pytorch/torch/csrc/distributed/c10d/reducer.cpp
Nathan Goldbaum f531815526 Deprecate tensor.type() (#30281)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/29161.

I looked a bit at the code changes related to this and think I have all of the use cases of `DeprecatedTypeProperties` covered in the message, but suggestions from someone with more context on this would be very much appreciated :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30281

Differential Revision: D18830818

Pulled By: ezyang

fbshipit-source-id: 1a7fcee15354ae09e6644577e7fa33bd26acfe20
2019-12-05 10:55:34 -08:00

749 lines
28 KiB
C++

#include <torch/csrc/distributed/c10d/reducer.h>
#include <functional>
#include <c10/util/Exception.h>
#include <torch/csrc/autograd/engine.h>
#include <torch/csrc/autograd/function_hook.h>
#include <torch/csrc/autograd/functions/accumulate_grad.h>
#include <torch/csrc/autograd/profiler.h>
#include <torch/csrc/utils/hash.h>
#include <torch/csrc/utils/memory.h>
namespace c10d {
namespace {
// Turns lambda without input/output into a torch::autograd::FunctionPostHook.
class LambdaPostHook : public torch::autograd::FunctionPostHook {
using variable_list = std::vector<torch::autograd::Variable>;
public:
/* implicit */ LambdaPostHook(std::function<void(void)> fn)
: fn_(std::move(fn)) {}
variable_list operator()(
const variable_list& outputs,
const variable_list& /* unused */) override {
fn_();
return outputs;
}
protected:
std::function<void(void)> fn_;
};
inline int64_t current_time_in_nanos() {
return torch::autograd::profiler::getTime();
}
} // namespace
Reducer::Reducer(
std::vector<std::vector<torch::autograd::Variable>> replicas,
std::vector<std::vector<size_t>> bucket_indices,
std::shared_ptr<c10d::ProcessGroup> process_group,
std::vector<std::vector<bool>> expect_sparse_gradients)
: replicas_(std::move(replicas)),
process_group_(std::move(process_group)),
expect_sparse_gradients_(std::move(expect_sparse_gradients)),
expect_autograd_hooks_(false),
require_finalize_(false),
next_bucket_(0),
has_marked_unused_parameters_(false),
backward_stats_base_(0) {
AT_ASSERTM(replicas_.size() >= 1, "Expected at least one model replica.");
AT_ASSERTM(replicas_[0].size() >= 1, "Expected at least one parameter.");
// If `expect_sparse_gradients` is not specified, initialize it such that
// we do not expect sparse gradients for any parameter.
if (expect_sparse_gradients_.empty()) {
expect_sparse_gradients_ = std::vector<std::vector<bool>>(
replicas_.size(), std::vector<bool>(replicas_[0].size(), false));
}
AT_ASSERT(expect_sparse_gradients_.size() == replicas_.size());
// Verify that all specified variables require gradients,
// and that they have the same size across replicas.
{
const auto replica_count = replicas_.size();
for (size_t replica_index = 0; replica_index < replica_count;
replica_index++) {
const auto variable_count = replicas_[replica_index].size();
AT_ASSERTM(
replicas_[replica_index].size() == replicas_[0].size(),
"Model replicas must have an equal number of parameters.");
AT_ASSERTM(
expect_sparse_gradients_[replica_index].size() ==
expect_sparse_gradients_[0].size(),
"Expected number of entries in expect_sparse_gradients ",
"to be equal across replicas.");
for (size_t variable_index = 0; variable_index < variable_count;
variable_index++) {
AT_ASSERTM(
replicas_[replica_index][variable_index].requires_grad(),
"Variables must require gradients (have `requires_grad` set).");
AT_ASSERTM(
replicas_[replica_index][variable_index].sizes() ==
replicas_[0][variable_index].sizes(),
"Variables across model replicas must have identical sizes.");
AT_ASSERTM(
replicas_[replica_index][variable_index].dtype() ==
replicas_[0][variable_index].dtype(),
"Variables across model replicas must have identical dtype.");
AT_ASSERTM(
expect_sparse_gradients_[replica_index][variable_index] ==
expect_sparse_gradients_[0][variable_index],
"Expected the same variables across replicas to either both ",
"or neither expect a sparse gradient.");
}
}
}
// Initialize variable bucketing.
