mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Fixes https://github.com/pytorch/pytorch/issues/29161. I looked a bit at the code changes related to this and think I have all of the use cases of `DeprecatedTypeProperties` covered in the message, but suggestions from someone with more context on this would be very much appreciated :) Pull Request resolved: https://github.com/pytorch/pytorch/pull/30281 Differential Revision: D18830818 Pulled By: ezyang fbshipit-source-id: 1a7fcee15354ae09e6644577e7fa33bd26acfe20
2367 lines
73 KiB
C++
2367 lines
73 KiB
C++
#include <c10d/ProcessGroupGloo.hpp>
|
|
|
|
#include <c10d/GlooDeviceFactory.hpp>
|
|
|
|
#include <netdb.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
|
|
#include <type_traits>
|
|
|
|
#include <gloo/allgather.h>
|
|
#include <gloo/allgatherv.h>
|
|
#include <gloo/allreduce.h>
|
|
#include <gloo/barrier.h>
|
|
#include <gloo/broadcast.h>
|
|
#include <gloo/gather.h>
|
|
#include <gloo/reduce.h>
|
|
#include <gloo/scatter.h>
|
|
|
|
#include <ATen/SparseTensorUtils.h>
|
|
|
|
#ifdef USE_CUDA
|
|
#include <ATen/cuda/CUDAEvent.h>
|
|
#include <ATen/cuda/Exceptions.h>
|
|
#include <ATen/cuda/PinnedMemoryAllocator.h>
|
|
#include <c10/cuda/CUDACachingAllocator.h>
|
|
#include <c10/cuda/CUDAGuard.h>
|
|
#include <c10/cuda/CUDAStream.h>
|
|
#endif
|
|
|
|
#include <gloo/config.h>
|
|
#include <gloo/rendezvous/context.h>
|
|
#include <gloo/rendezvous/prefix_store.h>
|
|
|
|
#define GENERATE_ALL_TYPES(type, func, args...) \
|
|
switch (type) { \
|
|
case ::at::ScalarType::Float: \
|
|
func<float>(args); \
|
|
break; \
|
|
case ::at::ScalarType::Double: \
|
|
func<double>(args); \
|
|
break; \
|
|
case ::at::ScalarType::Half: \
|
|
func<gloo::float16>(args); \
|
|
break; \
|
|
case ::at::ScalarType::Char: \
|
|
func<int8_t>(args); \
|
|
break; \
|
|
case ::at::ScalarType::Byte: \
|
|
func<uint8_t>(args); \
|
|
break; \
|
|
case ::at::ScalarType::Int: \
|
|
func<int32_t>(args); \
|
|
break; \
|
|
case ::at::ScalarType::Long: \
|
|
func<int64_t>(args); \
|
|
break; \
|
|
default: \
|
|
throw std::runtime_error("Invalid scalar type"); \
|
|
}
|
|
|
|
namespace c10d {
|
|
|
|
namespace {
|
|
|
|
// Wrap c10d store as Gloo store
|
|
class GlooStore : public ::gloo::rendezvous::Store {
|
|
public:
|
|
GlooStore(const std::shared_ptr<::c10d::Store>& store) : store_(store) {}
|
|
|
|
void set(const std::string& key, const std::vector<char>& value) override {
|
|
std::vector<uint8_t> tmp(value.begin(), value.end());
|
|
store_->set(key, tmp);
|
|
}
|
|
|
|
std::vector<char> get(const std::string& key) override {
|
|
auto value = store_->get(key);
|
|
return std::vector<char>(value.begin(), value.end());
|
|
}
|
|
|
|
void wait(const std::vector<std::string>& keys) override {
|
|
store_->wait(keys, Store::kDefaultTimeout);
|
|
}
|
|
|
|
void wait(
|
|
const std::vector<std::string>& keys,
|
|
const std::chrono::milliseconds& timeout) override {
|
|
store_->wait(keys, timeout);
|
|
}
|
|
|
|
protected:
|
|
std::shared_ptr<::c10d::Store> store_;
|
|
};
|
|
|
|
typedef void (*ReduceFunc)(void*, const void*, const void*, size_t);
|
|
|
|
template <
|
|
typename T,
|
|
typename std::enable_if<!std::is_integral<T>::value, int>::type = 0>
|
|
ReduceFunc toFunction(const ReduceOp& r) {
|
|
switch (r) {
|
|
case ReduceOp::SUM:
|
|
return ReduceFunc(&::gloo::sum<T>);
|
|
case ReduceOp::PRODUCT:
|
|
return ReduceFunc(&::gloo::product<T>);
|
|
case ReduceOp::MIN:
|
|
return ReduceFunc(&::gloo::min<T>);
|
|
case ReduceOp::MAX:
|
|
return ReduceFunc(&::gloo::max<T>);
|
|
case ReduceOp::BAND:
|
|
throw std::runtime_error(
|
|
"Cannot use ReduceOp.BAND with non-integral dtype");
|
|
break;
|
|
case ReduceOp::BOR:
|
|
throw std::runtime_error(
|
|
"Cannot use ReduceOp.BOR with non-integral dtype");
|
|
break;
|
|
case ReduceOp::BXOR:
|
|
throw std::runtime_error(
|
|
"Cannot use ReduceOp.BXOR with non-integral dtype");
|
|
break;
|
|
case ReduceOp::UNUSED:
|
|
break;
|
|
}
|
|
|
|
throw std::runtime_error("Unhandled ReduceOp");
|
|
}
|
|
|
|
// Bitwise AND with SFINAE guard for integral types.
|
|
template <
|
|
typename T,
|
|
typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
|
|
void band(void* c, const void* a, const void* b, size_t n) {
|
|
auto tc = static_cast<T*>(c);
|
|
auto ta = static_cast<const T*>(a);
|
|
auto tb = static_cast<const T*>(b);
|
|
for (size_t i = 0; i < n; i++) {
|
|
tc[i] = ta[i] & tb[i];
|
|
}
|
|
}
|
|
|
|
// Bitwise OR with SFINAE guard for integral types.
|
|
template <
|
|
typename T,
|
|
typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
|
|
void bor(void* c, const void* a, const void* b, size_t n) {
|
|
auto tc = static_cast<T*>(c);
|
|
auto ta = static_cast<const T*>(a);
|
|
auto tb = static_cast<const T*>(b);
|
|
for (size_t i = 0; i < n; i++) {
|
|
tc[i] = ta[i] | tb[i];
|
|
}
|
|
}
|
|
|
|
// Bitwise XOR with SFINAE guard for integral types.
|
|
template <
|
|
typename T,
|
|
typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
|
|
void bxor(void* c, const void* a, const void* b, size_t n) {
|
|
auto tc = static_cast<T*>(c);
|
|
auto ta = static_cast<const T*>(a);
|
|
auto tb = static_cast<const T*>(b);
|
|
for (size_t i = 0; i < n; i++) {
|
|
tc[i] = ta[i] ^ tb[i];
|
|
}
|
|
}
|
|
|
|
template <
|
|
typename T,
|
|
typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
|
|
ReduceFunc toFunction(const ReduceOp& r) {
|
|
switch (r) {
|
|
case ReduceOp::SUM:
|
|
return ReduceFunc(&::gloo::sum<T>);
|
|
case ReduceOp::PRODUCT:
|
|
return ReduceFunc(&::gloo::product<T>);
|
|
case ReduceOp::MIN:
|
|
return ReduceFunc(&::gloo::min<T>);
|
|
case ReduceOp::MAX:
|
|
return ReduceFunc(&::gloo::max<T>);
|
|
case ReduceOp::BAND:
|
|
return ReduceFunc(&band<T>);
|
|
case ReduceOp::BOR:
|
|
return ReduceFunc(&bor<T>);
|
|
case ReduceOp::BXOR:
|
|
return ReduceFunc(&bxor<T>);
|
|
case ReduceOp::UNUSED:
|
|
break;
|
|
}
|
|
|
|
throw std::runtime_error("Unhandled ReduceOp");
|
|
}
|
|
|
|
template <typename T, typename O>
|
|
void setInputs(O& opts, std::vector<at::Tensor>& tensors) {
|
|
opts.setInputs(getDataPointers<T>(tensors), tensors[0].numel());
|
|
}
|
|
|
|
template <typename T, typename O>
|
|
void setInput(O& opts, at::Tensor& tensor) {
|
|
opts.setInput(getDataPointer<T>(tensor), tensor.numel());
|
|
}
|
|
|
|
template <typename T, typename O>
|
|
void setOutputs(O& opts, std::vector<at::Tensor>& tensors) {
|
|
opts.setOutputs(getDataPointers<T>(tensors), tensors[0].numel());
|
|
}
|
|
|
|
template <typename T, typename O>
|
|
void setOutput(O& opts, at::Tensor& tensor) {
|
|
opts.setOutput(getDataPointer<T>(tensor), tensor.numel());
|
|
}
|
|
|
|
template <typename T, typename O>
|
|
void setOutput(O& opts, at::Tensor& tensor, std::vector<size_t>& counts) {
|
|
opts.setOutput(getDataPointer<T>(tensor), counts);
|
|
}
|
|
|
|
#ifdef USE_CUDA
|
|
|
|
at::Tensor pinnedLike(at::Tensor& tensor) {
|
|
auto* allocator = at::cuda::getPinnedMemoryAllocator();
|
|
auto storage = c10::Storage(
|
|
tensor.dtype(),
|
|
at::detail::computeStorageSize(tensor.sizes(), tensor.strides()),
|
|
allocator,
|
|
/*resizable=*/false);
|
|
return at::empty({0}, tensor.options().device(at::kCPU))
|
|
.set_(storage, 0, tensor.sizes(), tensor.strides());
|
|
}
|
|
|
|
// This function initializes a vector of CUDA streams, one for every
|
|
// tensor in the input tensor vector, and ensures that these streams are
|
|
// synchronized with the current default streams. This is needed so
|
|
// that new work on the new streams is serialized w.r.t. all operations
|
|
// on the tensors.
|
|
void initializeStreamsEvents(
|
|
std::vector<at::Tensor>& tensors,
|
|
std::vector<at::cuda::CUDAStream>& streams,
|
|
std::vector<at::cuda::CUDAEvent>& events) {
|
|
at::cuda::OptionalCUDAGuard guard;
|
|
streams.reserve(tensors.size());
|
|
events.resize(tensors.size());
|
|
for (size_t i = 0; i < tensors.size(); i++) {
|
|
guard.set_index(tensors[i].device().index());
|
|
// Record event on current stream
|
|
events[i].record(at::cuda::getCurrentCUDAStream());
|
|
// Get a non-default stream to execute asynchronous CUDA operations
|
|
// on for this device. This ensures that the default stream used
|
|
// by the caller is not occupied by c10d related operations.
|
|
streams.push_back(at::cuda::getStreamFromPool(
|
|
/* isHighPriority */ true, tensors[i].device().index()));
|
|
// Ensure the new stream is synchronized with the current stream.
|
|
events[i].block(streams[i]);
|
|
|
|
// `tensors` are created on a different stream. Hence, they must record
|
|
// new streams in this Work to prevent being freed before the Work finishes.
