mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
By moving AsyncCompile to its own file, we can import codecache without running the side effects of AsyncCompile. This will be important for AOTAutogradCaching, where we want to share some implementation details with codecache.py without spawning new processes. To conservatively maintain the same behavior elsewhere, every time we import codecache, I've added an import to torch._inductor.async_compile (except in autograd_cache.py, where the explicit goal is to not do this) Pull Request resolved: https://github.com/pytorch/pytorch/pull/127235 Approved by: https://github.com/aorenste, https://github.com/oulgen, https://github.com/masnesral
240 lines
7.4 KiB
Python
240 lines
7.4 KiB
Python
from __future__ import annotations
|
|
|
|
import functools
|
|
import logging
|
|
import multiprocessing
|
|
import os
|
|
import sys
|
|
from concurrent.futures import Future, ProcessPoolExecutor, ThreadPoolExecutor
|
|
from functools import partial
|
|
from time import time
|
|
from typing import Any, Callable, Dict, List, Optional, Set
|
|
|
|
import torch
|
|
from torch._dynamo.device_interface import get_registered_device_interfaces
|
|
from torch._inductor import config
|
|
from torch._inductor.codecache import (
|
|
CodeCacheFuture,
|
|
CppCodeCache,
|
|
CppPythonBindingsCodeCache,
|
|
CUDACodeCache,
|
|
HalideCodeCache,
|
|
LambdaFuture,
|
|
TritonCodeCache,
|
|
TritonFuture,
|
|
)
|
|
from torch._inductor.compile_worker.subproc_pool import (
|
|
_warm_process_pool,
|
|
AnyPool,
|
|
SubprocPool,
|
|
)
|
|
from torch._inductor.compile_worker.watchdog import _async_compile_initializer
|
|
|
|
from torch._inductor.runtime.compile_tasks import (
|
|
_set_triton_ptxas_path,
|
|
_worker_compile_triton,
|
|
)
|
|
from torch._inductor.runtime.hints import HalideMeta
|
|
|
|
from torch.hub import _Faketqdm, tqdm
|
|
|
|
# timing metrics for time spent in the compilation
|
|
_cumulative_compile_time = 0.0
|
|
_t0: Optional[float] = None
|
|
|
|
kernel_code_log = torch._logging.getArtifactLogger(__name__, "kernel_code")
|
|
|
|
|
|
def caching_device_properties():
|
|
for _, device_interface in get_registered_device_interfaces():
|
|
if device_interface.is_available():
|
|
device_interface.Worker.get_device_properties()
|
|
|
|
|
|
def _compile_start() -> None:
|
|
global _t0
|
|
if _t0 is None:
|
|
_t0 = time()
|
|
|
|
|
|
def _compile_end() -> None:
|
|
global _cumulative_compile_time, _t0
|
|
if _t0 is not None:
|
|
t1 = time()
|
|
_cumulative_compile_time += t1 - _t0
|
|
_t0 = None
|
|
# print("CUMULATIVE COMPILE TIME", _cumulative_compile_time)
|
|
|
|
|
|
_IS_WINDOWS = sys.platform == "win32"
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
# Used to keep track of all process pools invoked so far.
|
|
_pool_set: Set[AnyPool] = set()
|
|
|
|
|
|
def shutdown_compile_workers() -> None:
|
|
"""Shut down all outstanding compile-worker pools."""
|
|
for pool in _pool_set:
|
|
pool.shutdown()
|
|
after_fork()
|
|
|
|
|
|
def after_fork():
|
|
"""Reset pools to initial state without shutting them down"""
|
|
_pool_set.clear()
|
|
AsyncCompile.process_pool.cache_clear()
|
|
|
|
|
|
try:
|
|
os.register_at_fork(after_in_child=after_fork)
|
|
except AttributeError:
|
|
pass # register_at_fork does not exists on windows
|
|
|
|
|
|
class AsyncCompile:
|
|
def __init__(self) -> None:
|
|
pass
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(1)
|
|
def pool() -> ThreadPoolExecutor:
|
|
assert config.compile_threads > 1
|
|
return ThreadPoolExecutor(config.compile_threads)
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(1)
|
|
def process_pool() -> AnyPool:
|
|
assert config.compile_threads > 1
|
|
pool: AnyPool
|
|
if config.worker_start_method == "subprocess":
|
|
# Wrapper around ProcessPoolExecutor forks in a new process we control
|
|
pool = SubprocPool(config.compile_threads)
|
|
else:
|
|
# ensure properties have been calculated before processes
|
|
# are forked
|
|
caching_device_properties()
|
|
ctx = multiprocessing.get_context(config.worker_start_method)
|
|
pool = ProcessPoolExecutor(
|
|
config.compile_threads,
|
|
mp_context=ctx,
|
|
initializer=partial(_async_compile_initializer, os.getpid()),
|
|
)