// This can be reinitialized later after capturing runtime information.
initialize_buckets(std::move(bucket_indices));
// All variables are expected to have their `grad_fn` set to the gradient
// accumulation function (since they are leafs in the autograd graph).
// We store pointers to these functions such that we can check if they are
// used in an autograd pass. If they are not, we know their grad tensors
// can be marked as ready for reduction.
{
const auto replica_count = replicas_.size();
grad_accumulators_.resize(replica_count);
for (size_t replica_index = 0; replica_index < replica_count;
replica_index++) {
const auto variable_count = replicas_[replica_index].size();
grad_accumulators_[replica_index].resize(variable_count);
for (size_t variable_index = 0; variable_index < variable_count;
variable_index++) {
auto& variable = replicas_[replica_index][variable_index];
const auto index = VariableIndex{
.replica_index = replica_index,
.variable_index = variable_index,
};
// The gradient accumulator function is lazily initialized once.
// Therefore we can use its presence in the autograd graph as
// evidence that the parameter has participated in an iteration.
auto grad_accumulator = torch::autograd::impl::grad_accumulator(variable);
// Hook to execute after the gradient accumulator has executed.
hooks_.emplace_back(
grad_accumulator->add_post_hook(torch::make_unique<LambdaPostHook>(
[=] { this->autograd_hook(index); })),
grad_accumulator);
// Map raw function pointer to replica index and parameter index.
// This is used later on when the autograd graph is traversed
// to check for parameters for which no gradient is computed.
func_[grad_accumulator.get()] = index;
// The gradient accumulator is stored as weak_ptr in the autograd
// metadata of the variable, so we have to keep it alive here for
// the raw pointer to be valid.
grad_accumulators_[replica_index][variable_index] =
std::move(grad_accumulator);
}
}
}
// Initialize backward stats vector.
{
const auto replica_count = replicas_.size();
backward_stats_.resize(replica_count);
const auto variable_count = replicas_[0].size();
std::for_each(
backward_stats_.begin(),
backward_stats_.end(),
[=](std::vector<int64_t>& v) { v.resize(variable_count); });
}
}
Reducer::~Reducer() noexcept(false) {
// Remove all hooks on variables registered by this Reducer. This is necessary
// to make DDP failure recoverable. Otherwise, multiple Reducer instances
// (from recoveries) will add their hooks to the original model, and those
// hooks will try to invoke methods on a deleted Reducer objects.
for (auto& hook : hooks_) {
auto& key = hook.first;
auto& grad_accumulator = hook.second;
AT_ASSERTM(
grad_accumulator->del_post_hook(key),
"Reducer attempts to delete a non-existing hook.");
}
}
void Reducer::mark_variable_ready_dense(VariableIndex index) {
const auto replica_index = index.replica_index;
const auto variable_index = index.variable_index;
const auto& bucket_index = variable_locators_[variable_index];
auto& bucket = buckets_[bucket_index.bucket_index];
auto& replica = bucket.replicas[replica_index];
auto& variable = replica.variables[bucket_index.intra_bucket_index];
const auto offset = replica.offsets[bucket_index.intra_bucket_index];
const auto length = replica.lengths[bucket_index.intra_bucket_index];
// Copy contents of gradient tensor to bucket tensor.
// If the gradient is not set, we assume it wasn't computed
// as part of the current backwards pass, and zero the part
// of the bucket it would otherwise hold.
auto bucket_view = replica.contents.narrow(0, offset, length);
auto& grad = variable.grad();
if (grad.defined()) {
// Ensure that the gradient type matches the bucket type.