|
|
if (tensors[i].is_sparse()) {
|
|
if (tensors[i].is_coalesced()) {
|
|
c10::cuda::CUDACachingAllocator::recordStream(
|
|
tensors[i].indices().storage().data(), streams[i]);
|
|
c10::cuda::CUDACachingAllocator::recordStream(
|
|
tensors[i].values().storage().data(), streams[i]);
|
|
} else {
|
|
// We will need to coalesce first, which means new tensors will
|
|
// be allocated on the streams we just allocated, and there
|
|
// is no need to record them separately.
|
|
}
|
|
} else {
|
|
c10::cuda::CUDACachingAllocator::recordStream(
|
|
tensors[i].storage().data(), streams[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function initializes a vector of CUDA streams, one per device,
|
|
// and ensures that these streams are synchronized with the current default
|
|
// streams. It is assumed that the tensors in the nested tensor vectors are
|
|
// on the same device.
|
|
void initializeStreamsEvents(
|
|
std::vector<std::vector<at::Tensor>>& tensors,
|
|
std::vector<at::cuda::CUDAStream>& streams,
|
|
std::vector<at::cuda::CUDAEvent>& events) {
|
|
// Ensure that the tensors in the nested tensor vectors are on the same
|
|
// device.
|
|
for (size_t i = 0; i < tensors.size(); i++) {
|
|
auto device_id = tensors[i][0].device().index();
|
|
for (size_t j = 1; j < tensors[i].size(); j++) {
|
|
if (tensors[i][j].device().index() != device_id) {
|
|
throw std::runtime_error(
|
|
"tensors in the nested tensor vectors need to "
|
|
"be on the same device");
|
|
}
|
|
}
|
|
}
|
|
|
|
at::cuda::OptionalCUDAGuard guard;
|
|
streams.reserve(tensors.size());
|
|
events.resize(tensors.size());
|
|
for (size_t i = 0; i < tensors.size(); i++) {
|
|
guard.set_index(tensors[i][0].device().index());
|
|
// Record event on current stream
|
|
events[i].record(at::cuda::getCurrentCUDAStream());
|
|
// Get a non-default stream to execute asynchronous CUDA operations
|
|
// on for this output. This ensures that the default stream used
|
|
// by the caller is not occupied by c10d related operations.
|
|
streams.push_back(at::cuda::getStreamFromPool(
|
|
/* isHighPriority */ true, tensors[i][0].device().index()));
|
|
// Ensure the new stream is synchronized with the current stream.
|
|
events[i].block(streams[i]);
|
|
|
|
for (at::Tensor& tensor : tensors[i]) {
|
|
// `tensors` are created on a different stream. Hence, they must record
|
|
// new streams in this Work to prevent being freed before the Work
|
|
// finishes.
|
|
c10::cuda::CUDACachingAllocator::recordStream(
|
|
tensor.storage().data(), streams[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
const auto kLoopbackAddress = "127.0.0.1";
|
|
|
|
} // namespace
|
|
|
|
ProcessGroupGloo::SendWork::SendWork(
|
|
at::Tensor& tensor,
|
|
std::unique_ptr<::gloo::transport::UnboundBuffer> buffer)
|
|
: tensor_(tensor), buffer_(std::move(buffer)) {}
|
|
|
|
bool ProcessGroupGloo::SendWork::wait() {
|
|
bool sendCompleted = false;
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
try {
|
|
sendCompleted = buffer_->waitSend();
|
|
} catch (...) {
|
|
exception_ = std::current_exception();
|
|
}
|
|
|
|
completed_ = true;
|
|
if (exception_) {
|
|
std::rethrow_exception(exception_);
|
|
}
|
|
return sendCompleted;
|
|
}
|
|
|
|
void ProcessGroupGloo::SendWork::abort() {
|
|
buffer_->abortWaitSend();
|
|
}
|
|
|
|
ProcessGroupGloo::RecvWork::RecvWork(
|
|
at::Tensor& tensor,
|
|
std::unique_ptr<::gloo::transport::UnboundBuffer> buffer)
|
|
: tensor_(tensor), buffer_(std::move(buffer)), srcRank_(-1) {}
|
|
|
|
int ProcessGroupGloo::RecvWork::sourceRank() const {
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
return srcRank_;
|
|
}
|
|
|
|
bool ProcessGroupGloo::RecvWork::wait() {
|
|
bool recvCompleted = false;
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
try {
|
|
recvCompleted = buffer_->waitRecv(&srcRank_);
|
|
} catch (...) {
|
|
exception_ = std::current_exception();
|
|
}
|
|
|
|
completed_ = true;
|
|
if (exception_) {
|
|
std::rethrow_exception(exception_);
|
|
}
|
|
return recvCompleted;
|
|
}
|
|
|
|
void ProcessGroupGloo::RecvWork::abort() {
|
|
buffer_->abortWaitRecv();
|
|
}
|
|
|
|
ProcessGroupGloo::Options::Options()
|
|
: timeout(std::chrono::milliseconds(10 * 1000)), threads(2) {}
|
|
|
|
namespace {
|
|
|
|
// Gloo assumes that this machine's hostname can always be resolved
|
|
// to an address. If it doesn't it throws a runtime error saying
|
|
// that it can't be resolved. Instead of catching it, we choose
|
|
// to proactively check if an address can be resolved, so we can
|
|
// gracefully fall back to an alternative if it doesn't.
|
|
bool doesHostnameResolveToUsableAddress(const std::string& hostname) {
|
|
struct addrinfo hints;
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = AF_UNSPEC;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
struct addrinfo* result;
|
|
auto rv = getaddrinfo(hostname.c_str(), nullptr, &hints, &result);
|
|
if (rv < 0) {
|
|
return false;
|
|
}
|
|
struct addrinfo* rp;
|
|
for (rp = result; rp != nullptr; rp = rp->ai_next) {
|
|
auto fd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
|
|
if (fd == -1) {
|
|
continue;
|
|
}
|
|
rv = bind(fd, rp->ai_addr, rp->ai_addrlen);
|
|
close(fd);
|
|
if (rv == -1) {
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
freeaddrinfo(result);
|
|
return rp != nullptr;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
#if defined(__linux__) || defined(__APPLE__)
|
|
std::shared_ptr<::gloo::transport::Device> ProcessGroupGloo::
|
|
createDeviceForInterface(const std::string& interface) {
|
|
return ::c10d::GlooDeviceFactory::makeDeviceForInterface(interface);
|
|
}
|
|
#endif
|
|
|
|
#if defined(__linux__) || defined(__APPLE__)
|
|
std::shared_ptr<::gloo::transport::Device> ProcessGroupGloo::
|
|
createDeviceForHostname(const std::string& hostname) {
|
|
TORCH_CHECK(
|
|
doesHostnameResolveToUsableAddress(hostname),
|
|
"Cannot resolve ",
|
|
hostname,
|
|
" to a (local) address");
|
|
return ::c10d::GlooDeviceFactory::makeDeviceForHostname(hostname);
|
|
}
|
|
#endif
|
|
|
|
#ifdef __linux__
|
|
std::shared_ptr<::gloo::transport::Device> ProcessGroupGloo::
|
|
createDefaultDevice() {
|
|
// Use the hostname to resolve the network address to
|
|
// use. Note: if the hostname does not resolve to an address (e.g.
|
|
// because of misconfigured /etc/hosts file), this will not work.
|
|
std::array<char, HOST_NAME_MAX> hostname{};
|
|
auto rv = gethostname(hostname.data(), HOST_NAME_MAX);
|
|
if (rv != 0) {
|
|
throw std::system_error(errno, std::system_category());
|
|
}
|
|
|
|
// Use this machine's hostname if it resolves to an address.
|
|
if (doesHostnameResolveToUsableAddress(hostname.data())) {
|
|
return ::c10d::GlooDeviceFactory::makeDeviceForHostname(hostname.data());
|
|
}
|
|
|
|
// Otherwise, use the loopback address.
|
|
TORCH_WARN_ONCE(
|
|
"Unable to resolve hostname to a (local) address. ",
|
|
"Using the loopback address as fallback. ",
|
|
"Manually set the network interface to bind to with GLOO_SOCKET_IFNAME.");
|
|
return createDeviceForHostname(kLoopbackAddress);
|
|
}
|
|
#endif
|
|
|
|
#ifdef __APPLE__
|
|
std::shared_ptr<::gloo::transport::Device> ProcessGroupGloo::
|
|
createDefaultDevice() {
|
|
// Use the hostname to resolve the network address to
|
|
// use. Note: if the hostname does not resolve to an address (e.g.
|
|
// because of misconfigured /etc/hosts file), this will not work.
|
|
const auto hostNameMax = sysconf(_SC_HOST_NAME_MAX);
|
|
auto hostname = std::unique_ptr<char[]>(new char[hostNameMax]);
|
|
auto rv = gethostname(hostname.get(), hostNameMax);
|
|
if (rv != 0) {
|
|
throw std::system_error(errno, std::system_category());
|
|
}
|
|
|
|
// Use this machine's hostname if it resolves to an address.
|
|
if (doesHostnameResolveToUsableAddress(hostname.get())) {
|
|
return ::c10d::GlooDeviceFactory::makeDeviceForHostname(hostname.get());
|
|
}
|
|
|
|
// Otherwise, use the loopback address.
|
|
TORCH_WARN_ONCE(
|
|
"Unable to resolve hostname to a (local) address. ",
|
|
"Using the loopback address as fallback. ",
|
|
"Manually set the network interface to bind to with GLOO_SOCKET_IFNAME.");
|
|
return createDeviceForHostname(kLoopbackAddress);
|
|
}
|
|
#endif
|
|
|
|
ProcessGroupGloo::ProcessGroupGloo(
|
|
const std::shared_ptr<Store>& store,
|
|
int rank,
|
|
int size,
|
|
Options options)
|
|
: ProcessGroup(rank, size),
|
|
store_(new GlooStore(store)),
|
|
stop_(false),
|
|
collectiveCounter_(0) {
|
|
auto& devices = options.devices;
|
|
if (devices.empty()) {
|
|
throw std::runtime_error("No device(s) specified");
|
|
}
|
|
|
|
// Create and connect a context for every device.
|
|
//
|
|
// Note that the same device can be specified multiple times, either
|
|
// the same object, or the same logical device as different objects.
|
|
// Either mode is fine and only has performance implications.
|
|
//
|
|
// Using the same object multiple times means all contexts share a
|
|
// single I/O thread. If you use different objects for the same
|
|
// logical device they will have independent I/O threads. The latter
|
|
// option is needed if you have a fast NIC that cannot be saturated
|
|
// by a single I/O thread.
|
|
//
|
|
contexts_.reserve(options.devices.size());
|
|
for (size_t i = 0; i < options.devices.size(); i++) {
|
|
auto context = std::make_shared<::gloo::rendezvous::Context>(rank_, size_);
|
|
auto store = ::gloo::rendezvous::PrefixStore(std::to_string(i), *store_);
|
|
context->setTimeout(options.timeout);
|
|
context->connectFullMesh(store, options.devices[i]);
|
|
contexts_.push_back(std::move(context));
|
|
}
|
|
|
|
// Every worker thread stores the AsyncWork object it's currently
|
|
// working on in the workInProgress_ vector. It must have size equal
|
|
// to the number of workers such that they can simply index into it
|
|
// using the worker index they are started with.
