer*>(this)->data();
|
|
}
|
|
T* raw_data() {
|
|
return data_.data();
|
|
}
|
|
const T* raw_data() const {
|
|
return const_cast<PaddedBuffer*>(this)->raw_data();
|
|
}
|
|
T& operator()(int i0) {
|
|
// There is a bit performance impact with forming a vector here. But this
|
|
// data structure is for testing only, and not performance critical.
|
|
return this->operator()(std::vector<int>({i0}));
|
|
}
|
|
const T& operator()(int i0) const {
|
|
return const_cast<PaddedBuffer*>(this)->operator()(i0);
|
|
}
|
|
T& operator()(int i0, int i1) {
|
|
return this->operator()(std::vector<int>({i0, i1}));
|
|
}
|
|
const T& operator()(int i0, int i1) const {
|
|
return const_cast<PaddedBuffer*>(this)->operator()(i0, i1);
|
|
}
|
|
T& operator()(int i0, int i1, int i2) {
|
|
return this->operator()(std::vector<int>({i0, i1, i2}));
|
|
}
|
|
const T& operator()(int i0, int i1, int i2) const {
|
|
return const_cast<PaddedBuffer*>(this)->operator()(i0, i1, i2);
|
|
}
|
|
T& operator()(int i0, int i1, int i2, int i3) {
|
|
return this->operator()(std::vector<int>({i0, i1, i2, i3}));
|
|
}
|
|
const T& operator()(int i0, int i1, int i2, int i3) const {
|
|
return const_cast<PaddedBuffer*>(this)->operator()(i0, i1, i2, i3);
|
|
}
|
|
T& operator()(const std::vector<int>& indices) {
|
|
return data_[kPaddingSize + Index(indices)];
|
|
}
|
|
const T& operator()(const std::vector<int>& indices) const {
|
|
return const_cast<PaddedBuffer*>(this)->operator()(indices);
|
|
}
|
|
|
|
template <typename U>
|
|
friend void ExpectAllNear(
|
|
const PaddedBuffer<U>& v1,
|
|
const PaddedBuffer<U>& v2,
|
|
float abs_error);
|
|
template <typename U>
|
|
friend void ExpectAllEqual(
|
|
const PaddedBuffer<U>& v1,
|
|
const PaddedBuffer<U>& v2);
|
|
void Backup() {
|
|
backup_data_ = data_;
|
|
}
|
|
|
|
// Verify the watermarks in the paddings are intact.
|
|
void ValidateWatermark() const {
|
|
for (const auto i : c10::irange(kPaddingSize)) {
|
|
ASSERT_EQ(data_[i], kPaddingValue);
|
|
ASSERT_EQ(data_[i + total_size_ + kPaddingSize], kPaddingValue);
|
|
}
|
|
}
|
|
|
|
void CheckBackup() const {
|
|
ValidateWatermark();
|
|
DCHECK(backup_data_.size() == data_.size())
|
|
<< "Please make sure you have call Backup() before calling CheckBackup()";
|
|
for (const auto i : c10::irange(total_size_)) {
|
|
ASSERT_EQ(data_[i + kPaddingSize], backup_data_[i + kPaddingSize]);
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::vector<T> data_;
|
|
std::vector<T> backup_data_;
|
|
T kPaddingValue = DefaultPaddedValue<T>::kValue;
|
|
};
|
|
|
|
template <typename T>
|
|
inline CodeGen::CallArg::CallArg(const PaddedBuffer<T>& buffer)
|
|
: data_(const_cast<T*>(buffer.data())) {}
|
|
|
|
template <typename T>
|
|
std::string CompareErrorMsg(
|
|
const PaddedBuffer<T>& v1,
|
|
const PaddedBuffer<T>& v2,
|
|
int index) {
|
|
std::ostringstream oss;
|
|
oss << "index: " << index << ", v1: (" << v1.name() << ", " << v1(index)
|
|
<< ")"
|
|
<< ", v2: (" << v2.name() << ", " << v2(index) << ")";
|
|
return oss.str();
|
|
}
|
|
|
|
template <typename T>
|
|
void ExpectAllEqual(const PaddedBuffer<T>& f1, const PaddedBuffer<T>& f2) {
|
|
const std::vector<T>& v1 = f1.data_;
|
|
const std::vector<T>& v2 = f2.data_;
|
|
const int kPaddingSize = f1.kPaddingSize;
|
|
const int total_size = f1.total_size_;
|
|
ASSERT_EQ(v1.size(), v2.size());
|
|
f1.ValidateWatermark();
|
|
f2.ValidateWatermark();
|
|
for (const auto i : c10::irange(total_size)) {
|
|
ASSERT_EQ(v1[kPaddingSize + i], v2[kPaddingSize + i]);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void ExpectAllNear(
|
|
const PaddedBuffer<T>& f1,
|
|
const PaddedBuffer<T>& f2,
|
|
float abs_error) {
|
|
const std::vector<T>& v1 = f1.data_;
|
|
const std::vector<T>& v2 = f2.data_;
|
|
const int kPaddingSize = f1.kPaddingSize;
|
|
const int total_size = f1.total_size_;
|
|
ASSERT_EQ(v1.size(), v2.size());
|
|
f1.ValidateWatermark();
|
|
f2.ValidateWatermark();
|
|
for (const auto i : c10::irange(total_size)) {
|
|
ASSERT_NEAR(v1[kPaddingSize + i], v2[kPaddingSize + i], abs_error);
|
|
}
|
|
}
|
|
|
|
} // namespace tensorexpr
|
|
} // namespace jit
|
|
} // namespace torch
|