AT_ASSERTM(
grad.options().type_equal(bucket_view.options()),
"Expected ",
bucket_view.toString(),
", got ",
grad.toString());
// Assert that the grad tensor and the bucket don't share storage.
// If they did, we could avoid the copy altogether.
// The reason for not doing this is that existing code calls
// `detach_` from `zero_grad`, which is incompatible with views.
AT_ASSERT(!grad.is_alias_of(bucket_view));
AT_ASSERT(grad.device() == bucket_view.device());
AT_ASSERT(grad.numel() == bucket_view.numel());
bucket_view.copy_(grad.view({-1}), /* non_blocking */ true);
} else {
bucket_view.zero_();
}
}
void Reducer::mark_variable_ready_sparse(VariableIndex index) {
const auto replica_index = index.replica_index;
const auto variable_index = index.variable_index;
const auto& bucket_index = variable_locators_[variable_index];
auto& bucket = buckets_[bucket_index.bucket_index];
auto& replica = bucket.replicas[replica_index];
auto& variable = replica.variables[bucket_index.intra_bucket_index];
auto& grad = variable.grad();
AT_ASSERTM(grad.defined(), "Expected sparse gradient to be defined.");
AT_ASSERTM(
grad.options().layout() == c10::kSparse,
"Expected variable to have sparse gradient.");
// Sparse tensors cannot be grouped together with other sparse tensors
// in a single reduction operation like we can for dense tensors.
// Therefore, the `offsets` and `lengths` vectors in the bucket replica
// struct are empty, and there is no pre-existing accumulation tensor.
// Directly assign the sparse tensor to the `contents` field.
replica.contents = grad;
}
// The function `autograd_hook` is called after the gradient for a
// model parameter has been accumulated into its gradient tensor.
// This function is only to be called from the autograd thread.
void Reducer::autograd_hook(VariableIndex index) {
std::lock_guard<std::mutex> lock(this->mutex_);
// Ignore if we don't expect to be called.
// This may be the case if the user wants to accumulate gradients
// for number of iterations before reducing them.
if (!expect_autograd_hooks_) {
return;
}
// If there are model parameters that went unused when computing the model
// output, they won't be part of the autograd graph, and won't receive
// gradients. These parameters are discovered in the `prepare_for_backward`
// function and their indexes stored in the `unused_parameters_` vector.
if (!has_marked_unused_parameters_ && !unused_parameters_.empty()) {
has_marked_unused_parameters_ = true;
for (const auto& unused_index : unused_parameters_) {
mark_variable_ready(unused_index);
}
}
// Finally mark variable for which this function was originally called.
mark_variable_ready(index);
}
void Reducer::mark_variable_ready(VariableIndex index) {
const auto replica_index = index.replica_index;
const auto variable_index = index.variable_index;
AT_ASSERTM(replica_index < replicas_.size(), "Out of range replica index.");
AT_ASSERTM(
variable_index < variable_locators_.size(),
"Out of range variable index.");
backward_stats_[replica_index][variable_index] =
current_time_in_nanos() - backward_stats_base_;
// Any time we mark a variable ready (be it in line due to unused parameters,
// or via an autograd hook), we require a call to the finalize function. If
// this doesn't happen before the next iteration (or call to
// `prepare_for_backwards`), we know something is wrong.
require_finalize_ = true;
const auto& bucket_index = variable_locators_[variable_index];
auto& bucket = buckets_[bucket_index.bucket_index];
auto& replica = bucket.replicas[replica_index];
// Something is wrong if all variables contained in this bucket replica have
// already been marked as ready.
if (replica.pending == 0) {
// Receiving a call to `mark_variable_ready` twice for the same variable
// is only possible if the variable was initially deemed unused, and was
// marked ready from the `prepare_for_backward` function, only to become
// part of the autograd graph at a later point in time.