|
|
workInProgress_.resize(options.threads);
|
|
|
|
threads_.resize(options.threads);
|
|
for (size_t i = 0; i < threads_.size(); i++) {
|
|
threads_[i] = std::thread(&ProcessGroupGloo::runLoop, this, i);
|
|
}
|
|
}
|
|
|
|
ProcessGroupGloo::~ProcessGroupGloo() {
|
|
std::unique_lock<std::mutex> lock(workMutex_);
|
|
workConsumeCV_.wait(lock, [&] { return workQueue_.empty(); });
|
|
|
|
// Queue is empty, signal stop
|
|
stop_ = true;
|
|
|
|
// Release lock to allow threads to terminate
|
|
lock.unlock();
|
|
|
|
workProduceCV_.notify_all();
|
|
|
|
// Wait for worker threads to terminate
|
|
for (auto& thread : threads_) {
|
|
thread.join();
|
|
}
|
|
}
|
|
|
|
uint32_t ProcessGroupGloo::nextTag() {
|
|
return collectiveCounter_++;
|
|
}
|
|
|
|
std::shared_ptr<::gloo::Context> ProcessGroupGloo::getContext(uint32_t tag) {
|
|
return contexts_[tag % contexts_.size()];
|
|
}
|
|
|
|
void ProcessGroupGloo::runLoop(int workerIndex) {
|
|
std::unique_lock<std::mutex> lock(workMutex_);
|
|
|
|
while (!stop_) {
|
|
if (workQueue_.empty()) {
|
|
workProduceCV_.wait(lock);
|
|
continue;
|
|
}
|
|
|
|
auto work = std::move(workQueue_.front());
|
|
workQueue_.pop_front();
|
|
workInProgress_[workerIndex] = work;
|
|
lock.unlock();
|
|
|
|
// Notify after releasing the lock so that the waiter
|
|
// does not immediately block.
|
|
workConsumeCV_.notify_one();
|
|
|
|
AsyncWork::execute(std::move(work));
|
|
lock.lock();
|
|
workInProgress_[workerIndex] = nullptr;
|
|
}
|
|
}
|
|
|
|
void ProcessGroupGloo::enqueue(std::shared_ptr<AsyncWork> work) {
|
|
std::unique_lock<std::mutex> lock(workMutex_);
|
|
workQueue_.push_back(std::move(work));
|
|
lock.unlock();
|
|
|
|
// Notify after releasing the lock so that the waiter
|
|
// does not immediately block.
|
|
workProduceCV_.notify_one();
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AsyncBroadcastWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncBroadcastWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
int rootRank,
|
|
int rootTensor,
|
|
uint32_t tag)
|
|
: context(context),
|
|
inputs(inputs),
|
|
rootRank(rootRank),
|
|
rootTensor(rootTensor),
|
|
tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<at::Tensor> inputs;
|
|
const int rootRank;
|
|
const int rootTensor;
|
|
const uint32_t tag;
|
|
|
|
void broadcast(at::Tensor& tensor) {
|
|
const auto& scalarType = tensor.scalar_type();
|
|
gloo::BroadcastOptions opts(context);
|
|
opts.setRoot(rootRank);
|
|
opts.setTag(tag);
|
|
GENERATE_ALL_TYPES(scalarType, setOutput, opts, tensor);
|
|
gloo::broadcast(opts);
|
|
}
|
|
|
|
void run() override {
|
|
broadcast(inputs[rootTensor]);
|
|
|
|
// Copy to non-root tensors
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
if (i == static_cast<size_t>(rootTensor)) {
|
|
continue;
|
|
}
|
|
inputs[i].copy_(inputs[rootTensor]);
|
|
}
|
|
}
|
|
};
|
|
|
|
#ifdef USE_CUDA
|
|
|
|
class AsyncBroadcastCUDAWork : public AsyncBroadcastWork {
|
|
public:
|
|
AsyncBroadcastCUDAWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
int rootRank,
|
|
int rootTensor,
|
|
uint32_t tag)
|
|
: AsyncBroadcastWork(context, inputs, rootRank, rootTensor, tag) {
|
|
initializeStreamsEvents(inputs, streams, events);
|
|
|
|
// Create pinned host side tensors.
|
|
tmp = pinnedLike(inputs[rootTensor]);
|
|
at::cuda::OptionalCUDAStreamGuard guard;
|
|
if (context->rank == rootRank) {
|
|
guard.reset_stream(streams[rootTensor]);
|
|
tmp.copy_(inputs[rootTensor], /* non_blocking */ true);
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
at::cuda::OptionalCUDAStreamGuard guard;
|
|
|
|
// Synchronize with copy operation if applicable.
|
|
if (context->rank == rootRank) {
|
|
guard.reset_stream(streams[rootTensor]);
|
|
AT_CUDA_CHECK(cudaStreamSynchronize(streams[rootTensor]));
|
|
}
|
|
|
|
// Run broadcast on host side tensors.
|
|
broadcast(tmp);
|
|
|
|
// Kick off copy back to the CUDA tensors.
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
guard.reset_stream(streams[i]);
|
|
inputs[i].copy_(tmp, /* non_blocking */ true);
|
|
events[i].record(streams[i]);
|
|
}
|
|
}
|
|
|
|
void synchronize() override {
|
|
at::cuda::OptionalCUDAGuard guard;
|
|
|
|
// Synchronize with the copy back to CUDA tensors.
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
guard.set_index(inputs[i].device().index());
|
|
events[i].block(at::cuda::getCurrentCUDAStream());
|
|
}
|
|
}
|
|
|
|
at::Tensor tmp;
|
|
std::vector<at::cuda::CUDAStream> streams;
|
|
std::vector<at::cuda::CUDAEvent> events;
|
|
};
|
|
|
|
#endif
|
|
|
|
} // namespace
|
|
|
|
std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::broadcast(
|
|
std::vector<at::Tensor>& inputs,
|
|
const BroadcastOptions& opts) {
|
|
static auto invalidArgument = [](const std::string& msg) {
|
|
throw std::invalid_argument("ProcessGroupGloo::broadcast: " + msg);
|
|
};
|
|
|
|
assertRootRank(invalidArgument, opts.rootRank, size_);
|
|
assertRootTensor(invalidArgument, opts.rootTensor, inputs.size());
|
|
assertDense(invalidArgument, inputs);
|
|
assertTypeAndSizesMatch(invalidArgument, inputs);
|
|
|
|
const auto& device = inputs[0].device();
|
|
switch (device.type()) {
|
|
case at::kCPU:
|
|
#ifdef USE_CUDA
|
|
case at::kCUDA:
|
|
#endif
|
|
break;
|
|
default:
|
|
invalidArgument("unsupported device type");
|
|
}
|
|
|
|
std::shared_ptr<AsyncBroadcastWork> work;
|
|
auto tag = nextTag();
|
|
auto context = getContext(tag);
|
|
if (device.type() == at::kCPU) {
|
|
work = std::make_shared<AsyncBroadcastWork>(
|
|
std::move(context), inputs, opts.rootRank, opts.rootTensor, tag);
|
|
#ifdef USE_CUDA
|
|
} else if (device.type() == at::kCUDA) {
|
|
work = std::make_shared<AsyncBroadcastCUDAWork>(
|
|
std::move(context), inputs, opts.rootRank, opts.rootTensor, tag);
|
|
#endif
|
|
} else {
|
|
throw std::runtime_error("Invalid backend");
|
|
}
|
|
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AsyncAllreduceWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncAllreduceWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
ReduceOp reduceOp,
|
|
uint32_t tag)
|
|
: context(context), inputs(inputs), reduceOp(reduceOp), tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<at::Tensor> inputs;
|
|
const ReduceOp reduceOp;
|
|
const uint32_t tag;
|
|
|
|
void allreduce(std::vector<at::Tensor>& tensors) {
|
|
const auto& scalarType = tensors[0].scalar_type();
|
|
gloo::AllreduceOptions opts(context);
|
|
opts.setReduceFunction(getFunction(scalarType, reduceOp));
|
|
opts.setTag(tag);
|
|
GENERATE_ALL_TYPES(scalarType, setOutputs, opts, tensors);
|
|
gloo::allreduce(opts);
|
|
}
|
|
|
|
void run() override {
|
|
allreduce(inputs);
|
|
|
|
// Only the first output in the tensor list contains the results.
|
|
// See https://github.com/facebookincubator/gloo/issues/152.
|
|
// The contents is the same for every entry in the tensor list, so
|
|
// we can use the first entry as the source of the copy below.
|
|
for (size_t i = 1; i < inputs.size(); i++) {
|
|
inputs[i].copy_(inputs[0]);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void getFunction(gloo::AllreduceOptions::Func& fn, const ReduceOp op) {
|
|
fn = toFunction<T>(op);
|
|
}
|
|
|
|
gloo::AllreduceOptions::Func getFunction(
|
|
const at::ScalarType& dtype,
|
|
const ReduceOp op) {
|
|
gloo::AllreduceOptions::Func fn;
|
|
GENERATE_ALL_TYPES(dtype, getFunction, fn, op);
|
|
return fn;
|
|
}
|
|
};
|
|
|
|
class AsyncAllreduceCoalescedWork : public AsyncAllreduceWork {
|
|
public:
|
|
AsyncAllreduceCoalescedWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
ReduceOp reduceOp,
|
|
uint32_t tag)
|
|
: AsyncAllreduceWork(context, inputs, reduceOp, tag) {}
|
|
|
|
void run() override {
|
|
allreduceCoalesced(inputs);
|
|
}
|
|
|
|
private:
|
|
void allreduceCoalesced(std::vector<at::Tensor>& tensors) {
|
|
// reduce coalesced, flattened tensors.
|
|
at::Tensor coalescedTensor = flattenDenseTensors(tensors);
|
|
std::vector<at::Tensor> allreduceInput = {coalescedTensor};
|
|
allreduce(allreduceInput);
|
|
|
|
// separate and reshape tensors.
|
|
size_t offset = 0;
|
|
for (at::Tensor& tensor : tensors) {
|
|
const int64_t tensorNumel = tensor.numel();
|
|
const c10::IntArrayRef tensorShape = tensor.sizes();
|
|
tensor.copy_(coalescedTensor.slice(0, offset, offset + tensorNumel)
|
|
.view(tensorShape));
|
|
offset += tensorNumel;
|
|
}
|
|
}
|
|
};
|
|
|
|
class AsyncSparseAllreduceWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncSparseAllreduceWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
uint32_t tag)
|
|
: context(context), inputs(inputs), tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<at::Tensor> inputs;
|
|
std::vector<at::Tensor> outputs;
|
|
const uint32_t tag;
|
|
|
|
// We share dimensionality about the sparse tensors before collecting
|
|
// their contents. We assume here that the maximum number of sparse
|
|
// and dense dimensions is 4. This is stored in a contiguous piece of
|
|
// memory so that we can easily run allgather on it.
|
|
//
|
|
// The layout of this memory is as follows:
|
|
//
|
|
// - [0:4]: sparse dims
|
|
// - [4:8]: dense dims
|
|
// - [8]: nnz
|
|
//
|
|
class SparseTensorMetadata {
|
|
public:
|
|
static constexpr auto dim = 9;
|
|
|
|
// Construct from an existing metadata tensor to facilitate structured
|
|
// access to metadata from peers, after gathering it.
|
|
explicit SparseTensorMetadata(at::Tensor metadata)
|
|
: metadata_(metadata), data_(metadata_.data_ptr<int64_t>()) {
|
|
AT_ASSERT(metadata.scalar_type() == at::kLong);
|
|
AT_ASSERT(metadata.dim() == 1);
|
|
AT_ASSERT(metadata.size(0) == dim);
|
|
}
|
|
|
|
// Populate the metadata.