|
|
# when this pool is created in a subprocess object, the normal exit handler
|
|
# doesn't run, and we need to register our own handler.
|
|
# exitpriority has to be high, because another one of the finalizers will
|
|
# kill the worker thread that sends the shutdown message to the workers...
|
|
multiprocessing.util.Finalize(None, pool.shutdown, exitpriority=sys.maxsize)
|
|
|
|
_pool_set.add(pool)
|
|
return pool
|
|
|
|
@classmethod
|
|
def warm_pool(cls) -> None:
|
|
if config.compile_threads <= 1:
|
|
return
|
|
_compile_start()
|
|
_warm_process_pool(cls.process_pool(), config.compile_threads)
|
|
_compile_end()
|
|
|
|
@classmethod
|
|
def submit(cls, task: Callable[..., Any]) -> Any:
|
|
if config.compile_threads <= 1:
|
|
return task()
|
|
return cls.pool().submit(task)
|
|
|
|
def triton(self, kernel_name: str, source_code: str, device_str: str = "cuda"):
|
|
kernel_code_log.info("Triton Kernel:\n%s", source_code)
|
|
_compile_start()
|
|
_set_triton_ptxas_path()
|
|
|
|
kernel = TritonCodeCache.load(kernel_name, source_code)
|
|
if config.compile_threads > 1:
|
|
return TritonFuture(
|
|
kernel,
|
|
self.process_pool().submit(
|
|
_worker_compile_triton,
|
|
kernel._reload_in_subproc,
|
|
),
|
|
)
|
|
else:
|
|
kernel.precompile()
|
|
return kernel
|
|
|
|
def multi_kernel(self, *args, **kwargs) -> Any:
|
|
from torch._inductor.codegen.multi_kernel import MultiKernelCall
|
|
|
|
# no need to call this in parallel since the sub-kernels are already parallel tasks
|
|
return MultiKernelCall(*args, **kwargs)
|
|
|
|
def cpp(self, source_code: str):
|
|
kernel_code_log.info("CPP Kernel:\n%s", source_code)
|
|
if config.compile_threads <= 1:
|
|
return CppCodeCache.load(source_code).kernel
|
|
else:
|
|
get_result = CppCodeCache.load_async(source_code, submit_fn=self.submit)
|
|
return LambdaFuture(lambda: get_result().kernel)
|
|
|
|
def cpp_pybinding(self, argtypes: List[str], source_code: str):
|
|
kernel_code_log.info("CPP+Bindings Kernel:\n%s", source_code)
|
|
if config.compile_threads <= 1:
|
|
return CppPythonBindingsCodeCache.load_pybinding(argtypes, source_code)
|
|
else:
|
|
get_result = CppPythonBindingsCodeCache.load_pybinding_async(
|
|
argtypes, source_code, submit_fn=self.submit
|
|
)
|
|
return LambdaFuture(get_result)
|
|
|
|
def cuda(self, source_code, dst_file_ext):
|
|
kernel_code_log.info("CUDA Kernel:\n%s", source_code)
|
|
|
|
def task():
|
|
return CUDACodeCache.load(source_code, dst_file_ext)[0]
|
|
|
|
return self.submit(task)
|
|
|
|
def halide(self, meta: HalideMeta, source_code: str):
|
|
kernel_code_log.info("Halide Kernel:\n%r\n%s", meta, source_code)
|
|
if config.compile_threads <= 1:
|
|
return HalideCodeCache.generate_halide(meta, source_code)
|
|
else:
|
|
get_result = HalideCodeCache.generate_halide_async(
|
|
meta, source_code, submit_fn=self.submit
|
|
)
|
|
return LambdaFuture(get_result)
|
|
|
|
def wait(self, scope: Dict[str, Any]) -> None:
|
|
num_kernels = len(
|
|
[
|
|
value
|
|
for key, value in scope.items()
|
|
if isinstance(value, (Future, CodeCacheFuture))
|
|
]
|
|
)
|
|
pbar = tqdm(
|
|
total=num_kernels,
|
|
desc="Inductor Compilation",
|
|
disable=config.disable_progress,
|
|
delay=0,
|
|
)
|
|
if config.compile_threads > 1:
|
|
for key, result in scope.items():
|
|
if config.verbose_progress and not isinstance(pbar, _Faketqdm):
|
|
pbar.set_postfix_str(key)
|
|
if isinstance(result, (Future, CodeCacheFuture)):
|
|
scope[key] = result.result()
|
|
pbar.update(1)
|
|
|
|
_compile_end()
|
|
|
|
|
|
if (
|
|
os.environ.get("TORCH_TNT_IN_USE", "0") == "1"
|
|
or os.environ.get("TORCH_WARM_POOL", "1") != "1"
|
|
):
|
|
pass
|
|
else:
|
|
AsyncCompile.warm_pool()
|