AT_ASSERT(has_marked_unused_parameters_);
AT_ERROR(
"Expected to mark a variable ready only once. ",
"",
"This error is caused by use of a module parameter outside the ",
"`forward` function. The return value of the `forward` function ",
"is inspected by the distributed data parallel wrapper to figure ",
"out if any of the module's parameters went unused. If this is the ",
"case, it knows they won't receive gradients in a backward pass. ",
"If any of those parameters are then used outside `forward`, this ",
"error condition is triggered. ",
"",
"You can disable unused parameter detection by passing the keyword "
"argument `find_unused_parameters=False` to ",
"`torch.nn.parallel.DistributedDataParallel`.");
}
if (bucket.expect_sparse_gradient) {
mark_variable_ready_sparse(index);
} else {
mark_variable_ready_dense(index);
}
// TODO(@pietern): Make this work for both CPU/CUDA tensors.
// When using CPU tensors we don't need to do this.
// // Record event so that we can wait for all of them.
// auto& event = replica.events[bucket_index.intra_bucket_index];
// event.record();
// Check if this was the final gradient for this bucket.
if (--replica.pending == 0) {
// Prescale bucket contents to turn the global sum into the global average.
replica.contents.div_(process_group_->getSize());
// Kick off reduction if all replicas for this bucket are ready.
if (--bucket.pending == 0) {
mark_bucket_ready(bucket_index.bucket_index);
}
}
// Run finalizer function once the final bucket was marked ready.
if (next_bucket_ == buckets_.size()) {
torch::autograd::Engine::get_default_engine().queue_callback([=] {
std::lock_guard<std::mutex> lock(this->mutex_);
this->finalize_backward();
});
}
}
// Called when the bucket at the specified index is ready to be reduced.
void Reducer::mark_bucket_ready(size_t bucket_index) {
AT_ASSERT(bucket_index >= next_bucket_);
// Buckets are reduced in sequence. Ignore this bucket if
// it's not its turn to be reduced.
if (bucket_index > next_bucket_) {
return;
}
// Keep going, until we either:
// - have kicked off reduction for all buckets, or
// - found a bucket that's not yet ready for reduction.
for (; next_bucket_ < buckets_.size() && buckets_[next_bucket_].pending == 0;
next_bucket_++) {
auto& bucket = buckets_[next_bucket_];
std::vector<at::Tensor> tensors;
tensors.reserve(bucket.replicas.size());
for (const auto& replica : bucket.replicas) {
// TODO(@pietern): Ensure proper synchronization with the CUDA events
// that recorded copies into this contents tensor. If these copies are
// executed on non-default streams, the current stream for the device
// that holds the contents tensor must wait on these events.
//
// As long as autograd uses the default stream for every device,
// these operations are implicitly sequenced, and we don't need to
// do any extra synchronization here.
//
tensors.push_back(replica.contents);
}
bucket.work = process_group_->allreduce(tensors);
}
}
void Reducer::initialize_buckets(
std::vector<std::vector<size_t>> bucket_indices) {
std::lock_guard<std::mutex> lock(mutex_);
// This shouldn't be called if we're expecting autograd hooks to fire.
AT_ASSERTM(
!expect_autograd_hooks_,
"`initialize_buckets` must NOT be called during autograd execution.");
// Clear current bucket assignment.
buckets_.clear();
variable_locators_.clear();
// Ensure we have a bucket index for every variable.
variable_locators_.resize(replicas_[0].size());
// Iterate over buckets.
const auto bucket_count = bucket_indices.size();
const auto replica_count = replicas_.size();
buckets_.reserve(bucket_count);
for (size_t bucket_index = 0; bucket_index < bucket_count; bucket_index++) {
Bucket bucket;
// TODO(@pietern): Validate indices.
// Must be non-empty, unique, and unique across buckets.