|
|
void populate_from_sparse_tensor(const at::Tensor& tensor) {
|
|
const auto sparse_dim = tensor.sparse_dim();
|
|
AT_ASSERT(sparse_dim <= 4);
|
|
for (auto i = 0; i < 4; i++) {
|
|
if (i < sparse_dim) {
|
|
data_[i] = tensor.size(i);
|
|
}
|
|
}
|
|
const auto dense_dim = tensor.dense_dim();
|
|
AT_ASSERT(dense_dim <= 4);
|
|
for (auto i = 0; i < 4; i++) {
|
|
if (i < dense_dim) {
|
|
data_[i + 4] = tensor.size(sparse_dim + i);
|
|
}
|
|
}
|
|
data_[8] = tensor._nnz();
|
|
}
|
|
|
|
std::vector<int64_t> sizes() const {
|
|
std::vector<int64_t> sizes;
|
|
// Sparse sizes
|
|
for (auto i = 0; i < 4; i++) {
|
|
if (data_[i] <= 0) {
|
|
break;
|
|
}
|
|
sizes.push_back(data_[i]);
|
|
}
|
|
// Dense sizes
|
|
for (auto i = 4; i < 8; i++) {
|
|
if (data_[i] <= 0) {
|
|
break;
|
|
}
|
|
sizes.push_back(data_[i]);
|
|
}
|
|
return sizes;
|
|
}
|
|
|
|
int64_t nnz() const {
|
|
return data_[8];
|
|
}
|
|
|
|
protected:
|
|
at::Tensor metadata_;
|
|
int64_t* data_;
|
|
};
|
|
|
|
// Sparse allreduce is implemented with allgather on indices and values.
|
|
// Every process then sums the resulting sparse tensors locally.
|
|
// The nnz for sparse tensors may be different across processes, so first
|
|
// we run allgather on the nnz, and then allgather with max(nnz).
|
|
// We could use an allgatherv for this, if it were available.
|
|
at::Tensor allreduce(std::vector<at::Tensor>& tensors) {
|
|
// TODO: This is a massive hack! There is some confusion about
|
|
// Variable/Tensor inside the body of this function. Turning off
|
|
// grad smooths over the confusion for now. This fixes
|
|
// test/test_c10d.py ProcessGroupGlooTest.test_sparse_allreduce_basics
|
|
//
|
|
// The correct fix is to stop allocating tensors that are not variables,
|
|
// but to conveniently do this c10d must depend on torch not ATen
|
|
at::AutoNonVariableTypeMode _no_grad(true);
|
|
auto input = tensors[0];
|
|
|
|
// Perform local reduction if we have multiple inputs.
|
|
for (size_t i = 1; i < tensors.size(); i++) {
|
|
input += tensors[i];
|
|
}
|
|
|
|
// Need to coalesce before we can access indices and values.
|
|
input = input.coalesce();
|
|
|
|
// Gather metadata information from all ranks.
|
|
auto metadata = allgather_metadata(input);
|
|
|
|
// Sanity check dimensionality across ranks.
|
|
{
|
|
const auto expected = metadata[context->rank].sizes();
|
|
for (auto i = 0; i < context->size; i++) {
|
|
if (i == context->rank) {
|
|
continue;
|
|
}
|
|
const auto actual = metadata[i].sizes();
|
|
AT_CHECK(actual == expected, "Sparse dimensions do not match");
|
|
}
|
|
}
|
|
|
|
// Gather all indices and all values.
|
|
auto indices = allgather_indices(input, metadata);
|
|
auto values = allgather_values(input, metadata);
|
|
|
|
// Perform global reduction.
|
|
AT_ASSERT(static_cast<int>(indices.size()) == context->size);
|
|
AT_ASSERT(static_cast<int>(values.size()) == context->size);
|
|
auto output = at::sparse_coo_tensor(
|
|
indices[0], values[0], input.sizes(), input.options());
|
|
for (auto i = 1; i < context->size; i++) {
|
|
output += at::sparse_coo_tensor(
|
|
indices[i], values[i], input.sizes(), input.options());
|
|
}
|
|
|
|
// Coalesce for good measure.
|
|
return output.coalesce();
|
|
}
|
|
|
|
void run() override {
|
|
auto output = allreduce(inputs);
|
|
|
|
// Copy back to input tensors.
|
|
outputs.reserve(inputs.size());
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
if (output.is_sparse()) {
|
|
outputs.push_back(output.clone());
|
|
} else {
|
|
outputs.push_back(output.clone(at::MemoryFormat::Contiguous));
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<at::Tensor> result() const override {
|
|
return outputs;
|
|
}
|
|
|
|
private:
|
|
std::vector<SparseTensorMetadata> allgather_metadata(
|
|
const at::Tensor& tensor) {
|
|
auto buffer =
|
|
at::zeros({context->size, SparseTensorMetadata::dim}, at::kLong);
|
|
|
|
// Prepare metadata vector (1 entry per rank)
|
|
std::vector<SparseTensorMetadata> metadata;
|
|
metadata.reserve(context->size);
|
|
for (auto i = 0; i < context->size; i++) {
|
|
metadata.emplace_back(buffer.select(0, i));
|
|
}
|
|
|
|
// Populate data for this rank
|
|
metadata[context->rank].populate_from_sparse_tensor(tensor);
|
|
|
|
// Allgather metadata
|
|
gloo::AllgatherOptions opts(context);
|
|
opts.setOutput(buffer.data_ptr<int64_t>(), buffer.numel());
|
|
opts.setTag(tag);
|
|
gloo::allgather(opts);
|
|
|
|
return metadata;
|
|
}
|
|
|
|
std::vector<at::Tensor> allgather_indices(
|
|
const at::Tensor& tensor,
|
|
const std::vector<SparseTensorMetadata>& metadata) {
|
|
const auto sparseDim = tensor.sparse_dim();
|
|
|
|
std::vector<size_t> counts(context->size);
|
|
int64_t totalSize = 0;
|
|
for (size_t i = 0; i < metadata.size(); i++) {
|
|
counts[i] = metadata[i].nnz() * sparseDim;
|
|
totalSize += counts[i];
|
|
}
|
|
|
|
auto output = at::empty({totalSize}, at::kLong);
|
|
|
|
// tensors copied from cuda may not be contiguous, get a contiguous
|
|
// tensor before use its data_ptr
|
|
auto input = tensor.indices().contiguous();
|
|
|
|
// Allgatherv indices.
|
|
gloo::AllgathervOptions opts(context);
|
|
opts.setInput(input.data_ptr<int64_t>(), input.numel());
|
|
opts.setOutput(output.data_ptr<int64_t>(), counts);
|
|
opts.setTag(tag);
|
|
gloo::allgatherv(opts);
|
|
|
|
// Compile indices tensor per rank.
|
|
std::vector<at::Tensor> indices;
|
|
indices.reserve(metadata.size());
|
|
size_t offset = 0;
|
|
for (size_t i = 0; i < metadata.size(); i++) {
|
|
const auto nnz = metadata[i].nnz();
|
|
const auto numel = sparseDim * nnz;
|
|
indices.push_back(
|
|
output.narrow(0, offset, numel).reshape({sparseDim, nnz}));
|
|
offset += numel;
|
|
}
|
|
|
|
return indices;
|
|
}
|
|
|
|
std::vector<at::Tensor> allgather_values(
|
|
const at::Tensor& tensor,
|
|
const std::vector<SparseTensorMetadata>& metadata) {
|
|
// There are nnz #dense_dim()-dimensional tensors per rank.
|
|
const auto valueShape = tensor.sizes().slice(tensor.sparse_dim());
|
|
size_t denseNumel = 1;
|
|
for (auto dim : valueShape) {
|
|
denseNumel *= dim;
|
|
}
|
|
|
|
std::vector<size_t> counts(context->size);
|
|
int64_t totalSize = 0;
|
|
for (size_t i = 0; i < metadata.size(); i++) {
|
|
counts[i] = metadata[i].nnz() * denseNumel;
|
|
totalSize += counts[i];
|
|
}
|
|
|
|
auto output = at::empty({totalSize}, tensor.scalar_type());
|
|
|
|
// Allgatherv indices.
|
|
gloo::AllgathervOptions opts(context);
|
|
// tensors copied from cuda may not be contiguous, get a contiguous
|
|
// tensor before use its data_ptr
|
|
at::Tensor valueTensor = tensor.values().contiguous();
|
|
GENERATE_ALL_TYPES(valueTensor.scalar_type(), setInput, opts, valueTensor);
|
|
GENERATE_ALL_TYPES(
|
|
valueTensor.scalar_type(), setOutput, opts, output, counts);
|
|
opts.setTag(tag);
|
|
gloo::allgatherv(opts);
|
|
|
|
// Compile values tensor per rank.
|
|
std::vector<at::Tensor> values;
|
|
values.reserve(metadata.size());
|
|
size_t offset = 0;
|
|
for (size_t i = 0; i < metadata.size(); i++) {
|
|
const auto nnz = metadata[i].nnz();
|
|
const auto numel = denseNumel * nnz;
|
|
auto tensorShape = std::vector<int64_t>({(int64_t)nnz});
|
|
std::copy(
|
|
valueShape.begin(),
|
|
valueShape.end(),
|
|
std::back_inserter(tensorShape));
|
|
values.push_back(output.narrow(0, offset, numel).reshape(tensorShape));
|
|
offset += numel;
|
|
}
|
|
|
|
return values;
|
|
}
|
|
};
|
|
|
|
#ifdef USE_CUDA
|
|
|
|
class AsyncAllreduceCUDAWork : public AsyncAllreduceWork {
|
|
public:
|
|
AsyncAllreduceCUDAWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
ReduceOp reduceOp,
|
|
uint32_t tag)
|
|
: AsyncAllreduceWork(context, inputs, reduceOp, tag) {
|
|
initializeStreamsEvents(inputs, streams, events);
|
|
|
|
// Kick off copy from CUDA tensors to pinned CPU tensors.
|
|
tmp.reserve(inputs.size());
|
|
at::cuda::OptionalCUDAStreamGuard guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
guard.reset_stream(streams[i]);
|
|
tmp.push_back(pinnedLike(inputs[i]).copy_(inputs[i], true));
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
// Synchronize with copy operations.
|
|
at::cuda::OptionalCUDAGuard device_guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
device_guard.set_index(inputs[i].device().index());
|
|
AT_CUDA_CHECK(cudaStreamSynchronize(streams[i]));
|
|
}
|
|
|
|
// Run allreduce on host side tensors.
|
|
allreduce(tmp);
|
|
|
|
// Kick off copy back to the CUDA tensors.
|
|
// Only the first output in the tensor list contains the results.
|
|
// See https://github.com/facebookincubator/gloo/issues/152.
|
|
// The contents is the same for every entry in the tensor list, so
|
|
// we can use the first entry as the source of the copy below.
|
|
at::cuda::OptionalCUDAStreamGuard stream_guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
stream_guard.reset_stream(streams[i]);
|
|
inputs[i].copy_(tmp[0], /* non_blocking */ true);
|
|
events[i].record(streams[i]);
|
|
}
|
|
}
|
|
|
|
void synchronize() override {
|
|
// Synchronize with the copy back to CUDA tensors.
