pytorch/torch/_inductor/async_compile.py
James Wu f58fc16e8f [easy?] Move AsyncCompile to a different file (#127235)
By moving AsyncCompile to its own file, we can import codecache without running the side effects of AsyncCompile. This will be important for AOTAutogradCaching, where we want to share some implementation details with codecache.py without spawning new processes.

To conservatively maintain the same behavior elsewhere, every time we import codecache, I've added an import to torch._inductor.async_compile (except in autograd_cache.py, where the explicit goal is to not do this)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127235
Approved by: https://github.com/aorenste, https://github.com/oulgen, https://github.com/masnesral
2024-05-30 02:43:02 +00:00

240 lines
7.4 KiB
Python

from __future__ import annotations
import functools
import logging
import multiprocessing
import os
import sys
from concurrent.futures import Future, ProcessPoolExecutor, ThreadPoolExecutor
from functools import partial
from time import time
from typing import Any, Callable, Dict, List, Optional, Set
import torch
from torch._dynamo.device_interface import get_registered_device_interfaces
from torch._inductor import config
from torch._inductor.codecache import (
CodeCacheFuture,
CppCodeCache,
CppPythonBindingsCodeCache,
CUDACodeCache,
HalideCodeCache,
LambdaFuture,
TritonCodeCache,
TritonFuture,
)
from torch._inductor.compile_worker.subproc_pool import (
_warm_process_pool,
AnyPool,
SubprocPool,
)
from torch._inductor.compile_worker.watchdog import _async_compile_initializer
from torch._inductor.runtime.compile_tasks import (
_set_triton_ptxas_path,
_worker_compile_triton,
)
from torch._inductor.runtime.hints import HalideMeta
from torch.hub import _Faketqdm, tqdm
# timing metrics for time spent in the compilation
_cumulative_compile_time = 0.0
_t0: Optional[float] = None
kernel_code_log = torch._logging.getArtifactLogger(__name__, "kernel_code")
def caching_device_properties():
for _, device_interface in get_registered_device_interfaces():
if device_interface.is_available():
device_interface.Worker.get_device_properties()
def _compile_start() -> None:
global _t0
if _t0 is None:
_t0 = time()
def _compile_end() -> None:
global _cumulative_compile_time, _t0
if _t0 is not None:
t1 = time()
_cumulative_compile_time += t1 - _t0
_t0 = None
# print("CUMULATIVE COMPILE TIME", _cumulative_compile_time)
_IS_WINDOWS = sys.platform == "win32"
log = logging.getLogger(__name__)
# Used to keep track of all process pools invoked so far.
_pool_set: Set[AnyPool] = set()
def shutdown_compile_workers() -> None:
"""Shut down all outstanding compile-worker pools."""
for pool in _pool_set:
pool.shutdown()
after_fork()
def after_fork():
"""Reset pools to initial state without shutting them down"""
_pool_set.clear()
AsyncCompile.process_pool.cache_clear()
try:
os.register_at_fork(after_in_child=after_fork)
except AttributeError:
pass # register_at_fork does not exists on windows
class AsyncCompile:
def __init__(self) -> None:
pass
@staticmethod
@functools.lru_cache(1)
def pool() -> ThreadPoolExecutor:
assert config.compile_threads > 1
return ThreadPoolExecutor(config.compile_threads)
@staticmethod
@functools.lru_cache(1)
def process_pool() -> AnyPool:
assert config.compile_threads > 1
pool: AnyPool
if config.worker_start_method == "subprocess":
# Wrapper around ProcessPoolExecutor forks in a new process we control
pool = SubprocPool(config.compile_threads)
else:
# ensure properties have been calculated before processes
# are forked
caching_device_properties()
ctx = multiprocessing.get_context(config.worker_start_method)
pool = ProcessPoolExecutor(
config.compile_threads,
mp_context=ctx,
initializer=partial(_async_compile_initializer, os.getpid()),
)
# when this pool is created in a subprocess object, the normal exit handler
# doesn't run, and we need to register our own handler.
# exitpriority has to be high, because another one of the finalizers will
# kill the worker thread that sends the shutdown message to the workers...
multiprocessing.util.Finalize(None, pool.shutdown, exitpriority=sys.maxsize)
_pool_set.add(pool)
return pool
@classmethod
def warm_pool(cls) -> None:
if config.compile_threads <= 1:
return
_compile_start()
_warm_process_pool(cls.process_pool(), config.compile_threads)
_compile_end()
@classmethod
def submit(cls, task: Callable[..., Any]) -> Any:
if config.compile_threads <= 1:
return task()
return cls.pool().submit(task)
def triton(self, kernel_name: str, source_code: str, device_str: str = "cuda"):
kernel_code_log.info("Triton Kernel:\n%s", source_code)
_compile_start()
_set_triton_ptxas_path()
kernel = TritonCodeCache.load(kernel_name, source_code)
if config.compile_threads > 1:
return TritonFuture(
kernel,
self.process_pool().submit(
_worker_compile_triton,
kernel._reload_in_subproc,
),
)
else:
kernel.precompile()
return kernel
def multi_kernel(self, *args, **kwargs) -> Any:
from torch._inductor.codegen.multi_kernel import MultiKernelCall
# no need to call this in parallel since the sub-kernels are already parallel tasks
return MultiKernelCall(*args, **kwargs)
def cpp(self, source_code: str):
kernel_code_log.info("CPP Kernel:\n%s", source_code)
if config.compile_threads <= 1:
return CppCodeCache.load(source_code).kernel
else:
get_result = CppCodeCache.load_async(source_code, submit_fn=self.submit)
return LambdaFuture(lambda: get_result().kernel)
def cpp_pybinding(self, argtypes: List[str], source_code: str):
kernel_code_log.info("CPP+Bindings Kernel:\n%s", source_code)
if config.compile_threads <= 1:
return CppPythonBindingsCodeCache.load_pybinding(argtypes, source_code)
else:
get_result = CppPythonBindingsCodeCache.load_pybinding_async(
argtypes, source_code, submit_fn=self.submit
)
return LambdaFuture(get_result)
def cuda(self, source_code, dst_file_ext):
kernel_code_log.info("CUDA Kernel:\n%s", source_code)
def task():
return CUDACodeCache.load(source_code, dst_file_ext)[0]
return self.submit(task)
def halide(self, meta: HalideMeta, source_code: str):
kernel_code_log.info("Halide Kernel:\n%r\n%s", meta, source_code)
if config.compile_threads <= 1:
return HalideCodeCache.generate_halide(meta, source_code)
else:
get_result = HalideCodeCache.generate_halide_async(
meta, source_code, submit_fn=self.submit
)
return LambdaFuture(get_result)
def wait(self, scope: Dict[str, Any]) -> None:
num_kernels = len(
[
value
for key, value in scope.items()
if isinstance(value, (Future, CodeCacheFuture))
]
)
pbar = tqdm(
total=num_kernels,
desc="Inductor Compilation",
disable=config.disable_progress,
delay=0,
)
if config.compile_threads > 1:
for key, result in scope.items():
if config.verbose_progress and not isinstance(pbar, _Faketqdm):
pbar.set_postfix_str(key)
if isinstance(result, (Future, CodeCacheFuture)):
scope[key] = result.result()
pbar.update(1)
_compile_end()
if (
os.environ.get("TORCH_TNT_IN_USE", "0") == "1"
or os.environ.get("TORCH_WARM_POOL", "1") != "1"
):
pass
else:
AsyncCompile.warm_pool()