AT_ASSERTM(
bucket_indices[bucket_index].size() > 0, "Empty bucket specified.");
// Variables that expect sparse gradients must have their own bucket.
if (bucket_indices[bucket_index].size() == 1) {
const auto variable_index = bucket_indices[bucket_index].front();
bucket.expect_sparse_gradient =
expect_sparse_gradients_[0][variable_index];
} else {
for (const auto variable_index : bucket_indices[bucket_index]) {
AT_ASSERTM(
!expect_sparse_gradients_[0][variable_index],
"Buckets with more than one variable cannot include variables ",
"that expect a sparse gradient.");
}
}
// Iterate over model replicas.
for (size_t replica_index = 0; replica_index < replica_count;
replica_index++) {
BucketReplica replica;
if (bucket.expect_sparse_gradient) {
const auto variable_index = bucket_indices[bucket_index].front();
const auto& variable = replicas_[replica_index][variable_index];
AT_ASSERT(bucket_indices[bucket_index].size() == 1);
replica.variables = {variable};
} else {
at::TensorOptions options;
size_t offset = 0;
// Iterate over bucket variables.
for (const auto variable_index : bucket_indices[bucket_index]) {
AT_ASSERTM(
variable_index < replicas_[replica_index].size(),
"Out of range variable index specified.");
const auto& variable = replicas_[replica_index][variable_index];
if (!options.has_device()) {
options = options.device(variable.device());
} else {
AT_ASSERTM(
variable.device() == options.device(),
"All parameters in a bucket must be ",
"placed on the same device.");
}
if (!options.has_dtype()) {
options = options.dtype(variable.dtype());
} else {
AT_ASSERTM(
variable.dtype() == options.dtype(),
"All parameters in a bucket must have the same dtype.");
}
const auto length = variable.numel();
replica.variables.push_back(variable);
replica.offsets.push_back(offset);
replica.lengths.push_back(length);
offset += length;
}
// Allocate bucket contents tensor.
replica.contents = at::empty({static_cast<long>(offset)}, options);
}
// Add bucket replica to enclosing bucket.
bucket.replicas.push_back(std::move(replica));
}
// Map participating variables to this bucket.
// This is identical across replicas so we only need to do this once.
size_t intra_bucket_index = 0;
for (const auto variable_index : bucket_indices[bucket_index]) {
AT_ASSERTM(
variable_index < variable_locators_.size(),
"Out of range variable index specified.");
variable_locators_[variable_index] = VariableLocator{
.bucket_index = bucket_index,
.intra_bucket_index = intra_bucket_index++,
};
}
buckets_.push_back(std::move(bucket));
}
}
// Traverse the autograd graph starting at the specified output.
// All parameters for which we have a pointer to their gradient accumulation
// functions, but don't show up in the autograd graph will be marked ready for
// for reduction as soon as the first autograd hook is called. This is not
// done immediately because the model output may be ignored, and we only
// want to start performing reductions on `torch.autograd.backward()`.
void Reducer::prepare_for_backward(
const std::vector<torch::autograd::Variable>& outputs) {
std::lock_guard<std::mutex> lock(mutex_);
std::unordered_set<torch::autograd::Node*> seen;
std::vector<torch::autograd::Node*> queue;
// Check that any prior reduction has finished.
// The variable `require_finalize_` is true until all gradients
// have been computed and reduction of all buckets has been kicked off.
if (require_finalize_) {
AT_ERROR(
"Expected to have finished reduction in the prior iteration before ",
"starting a new one. ",
"",
"This error indicates that your module has parameters that were ",
"not used in producing loss. ",
"",
"You can enable unused parameter detection by (1) passing the keyword "
"argument `find_unused_parameters=True` to ",
"`torch.nn.parallel.DistributedDataParallel`; (2) making sure all ",
"`forward` function outputs participate in calculating loss. "
"",
"If you already have done the above two steps, then the distributed ",
"data parallel module wasn't able to locate the output tensors in the ",
"return value of your module's `forward` function. ",
"Please include the loss function and the structure of the return ",
"value of `forward` of your module when reporting this issue (e.g. ",
"list, dict, iterable).");
}
// Reset accounting.