|
|
at::cuda::OptionalCUDAGuard guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
guard.set_index(inputs[i].device().index());
|
|
events[i].block(at::cuda::getCurrentCUDAStream());
|
|
}
|
|
}
|
|
|
|
std::vector<at::Tensor> tmp;
|
|
std::vector<at::cuda::CUDAStream> streams;
|
|
std::vector<at::cuda::CUDAEvent> events;
|
|
};
|
|
|
|
class AsyncSparseAllreduceCUDAWork : public AsyncSparseAllreduceWork {
|
|
public:
|
|
AsyncSparseAllreduceCUDAWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
uint32_t tag)
|
|
: AsyncSparseAllreduceWork(context, inputs, tag) {
|
|
initializeStreamsEvents(inputs, streams, events);
|
|
|
|
// Kick off copy from CUDA tensors to CPU tensors.
|
|
// Note that both coalescing the sparse tensor and copying it to CPU
|
|
// memory must be performed asynchronously, or we block the caller.
|
|
tmp.reserve(inputs.size());
|
|
at::cuda::OptionalCUDAStreamGuard guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
guard.reset_stream(streams[i]);
|
|
tmp.push_back(
|
|
inputs[i].coalesce().to(at::DeviceType::CPU, /*non_blocking=*/true));
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
// Synchronize with copy operations.
|
|
at::cuda::OptionalCUDAGuard device_guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
device_guard.set_index(inputs[i].device().index());
|
|
AT_CUDA_CHECK(cudaStreamSynchronize(streams[i]));
|
|
}
|
|
|
|
// Run allreduce on host side tensors.
|
|
auto output = allreduce(tmp);
|
|
|
|
// Kick off copy back to the CUDA tensors.
|
|
at::cuda::OptionalCUDAStreamGuard stream_guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
stream_guard.reset_stream(streams[i]);
|
|
outputs.push_back(output.to(inputs[i].device(), /*non_blocking=*/true));
|
|
events[i].record(streams[i]);
|
|
}
|
|
}
|
|
|
|
void synchronize() override {
|
|
// Synchronize with the copy back to CUDA tensors.
|
|
at::cuda::OptionalCUDAGuard guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
guard.set_index(inputs[i].device().index());
|
|
events[i].block(at::cuda::getCurrentCUDAStream());
|
|
}
|
|
}
|
|
|
|
std::vector<at::Tensor> tmp;
|
|
std::vector<at::cuda::CUDAStream> streams;
|
|
std::vector<at::cuda::CUDAEvent> events;
|
|
};
|
|
|
|
#endif
|
|
|
|
} // namespace
|
|
|
|
std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::allreduce(
|
|
std::vector<at::Tensor>& inputs,
|
|
const AllreduceOptions& opts) {
|
|
static auto invalidArgument = [](const std::string& msg) {
|
|
throw std::invalid_argument("ProcessGroupGloo::allreduce: " + msg);
|
|
};
|
|
|
|
assertNonEmpty(invalidArgument, inputs);
|
|
assertLayoutMatch(invalidArgument, inputs);
|
|
assertTypeAndSizesMatch(invalidArgument, inputs);
|
|
|
|
const auto& device = inputs[0].device();
|
|
switch (device.type()) {
|
|
case at::kCPU:
|
|
#ifdef USE_CUDA
|
|
case at::kCUDA:
|
|
#endif
|
|
break;
|
|
default:
|
|
invalidArgument("unsupported device type");
|
|
}
|
|
|
|
const auto& layout = inputs[0].layout();
|
|
if (layout == c10::kSparse && opts.reduceOp != ReduceOp::SUM) {
|
|
invalidArgument(
|
|
"unsupported reduction operation "
|
|
"(allreduce of sparse tensors only works with ReduceOp.SUM)");
|
|
}
|
|
|
|
std::shared_ptr<AsyncWork> work;
|
|
auto tag = nextTag();
|
|
auto context = getContext(tag);
|
|
if (device.type() == at::kCPU) {
|
|
if (layout == c10::kStrided) {
|
|
work = std::make_shared<AsyncAllreduceWork>(
|
|
std::move(context), inputs, opts.reduceOp, tag);
|
|
} else if (layout == c10::kSparse) {
|
|
work = std::make_shared<AsyncSparseAllreduceWork>(
|
|
std::move(context), inputs, tag);
|
|
} else {
|
|
invalidArgument("unsupported layout");
|
|
}
|
|
#ifdef USE_CUDA
|
|
} else if (device.type() == at::kCUDA) {
|
|
if (layout == c10::kStrided) {
|
|
work = std::make_shared<AsyncAllreduceCUDAWork>(
|
|
std::move(context), inputs, opts.reduceOp, tag);
|
|
} else if (layout == c10::kSparse) {
|
|
work = std::make_shared<AsyncSparseAllreduceCUDAWork>(
|
|
std::move(context), inputs, tag);
|
|
} else {
|
|
invalidArgument("unsupported layout");
|
|
}
|
|
#endif
|
|
} else {
|
|
throw std::runtime_error("Invalid backend");
|
|
}
|
|
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::allreduce_coalesced(
|
|
std::vector<at::Tensor>& tensors,
|
|
const AllreduceCoalescedOptions& opts) {
|
|
static auto invalidArgument = [](const std::string& msg) {
|
|
throw std::invalid_argument(
|
|
"ProcessGroupGloo::allreduce_coalesced: " + msg);
|
|
};
|
|
assertNonEmpty(invalidArgument, tensors);
|
|
|
|
// tensors will be flattened and concatenated (coalesced). This means that
|
|
// input
|
|
// tensors must have the same device, layout and type.
|
|
assertLayoutMatch(invalidArgument, tensors);
|
|
if (!std::all_of(tensors.begin(), tensors.end(), [&](at::Tensor& t) {
|
|
return t.options().type_equal(tensors[0].options());
|
|
})) {
|
|
invalidArgument("tensors must all have the same type");
|
|
}
|
|
if (!std::all_of(tensors.begin(), tensors.end(), [&](at::Tensor& t) {
|
|
return t.device() == tensors[0].device();
|
|
})) {
|
|
invalidArgument("tensors must all be on the same device");
|
|
}
|
|
|
|
const c10::Device& device = tensors[0].device();
|
|
const c10::Layout& layout = tensors[0].layout();
|
|
|
|
// invalid arguments are detected early here before any calls to nextTag()
|
|
// which result in the collectiveCounter_ being incremented.
|
|
switch (device.type()) {
|
|
case c10::kCPU:
|
|
break;
|
|
default:
|
|
invalidArgument("unsupported device type");
|
|
}
|
|
|
|
switch (layout) {
|
|
case c10::kStrided:
|
|
break;
|
|
default:
|
|
invalidArgument("unsupported layout");
|
|
}
|
|
|
|
std::shared_ptr<AsyncWork> work;
|
|
const uint32_t tag = nextTag();
|
|
std::shared_ptr<gloo::Context> context = getContext(tag);
|
|
if (device.type() == c10::kCPU) {
|
|
if (layout == c10::kStrided) {
|
|
work = std::make_shared<AsyncAllreduceCoalescedWork>(
|
|
std::move(context), tensors, opts.reduceOp, tag);
|
|
} else {
|
|
invalidArgument("unsupported layout");
|
|
}
|
|
} else {
|
|
throw std::runtime_error("Invalid backend");
|
|
}
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AsyncReduceWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncReduceWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
int rootRank,
|
|
int rootTensor,
|
|
ReduceOp reduceOp,
|
|
uint32_t tag)
|
|
: context(context),
|
|
inputs(inputs),
|
|
rootRank(rootRank),
|
|
rootTensor(rootTensor),
|
|
reduceOp(reduceOp),
|
|
tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<at::Tensor> inputs;
|
|
const int rootRank;
|
|
const int rootTensor;
|
|
const ReduceOp reduceOp;
|
|
const uint32_t tag;
|
|
|
|
void reduce(std::vector<at::Tensor>& tensors) {
|
|
const auto& scalarType = tensors[0].scalar_type();
|
|
gloo::ReduceOptions opts(context);
|
|
opts.setRoot(rootRank);
|
|
opts.setTag(tag);
|
|
opts.setReduceFunction(getFunction(scalarType, reduceOp));
|
|
GENERATE_ALL_TYPES(scalarType, setOutput, opts, tensors[0]);
|
|
gloo::reduce(opts);
|
|
}
|
|
|
|
void run() override {
|
|
reduce(inputs);
|
|
}
|
|
|
|
protected:
|
|
template <typename T>
|
|
void getFunction(gloo::ReduceOptions::Func& fn, const ReduceOp op) {
|
|
fn = toFunction<T>(op);
|
|
}
|
|
|
|
gloo::ReduceOptions::Func getFunction(
|
|
const at::ScalarType& dtype,
|
|
const ReduceOp op) {
|
|
gloo::ReduceOptions::Func fn;
|
|
GENERATE_ALL_TYPES(dtype, getFunction, fn, op);
|
|
return fn;
|
|
}
|
|
};
|
|
|
|
#ifdef USE_CUDA
|
|
|
|
class AsyncReduceCUDAWork : public AsyncReduceWork {
|
|
public:
|
|
AsyncReduceCUDAWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
int rootRank,
|
|
int rootTensor,
|
|
ReduceOp reduceOp,
|
|
uint32_t tag)
|
|
: AsyncReduceWork(context, inputs, rootRank, rootTensor, reduceOp, tag) {
|
|
initializeStreamsEvents(inputs, streams, events);
|
|
|
|
// Kick off copy from CUDA tensors to pinned CPU tensors.
|
|
tmp.reserve(inputs.size());
|
|
at::cuda::OptionalCUDAStreamGuard guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
guard.reset_stream(streams[i]);
|
|
tmp.push_back(pinnedLike(inputs[i]).copy_(inputs[i], true));
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
// Synchronize with copy operations.
|
|
at::cuda::OptionalCUDAGuard device_guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
device_guard.set_index(inputs[i].device().index());
|
|
AT_CUDA_CHECK(cudaStreamSynchronize(streams[i]));
|
|
}
|
|
|
|
// Run reduce on host side tensors.
|
|
reduce(tmp);
|
|
|
|
// Kick off copy back to the CUDA tensors.
|
|
at::cuda::OptionalCUDAStreamGuard stream_guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
stream_guard.reset_stream(streams[i]);
|
|
inputs[i].copy_(tmp[i], /* non_blocking */ true);
|
|
events[i].record(streams[i]);
|
|
}
|
|
}
|
|
|
|
void synchronize() override {
|
|
// Synchronize with the copy back to CUDA tensors.
|
|
at::cuda::OptionalCUDAGuard guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
guard.set_index(inputs[i].device().index());
|
|
events[i].block(at::cuda::getCurrentCUDAStream());
|
|
}
|
|
}
|
|
|
|
std::vector<at::Tensor> tmp;
|
|
std::vector<at::cuda::CUDAStream> streams;
|
|
std::vector<at::cuda::CUDAEvent> events;
|
|
};
|
|
|
|
#endif
|
|
|
|
} // namespace
|
|
|
|
std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::reduce(
|
|
std::vector<at::Tensor>& inputs,
|
|
const ReduceOptions& opts) {
|
|
static auto invalidArgument = [](const std::string& msg) {
|
|
throw std::invalid_argument("ProcessGroupGloo::reduce: " + msg);
|
|
};
|
|
|
|
assertRootRank(invalidArgument, opts.rootRank, size_);
|
|
assertRootTensor(invalidArgument, opts.rootTensor, inputs.size());
|
|
assertSingleElement(invalidArgument, inputs);
|
|
assertDense(invalidArgument, inputs);
|
|
|
|
const auto& device = inputs[0].device();
|
|
switch (device.type()) {
|
|
case at::kCPU:
|
|
#ifdef USE_CUDA
|
|
case at::kCUDA:
|
|
#endif
|
|
break;
|
|
default:
|
|
invalidArgument("unsupported device type");
|
|
}
|
|
|
|
std::shared_ptr<AsyncReduceWork> work;
|
|
auto tag = nextTag();
|
|
auto context = getContext(tag);
|
|
if (device.type() == at::kCPU) {
|
|
work = std::make_shared<AsyncReduceWork>(
|
|
std::move(context),
|
|
inputs,
|
|
opts.rootRank,
|
|
opts.rootTensor,
|
|
opts.reduceOp,
|
|
tag);
|
|
#ifdef USE_CUDA
|
|
} else if (device.type() == at::kCUDA) {
|
|
work = std::make_shared<AsyncReduceCUDAWork>(
|
|
std::move(context),
|
|
inputs,
|
|
opts.rootRank,
|
|
opts.rootTensor,
|
|
opts.reduceOp,
|
|
tag);
|
|
#endif
|
|
} else {
|
|
throw std::runtime_error("Invalid backend");
|
|
}
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AsyncAllgatherWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncAllgatherWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<std::vector<at::Tensor>>& outputs,
|
|
std::vector<at::Tensor>& inputs,
|
|
uint32_t tag)
|
|
: context(context), outputs(outputs), inputs(inputs), tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<std::vector<at::Tensor>> outputs;
|
|
std::vector<at::Tensor> inputs;
|
|
const uint32_t tag;
|
|
|
|
void allgather(
|
|
std::vector<std::vector<at::Tensor>>& outputs,
|
|
std::vector<at::Tensor>& inputs) {
|
|
const auto& scalarType = inputs[0].scalar_type();
|
|
gloo::AllgatherOptions opts(context);
|
|
opts.setTag(tag);
|
|
|
|
// Use single flattened input tensor.
|
|
at::Tensor flatInputTensor = flattenDenseTensors(inputs);
|
|
GENERATE_ALL_TYPES(scalarType, setInput, opts, flatInputTensor);
|
|
|
|
// Use single flat output tensor.
|
|
// The first dimension corresponds to the index into outputs[N],
|
|
// so copying into the actual output later is easy.
|
|
at::Tensor flatOutputTensor = newLikeFlat(outputs[0]);
|
|
GENERATE_ALL_TYPES(scalarType, setOutput, opts, flatOutputTensor);
|
|
gloo::allgather(opts);
|
|
|
|
// Unflatten into output tensors.
|
|
for (size_t i = 0; i < outputs.size(); i++) {
|
|
for (size_t j = 0; j < outputs[i].size(); j++) {
|
|
outputs[i][j].copy_(flatOutputTensor[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
allgather(outputs, inputs);
|
|
}
|
|
};
|
|
|
|
#ifdef USE_CUDA
|
|
|
|
// Note: current CUDA implementation holds the assumption that the
|
|
// tensors in the nested output tensor vectors are on the same device.
|
|
class AsyncAllgatherCUDAWork : public AsyncAllgatherWork {
|
|
public:
|
|
AsyncAllgatherCUDAWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<std::vector<at::Tensor>>& outputs,
|
|
std::vector<at::Tensor>& inputs,
|
|
uint32_t tag)
|
|
: AsyncAllgatherWork(context, outputs, inputs, tag) {
|
|
initializeStreamsEvents(inputs, inputStreams, inputEvents);
|
|
initializeStreamsEvents(outputs, outputStreams, outputEvents);
|
|
|
|
// Kick off copy from CUDA tensors to pinned CPU tensors.
|
|
tmpInputs.reserve(inputs.size());
|
|
at::cuda::OptionalCUDAStreamGuard guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
guard.reset_stream(inputStreams[i]);
|
|
tmpInputs.push_back(pinnedLike(inputs[i]).copy_(inputs[i], true));
|
|
}
|
|
|
|
tmpOutputs.resize(outputs.size());
|
|
for (size_t i = 0; i < outputs.size(); i++) {
|
|
tmpOutputs[i].reserve(outputs[i].size());
|
|
for (size_t j = 0; j < outputs[i].size(); j++) {
|
|
tmpOutputs[i].push_back(pinnedLike(outputs[i][j]));
|
|
}
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
// Synchronize with copy operations.
|
|
at::cuda::OptionalCUDAGuard device_guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
device_guard.set_index(inputs[i].device().index());
|
|
AT_CUDA_CHECK(cudaStreamSynchronize(inputStreams[i]));
|
|
}
|
|
|
|
for (size_t i = 0; i < outputs.size(); i++) {
|
|
device_guard.set_index(outputs[i][0].device().index());
|
|
AT_CUDA_CHECK(cudaStreamSynchronize(outputStreams[i]));
|
|
}
|
|
|
|
// Run allgather on host side tensors.
|
|
allgather(tmpOutputs, tmpInputs);
|
|
|
|
// Kick off copy back to the CUDA tensors.
|
|
at::cuda::OptionalCUDAStreamGuard stream_guard;
|
|
for (size_t i = 0; i < outputs.size(); i++) {
|
|
stream_guard.reset_stream(outputStreams[i]);
|
|
for (size_t j = 0; j < outputs[i].size(); j++) {
|
|
outputs[i][j].copy_(tmpOutputs[i][j], /* non_blocking */ true);
|
|
}
|
|
outputEvents[i].record(outputStreams[i]);
|
|
}
|
|
}
|
|
|
|
void synchronize() override {
|
|
// Synchronize with the copy back to CUDA tensors.
|
|
at::cuda::OptionalCUDAGuard guard;
|
|
for (size_t i = 0; i < outputs.size(); i++) {
|
|
guard.set_index(outputs[i][0].device().index());
|
|
outputEvents[i].block(at::cuda::getCurrentCUDAStream());
|
|
}
|
|
}
|
|
|
|
std::vector<at::Tensor> tmpInputs;
|
|
std::vector<at::cuda::CUDAStream> inputStreams;
|
|
std::vector<at::cuda::CUDAEvent> inputEvents;
|
|
|
|
std::vector<std::vector<at::Tensor>> tmpOutputs;
|
|
std::vector<at::cuda::CUDAStream> outputStreams;
|
|
std::vector<at::cuda::CUDAEvent> outputEvents;
|
|
};
|
|
|
|
#endif
|
|
|
|
} // namespace
|
|
|
|
// Note: current CUDA implementation holds the assumption that the
|
|
// tensors in the nested output tensor vectors are on the same device.
|
|
std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::allgather(
|
|
std::vector<std::vector<at::Tensor>>& outputs,
|
|
std::vector<at::Tensor>& inputs,
|
|
const AllgatherOptions& opts) {
|
|
static auto invalidArgument = [](const std::string& msg) {
|
|
throw std::invalid_argument("ProcessGroupGloo::allgather: " + msg);
|
|
};
|
|
|
|
if (inputs.size() == 0) {
|
|
invalidArgument("requires non-empty input tensor list");
|
|
}
|
|
|
|
if (inputs.size() != outputs.size()) {
|
|
invalidArgument(
|
|
"requires input/output tensor lists to have the same length");
|
|
}
|
|
|
|
for (size_t i = 0; i < outputs.size(); i++) {
|
|
const auto expected = inputs.size() * getSize();
|
|
const auto actual = outputs[i].size();
|
|
if (actual != expected) {
|
|
invalidArgument(
|
|
"invalid output tensor list at index " + std::to_string(i) +
|
|
" (expected length " + std::to_string(expected) + ", got " +
|
|
std::to_string(actual) + ")");
|
|
}
|
|
}
|
|
|
|
assertDense(invalidArgument, inputs);
|
|
|
|
// Expect all input/output tensors to have the same type and sizes
|
|
const auto& options = inputs[0].options();
|
|
const auto& sizes = inputs[0].sizes();
|
|
assertTypeAndSizesMatch(invalidArgument, inputs, options, sizes);
|
|
for (size_t i = 0; i < outputs.size(); i++) {
|
|
assertTypeAndSizesMatch(invalidArgument, outputs[i], options, sizes);
|
|
}
|
|
|
|
const auto& device = inputs[0].device();
|
|
switch (device.type()) {
|
|
case at::kCPU:
|
|
#ifdef USE_CUDA
|
|
case at::kCUDA:
|
|
#endif
|
|
break;
|
|
default:
|
|
invalidArgument("unsupported device type");
|
|
}
|
|
|
|
std::shared_ptr<AsyncAllgatherWork> work;
|
|
auto tag = nextTag();
|
|
auto context = getContext(tag);
|
|
if (device.type() == at::kCPU) {
|
|
work = std::make_shared<AsyncAllgatherWork>(
|
|
std::move(context), outputs, inputs, tag);
|
|
#ifdef USE_CUDA
|
|
} else if (device.type() == at::kCUDA) {
|
|
work = std::make_shared<AsyncAllgatherCUDAWork>(
|
|
std::move(context), outputs, inputs, tag);
|
|
#endif
|
|
} else {
|
|
throw std::runtime_error("Invalid backend");
|
|
}
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AsyncAllgatherCoalescedWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncAllgatherCoalescedWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<std::vector<at::Tensor>>& output_lists,
|
|
std::vector<at::Tensor>& input_list,
|
|
uint32_t tag)
|
|
: context(context),
|
|
output_lists(output_lists),
|
|
input_list(input_list),
|
|
tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<std::vector<at::Tensor>> output_lists;
|
|
std::vector<at::Tensor> input_list;
|
|
const uint32_t tag;
|
|
|
|
void allgather_coalesced() {
|
|
assert(!output_lists.empty());
|
|
assert(!output_lists[0].empty());
|
|
assert(!input_list.empty());
|
|
|
|
const auto& scalarType = input_list[0].scalar_type();
|
|
gloo::AllgatherOptions opts(context);
|
|
opts.setTag(tag);
|
|
|
|
// Use single flattened input tensor.
|
|
at::Tensor flatInputTensor = flattenDenseTensors(input_list);
|
|
GENERATE_ALL_TYPES(scalarType, setInput, opts, flatInputTensor);
|
|
|
|
// Compute total number of elements we need to allocate for all tensors
|
|
// requested.
|
|
int64_t output_numel = 0;
|
|
for (const auto& t : output_lists[0]) {
|
|
output_numel += t.numel();
|
|
}
|
|
output_numel *= output_lists.size();
|
|
// Use single flat output tensor.
|
|
at::Tensor flatOutputTensor =
|
|
at::empty({output_numel}, output_lists[0][0].options());
|
|
GENERATE_ALL_TYPES(scalarType, setOutput, opts, flatOutputTensor);
|
|
gloo::allgather(opts);
|
|
|
|
int64_t current_element = 0;
|
|
for (auto& output_list : output_lists) {
|
|
for (auto& output_tensor : output_list) {
|
|
output_tensor.copy_(
|
|
flatOutputTensor.narrow(0, current_element, output_tensor.numel())
|
|
.reshape(output_tensor.sizes()),
|
|
true);
|
|
current_element += output_tensor.numel();
|
|
}
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
allgather_coalesced();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::allgather_coalesced(
|
|
std::vector<std::vector<at::Tensor>>& output_lists,
|
|
std::vector<at::Tensor>& input_list,
|
|
const AllgatherOptions& /* unused */) {
|
|
static auto invalidArgument = [](const std::string& msg) {
|
|
throw std::invalid_argument(
|
|
"ProcessGroupGloo::allgather_coalesced: " + msg);
|
|
};
|
|
|
|
if (input_list.empty()) {
|
|
invalidArgument("requires non-empty input tensor list");
|
|
}
|
|
|
|
if (output_lists.size() != getSize()) {
|
|
invalidArgument("output lists should be equal to world size");
|
|
}
|
|
|
|
assertSameDevice(invalidArgument, input_list);
|
|
|
|
// Expect i'th tensor of each list from 'output_lists' match i'th tensor
|
|
// from 'input_list' in type and size.
|
|
for (const auto& output_list : output_lists) {
|
|
if (output_list.size() != input_list.size()) {
|
|
invalidArgument(
|
|
"invalid output size: (expected length " +
|
|
std::to_string(input_list.size()) + ", got " +
|
|
std::to_string(output_list.size()) + ")");
|
|
}
|
|
for (int i = 0; i < output_list.size(); ++i) {
|
|
const auto expected = input_list[i].sizes();
|
|
const auto actual = output_list[i].sizes();
|
|
if (actual != expected) {
|
|
invalidArgument(
|
|
"invalid size of output tensor at index " + std::to_string(i) +
|
|
" (expected length " + toString(expected) + ", got " +
|
|
toString(actual) + ")");
|
|
}
|
|
if (!input_list[i].options().type_equal(output_list[i].options())) {
|
|
invalidArgument(
|
|
"invalid tensor type at index " + std::to_string(i) +
|
|
" (expected " + input_list[i].toString() + ", got " +
|
|
output_list[i].toString() + ")");
|
|
}
|
|
}
|
|
}
|
|
|
|
assertDense(invalidArgument, input_list);
|
|
|
|
auto tag = nextTag();
|
|
auto context = getContext(tag);
|
|
auto work = std::make_shared<AsyncAllgatherCoalescedWork>(
|
|
std::move(context), output_lists, input_list, tag);
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AsyncGatherWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncGatherWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<std::vector<at::Tensor>>& outputs,
|
|
std::vector<at::Tensor>& inputs,
|
|
int root,
|
|
uint32_t tag)
|
|
: context(context),
|
|
outputs(outputs),
|
|
inputs(inputs),
|
|
root(root),
|
|
tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<std::vector<at::Tensor>> outputs;
|
|
std::vector<at::Tensor> inputs;
|
|
const int root;
|
|
const uint32_t tag;
|
|
|
|
void gather(
|
|
std::vector<std::vector<at::Tensor>>& outputs,
|
|
std::vector<at::Tensor>& inputs) {
|
|
const auto scalarType = inputs[0].scalar_type();
|
|
gloo::GatherOptions opts(context);
|
|
opts.setRoot(root);
|
|
opts.setTag(tag);
|
|
|
|
// Set single temporary tensor on root process.
|
|
// This is later scattered to the separate output tensors.
|
|
at::Tensor flatOutputTensor;
|
|
if (context->rank == root) {
|
|
flatOutputTensor = newLikeFlat(outputs[0]);
|
|
GENERATE_ALL_TYPES(scalarType, setOutput, opts, flatOutputTensor);
|
|
}
|
|
|
|
// Set single input tensor on all processes.
|
|
GENERATE_ALL_TYPES(scalarType, setInput, opts, inputs[0]);
|
|
gloo::gather(opts);
|
|
|
|
// Unflatten into output tensors on root process.
|
|
if (context->rank == root) {
|
|
for (size_t i = 0; i < outputs[0].size(); i++) {
|
|
outputs[0][i].copy_(flatOutputTensor[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
gather(outputs, inputs);
|
|
}
|
|
};
|
|
|
|
#ifdef USE_CUDA
|
|
|
|
// Note: current CUDA implementation holds the assumptions:
|
|
// - inputs.size() is 1
|
|
// - outputs.size() is 1
|
|
// - the size of the nested output tensors is world size, i.e.,
|
|
// outputs[0].size, is world size
|
|
class AsyncGatherCUDAWork : public AsyncGatherWork {
|
|
public:
|
|
AsyncGatherCUDAWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<std::vector<at::Tensor>>& outputs,
|
|
std::vector<at::Tensor>& inputs,
|
|
int root,
|
|
uint32_t tag)
|
|
: AsyncGatherWork(context, outputs, inputs, root, tag) {
|
|
initializeStreamsEvents(inputs, inputStreams, inputEvents);
|
|
initializeStreamsEvents(outputs, outputStreams, outputEvents);
|
|
|
|
// Kick off copy from CUDA tensors to pinned CPU tensors.
|
|
tmpInputs.reserve(inputs.size());
|
|
at::cuda::OptionalCUDAStreamGuard guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
guard.reset_stream(inputStreams[i]);
|
|
tmpInputs.push_back(pinnedLike(inputs[i]).copy_(inputs[i], true));
|
|
}
|
|
|
|
tmpOutputs.resize(outputs.size());
|
|
for (size_t i = 0; i < outputs.size(); i++) {
|
|
tmpOutputs[i].reserve(outputs[i].size());
|
|
for (size_t j = 0; j < outputs[i].size(); j++) {
|
|
tmpOutputs[i].push_back(pinnedLike(outputs[i][j]));
|
|
}
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
// Synchronize with copy operations.
|
|
at::cuda::OptionalCUDAGuard device_guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
device_guard.set_index(inputs[i].get_device());
|
|
AT_CUDA_CHECK(cudaStreamSynchronize(inputStreams[i]));
|
|
}
|
|
|
|
for (size_t i = 0; i < outputs.size(); i++) {
|
|
device_guard.set_index(outputs[i][0].get_device());
|
|
AT_CUDA_CHECK(cudaStreamSynchronize(outputStreams[i]));
|
|
}
|
|
|
|
// Run gather on host side tensors.
|
|
gather(tmpOutputs, tmpInputs);
|
|
|
|
// Kick off copy back to the CUDA tensors.
|
|
at::cuda::OptionalCUDAStreamGuard stream_guard;
|
|
for (size_t i = 0; i < outputs.size(); i++) {
|
|
stream_guard.reset_stream(outputStreams[i]);
|
|
for (size_t j = 0; j < outputs[i].size(); j++) {
|
|
outputs[i][j].copy_(tmpOutputs[i][j], /* non_blocking */ true);
|
|
}
|
|
outputEvents[i].record(outputStreams[i]);
|
|
}
|
|
}
|
|
|
|
void synchronize() override {
|
|
// Synchronize with the copy back to CUDA tensors.
|
|
at::cuda::OptionalCUDAGuard guard;
|
|
for (size_t i = 0; i < outputs.size(); i++) {
|
|
guard.set_index(static_cast<at::DeviceIndex>(outputs[i][0].get_device()));
|
|
outputEvents[i].block(at::cuda::getCurrentCUDAStream());
|
|
}
|
|
}
|
|
|
|
std::vector<at::Tensor> tmpInputs;
|
|
std::vector<at::cuda::CUDAStream> inputStreams;
|
|
std::vector<at::cuda::CUDAEvent> inputEvents;
|
|
|
|
std::vector<std::vector<at::Tensor>> tmpOutputs;
|
|
std::vector<at::cuda::CUDAStream> outputStreams;
|
|
std::vector<at::cuda::CUDAEvent> outputEvents;
|
|
};
|
|
|
|
#endif
|
|
|
|
} // namespace
|
|
|
|
std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::gather(
|
|
std::vector<std::vector<at::Tensor>>& outputs,
|
|
std::vector<at::Tensor>& inputs,
|
|
const GatherOptions& opts) {
|
|
static auto invalidArgument = [](const std::string& msg) {
|
|
throw std::invalid_argument("ProcessGroupGloo::gather: " + msg);
|
|
};
|
|
|
|
assertRootRank(invalidArgument, opts.rootRank, size_);
|
|
assertSingleElementInput(invalidArgument, inputs);
|
|
assertDense(invalidArgument, inputs);
|
|
|
|
if (getRank() == opts.rootRank) {
|
|
if (outputs.size() != 1) {
|
|
std::stringstream ss;
|
|
ss << "requires a single-element output list containing a list with "
|
|
<< getSize() << " tensors.";
|
|
invalidArgument(ss.str());
|
|
} else if (outputs[0].size() != static_cast<size_t>(getSize())) {
|
|
std::stringstream ss;
|
|
ss << "Incorrect output list size " << outputs[0].size()
|
|
<< ". Output list size should be " << getSize()
|
|
<< ", same as size of the process group.";
|
|
invalidArgument(ss.str());
|
|
}
|
|
|
|
const auto& options = inputs[0].options();
|
|
const auto& sizes = inputs[0].sizes();
|
|
assertTypeAndSizesMatch(invalidArgument, outputs[0], options, sizes);
|
|
} else {
|
|
if (outputs.size() != 0) {
|
|
invalidArgument("requires empty output on non-root");
|
|
}
|
|
}
|
|
|
|
const auto& device = inputs[0].device();
|
|
switch (device.type()) {
|
|
case at::kCPU:
|
|
#ifdef USE_CUDA
|
|
case at::kCUDA:
|
|
#endif
|
|
break;
|
|
default:
|
|
invalidArgument("unsupported device type");
|
|
}
|
|
|
|
std::shared_ptr<AsyncGatherWork> work;
|
|
auto tag = nextTag();
|
|
auto context = getContext(tag);
|
|
if (device.type() == at::kCPU) {
|
|
work = std::make_shared<AsyncGatherWork>(
|
|
std::move(context), outputs, inputs, opts.rootRank, tag);
|
|
#ifdef USE_CUDA
|
|
} else if (device.type() == at::kCUDA) {
|
|
work = std::make_shared<AsyncGatherCUDAWork>(
|
|
std::move(context), outputs, inputs, opts.rootRank, tag);
|
|
#endif
|
|
} else {
|
|
throw std::runtime_error("Invalid backend");
|
|
}
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AsyncScatterWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncScatterWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& outputs,
|
|
std::vector<std::vector<at::Tensor>>& inputs,
|
|
int root,
|
|
uint32_t tag)
|
|
: context(context),
|
|
outputs(outputs),
|
|
inputs(inputs),
|
|
root(root),
|
|
tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<at::Tensor> outputs;
|
|
std::vector<std::vector<at::Tensor>> inputs;
|
|
const int root;
|
|
const uint32_t tag;
|
|
|
|
void scatter(
|
|
std::vector<at::Tensor>& outputs,
|
|
std::vector<std::vector<at::Tensor>>& inputs) {
|
|
const auto scalarType = outputs[0].scalar_type();
|
|
gloo::ScatterOptions opts(context);
|
|
opts.setRoot(root);
|
|
opts.setTag(tag);
|
|
|
|
// Set list of input tensors on root process
|
|
if (context->rank == root) {
|
|
GENERATE_ALL_TYPES(scalarType, setInputs, opts, inputs[0]);
|
|
}
|
|
|
|
// Set single output tensor on all processes
|
|
GENERATE_ALL_TYPES(scalarType, setOutput, opts, outputs[0]);
|
|
gloo::scatter(opts);
|
|
}
|
|
|
|
void run() override {
|
|
scatter(outputs, inputs);
|
|
}
|
|
};
|
|
|
|
#ifdef USE_CUDA
|
|
|
|
class AsyncScatterCUDAWork : public AsyncScatterWork {
|
|
public:
|
|
AsyncScatterCUDAWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& outputs,
|
|
std::vector<std::vector<at::Tensor>>& inputs,
|
|
int root,
|
|
uint32_t tag)
|
|
: AsyncScatterWork(context, outputs, inputs, root, tag) {
|
|
initializeStreamsEvents(inputs, inputStreams, inputEvents);
|
|
initializeStreamsEvents(outputs, outputStreams, outputEvents);
|
|
|
|
// Kick off copy from CUDA tensors to pinned CPU tensors.
|
|
tmpInputs.resize(inputs.size());
|
|
at::cuda::OptionalCUDAStreamGuard guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
guard.reset_stream(inputStreams[i]);
|
|
tmpInputs[i].reserve(inputs[i].size());
|
|
for (size_t j = 0; j < inputs[i].size(); j++) {
|
|
tmpInputs[i].push_back(
|
|
pinnedLike(inputs[i][j]).copy_(inputs[i][j], true));
|
|
}
|
|
}
|
|
|
|
tmpOutputs.reserve(outputs.size());
|
|
for (size_t i = 0; i < outputs.size(); i++) {
|
|
tmpOutputs.push_back(pinnedLike(outputs[i]));
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
// Synchronize with copy operations.
|
|
at::cuda::OptionalCUDAGuard device_guard;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
device_guard.set_index(inputs[i][0].get_device());
|
|
AT_CUDA_CHECK(cudaStreamSynchronize(inputStreams[i]));
|
|
}
|
|
for (size_t i = 0; i < outputs.size(); i++) {
|
|
device_guard.set_index(outputs[i].get_device());
|
|
AT_CUDA_CHECK(cudaStreamSynchronize(outputStreams[i]));
|
|
}
|
|
|
|
// Run scatter on host side tensors.
|
|
scatter(tmpOutputs, tmpInputs);
|
|
|
|
// Kick off copy back to the CUDA tensors.
|
|
at::cuda::OptionalCUDAStreamGuard stream_guard;
|
|
for (size_t i = 0; i < outputs.size(); i++) {
|
|
stream_guard.reset_stream(outputStreams[i]);
|
|
outputs[i].copy_(tmpOutputs[i], /* non_blocking */ true);
|
|
outputEvents[i].record(outputStreams[i]);
|
|
}
|
|
}
|
|
|
|
void synchronize() override {
|
|
// Synchronize with the copy back to CUDA tensors.
|
|
at::cuda::OptionalCUDAGuard guard;
|
|
for (size_t i = 0; i < outputs.size(); i++) {
|
|
guard.set_index(static_cast<at::DeviceIndex>(outputs[i].get_device()));
|
|
outputEvents[i].block(at::cuda::getCurrentCUDAStream());
|
|
}
|
|
}
|
|
|
|
std::vector<at::Tensor> tmpOutputs;
|
|
std::vector<at::cuda::CUDAStream> outputStreams;
|
|
std::vector<at::cuda::CUDAEvent> outputEvents;
|
|
|
|
std::vector<std::vector<at::Tensor>> tmpInputs;
|
|
std::vector<at::cuda::CUDAStream> inputStreams;
|
|
std::vector<at::cuda::CUDAEvent> inputEvents;
|
|
};
|
|
|
|
#endif
|
|
|
|
} // namespace
|
|
|
|
std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::scatter(
|
|
std::vector<at::Tensor>& outputs,
|
|
std::vector<std::vector<at::Tensor>>& inputs,
|
|
const ScatterOptions& opts) {
|
|
static auto invalidArgument = [](const std::string& msg) {
|
|
throw std::invalid_argument("ProcessGroupGloo::scatter: " + msg);
|
|
};
|
|
|
|
assertRootRank(invalidArgument, opts.rootRank, size_);
|
|
assertSingleElementOutput(invalidArgument, outputs);
|
|
assertDense(invalidArgument, outputs);
|
|
|
|
if (getRank() == opts.rootRank) {
|
|
if (inputs.size() != 1) {
|
|
std::stringstream ss;
|
|
ss << "requires a single-element input list containing a list with "
|
|
<< getSize() << " tensors";
|
|
invalidArgument(ss.str());
|
|
} else if (inputs[0].size() != static_cast<size_t>(getSize())) {
|
|
std::stringstream ss;
|
|
ss << "Incorrect input list size " << inputs[0].size()
|
|
<< ". Input list size should be " << getSize()
|
|
<< ", same as size of the process group.";
|
|
invalidArgument(ss.str());
|
|
}
|
|
const auto& options = outputs[0].options();
|
|
const auto& sizes = outputs[0].sizes();
|
|
assertTypeAndSizesMatch(invalidArgument, inputs[0], options, sizes);
|
|
} else {
|
|
if (inputs.size() != 0) {
|
|
invalidArgument("requires empty input on non-root");
|
|
}
|
|
}
|
|
|
|
const auto& device = outputs[0].device();
|
|
switch (device.type()) {
|
|
case at::kCPU:
|
|
#ifdef USE_CUDA
|
|
case at::kCUDA:
|
|
#endif
|
|
break;
|
|
default:
|
|
invalidArgument("unsupported device type");
|
|
}
|
|
|
|
std::shared_ptr<AsyncScatterWork> work;
|
|
auto tag = nextTag();
|
|
auto context = getContext(tag);
|
|
if (device.type() == at::kCPU) {
|
|
work = std::make_shared<AsyncScatterWork>(
|
|
std::move(context), outputs, inputs, opts.rootRank, tag);
|
|
#ifdef USE_CUDA
|
|
} else if (device.type() == at::kCUDA) {
|
|
work = std::make_shared<AsyncScatterCUDAWork>(
|
|
std::move(context), outputs, inputs, opts.rootRank, tag);
|
|
#endif
|
|
} else {
|
|
throw std::runtime_error("Invalid backend");
|
|
}
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::reduce_scatter(
|
|
std::vector<at::Tensor>& outputs,
|
|
std::vector<std::vector<at::Tensor>>& inputs,
|
|
const ReduceScatterOptions& opts) {
|
|
throw std::runtime_error("ProcessGroupGloo does not support reduce_scatter");
|
|
}
|
|
|
|
at::Tensor& checkSingleTensor(std::vector<at::Tensor>& tensors) {
|
|
if (tensors.size() != 1) {
|
|
throw std::runtime_error("ProcessGroupGloo::send takes a single tensor");
|
|
}
|
|
auto& tensor = tensors[0];
|
|
if (!tensor.is_contiguous()) {
|
|
throw std::runtime_error("input tensor has to be contiguous");
|
|
}
|
|
if (tensor.is_sparse()) {
|
|
throw std::runtime_error("input tensor has to be dense");
|
|
}
|
|
return tensor;
|
|
}
|
|
|
|
uint32_t checkTag(int32_t tag) {
|
|
if (tag < 0) {
|
|
throw std::runtime_error("Tag must be >= 0");
|
|
}
|
|
return (uint32_t)tag;
|
|
}
|
|
|
|
std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::send(
|
|
std::vector<at::Tensor>& tensors,
|
|
int dstRank,
|
|
int tag) {
|
|
auto& tensor = checkSingleTensor(tensors);
|
|
auto utag = checkTag(tag);
|
|
auto ptr = tensor.data_ptr();
|
|
auto size = tensor.numel() * tensor.element_size();
|
|
|
|
// Construct unbound buffer.
|
|
auto context = getContext(tag);
|
|
auto buf = context->createUnboundBuffer(ptr, size);
|
|
buf->send(dstRank, utag);
|
|
|
|
// The work captures the tensor to prevent it being deallocated and
|
|
// the unbound buffer to synchronize on completion of the send.
|
|
return std::make_shared<SendWork>(tensor, std::move(buf));
|
|
}
|
|
|
|
std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::recv(
|
|
std::vector<at::Tensor>& tensors,
|
|
int srcRank,
|
|
int tag) {
|
|
auto& tensor = checkSingleTensor(tensors);
|
|
auto utag = checkTag(tag);
|
|
auto ptr = tensor.data_ptr();
|
|
auto size = tensor.numel() * tensor.element_size();
|
|
|
|
// Construct unbound buffer.
|
|
auto context = getContext(tag);
|
|
auto buf = context->createUnboundBuffer(ptr, size);
|
|
buf->recv(srcRank, utag);
|
|
|
|
// The work captures the tensor to prevent it being deallocated and
|
|
// the unbound buffer to synchronize on completion of the recv.
|
|
return std::make_shared<RecvWork>(tensor, std::move(buf));
|
|
}
|
|
|
|
std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::recvAnysource(
|
|
std::vector<at::Tensor>& tensors,
|
|
int tag) {
|
|
auto& tensor = checkSingleTensor(tensors);
|
|
auto utag = checkTag(tag);
|
|
auto ptr = tensor.data_ptr();
|
|
auto size = tensor.numel() * tensor.element_size();
|
|
|
|
// Construct unbound buffer.
|
|
auto context = getContext(tag);
|
|
auto buf = context->createUnboundBuffer(ptr, size);
|
|
|
|
// Build list of ranks that this operation can recv from. In these
|
|
// bindings we don't differentiate between ranks and can receive
|
|
// from any other process in the group.
|
|
std::vector<int> srcRanks;
|
|
srcRanks.resize(size_);
|
|
for (auto i = 0; i < size_; i++) {
|
|
srcRanks.push_back(i);
|
|
}
|
|
|
|
buf->recv(srcRanks, utag);
|
|
|
|
// The work captures the tensor to prevent it being deallocated and
|
|
// the unbound buffer to synchronize on completion of the recv.
|
|
return std::make_shared<RecvWork>(tensor, std::move(buf));
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AsyncBarrierWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncBarrierWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<std::weak_ptr<AsyncWork>> priorWork,
|
|
uint32_t tag)
|
|
: context(context), priorWork(std::move(priorWork)), tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<std::weak_ptr<AsyncWork>> priorWork;
|
|
const uint32_t tag;
|
|
|
|
void run() override {
|
|
// Wait on prior work to complete
|
|
for (auto& weakWork : priorWork) {
|
|
auto work = weakWork.lock();
|
|
if (work) {
|
|
work->wait();
|
|
}
|
|
}
|
|
|
|
gloo::BarrierOptions opts(context);
|
|
opts.setTag(tag);
|
|
gloo::barrier(opts);
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::barrier(
|
|
const BarrierOptions& opts) {
|
|
std::vector<std::weak_ptr<AsyncWork>> priorWork;
|
|
|
|
// Snapshot all in progress and pending work as weak_ptr.
|
|
// When executing a barrier, we need to ensure that all prior work
|
|
// has completed before completing itself.
|
|
{
|
|
std::unique_lock<std::mutex> lock(workMutex_);
|
|
priorWork.insert(
|
|
priorWork.end(), workInProgress_.begin(), workInProgress_.end());
|
|
priorWork.insert(priorWork.end(), workQueue_.begin(), workQueue_.end());
|
|
}
|
|
|
|
auto tag = nextTag();
|
|
auto context = getContext(tag);
|
|
auto work = std::make_shared<AsyncBarrierWork>(
|
|
std::move(context), std::move(priorWork), tag);
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
} // namespace c10d
|