expect_autograd_hooks_ = true;
next_bucket_ = 0;
backward_stats_base_ = current_time_in_nanos();
for (auto& bucket : buckets_) {
for (auto& replica : bucket.replicas) {
replica.pending = replica.variables.size();
}
bucket.pending = bucket.replicas.size();
}
// Reset unused parameter accounting.
has_marked_unused_parameters_ = false;
unused_parameters_.clear();
// If no outputs are specified, we assume that autograd hooks for ALL
// variables will be called, and we don't have to search the autograd graph
// for presence of these hooks.
if (outputs.empty()) {
return;
}
// Seed queue with the grad functions of all outputs.
for (const auto& output : outputs) {
const auto& grad_fn = output.grad_fn();
if (grad_fn) {
queue.push_back(grad_fn.get());
}
}
// Traverse the autograd graph starting at the specified output.
while (!queue.empty()) {
auto fn = queue.back();
queue.pop_back();
for (const auto& edge : fn->next_edges()) {
if (auto next_ptr = edge.function.get()) {
const bool was_inserted = seen.insert(next_ptr).second;
if (was_inserted) {
queue.push_back(next_ptr);
}
}
}
}
// Find accumulator functions that don't show up in this graph.
for (const auto& it : func_) {
// If the accumulator function is present in the graph, we know
// a gradient will be computed for the corresponding parameter.
if (seen.count(it.first) > 0) {
continue;
}
unused_parameters_.push_back(it.second);
}
}
// A bucket with one or more dense tensors needs to be unflattened.
void Reducer::finalize_bucket_dense(Bucket& bucket) {
for (auto& replica : bucket.replicas) {
for (size_t intra_bucket_index = 0;
intra_bucket_index < replica.variables.size();
intra_bucket_index++) {
auto& variable = replica.variables[intra_bucket_index];
const auto offset = replica.offsets[intra_bucket_index];
const auto length = replica.lengths[intra_bucket_index];
auto bucket_view =
replica.contents.narrow(0, offset, length).view(variable.sizes());
auto& grad = variable.grad();
if (!grad.defined()) {
grad = at::empty(bucket_view.sizes(), bucket_view.options());
}
grad.copy_(bucket_view);
}
}
}
// A bucket with a single sparse tensor doesn't need to be unflattened,
// but merely assigned to the corresponding variable its grad.
void Reducer::finalize_bucket_sparse(Bucket& bucket) {
const auto result = bucket.work->result();
AT_ASSERT(bucket.replicas.size() == result.size());
for (size_t i = 0; i < bucket.replicas.size(); i++) {
auto& replica = bucket.replicas[i];
AT_ASSERT(replica.variables.size() == 1);
auto& variable = replica.variables.front();
variable.grad() = result[i];
}
}
void Reducer::finalize_backward() {
// No longer expect autograd hooks to fire after this function returns.
AT_ASSERT(expect_autograd_hooks_);
expect_autograd_hooks_ = false;
// No longer require call to finalize after this function returns.
AT_ASSERT(require_finalize_);
require_finalize_ = false;
// Check that all buckets were completed and had their work kicked off.
AT_ASSERT(next_bucket_ == buckets_.size());
// Wait for asynchronous reduction to complete and unflatten contents.
for (auto& bucket : buckets_) {
AT_ASSERT(bucket.work);
bucket.work->wait();
if (bucket.expect_sparse_gradient) {
finalize_bucket_sparse(bucket);
} else {
finalize_bucket_dense(bucket);
}
}
}
namespace {
// Tensors may be coalesced into buckets. Buckets must contain tensors of
// the same type, on the same device, so a bucket can identified by a
// composite key of a tensor's type identifier and its device.
struct BucketKey {
BucketKey(c10::ScalarType type, c10::Device device)
: type(std::move(type)), device(std::move(device)) {}
const c10::ScalarType type;
const c10::Device device;
// See torch/csrc/utils/hash.h for dispatch code.
static size_t hash(const BucketKey& key) {
return torch::get_hash(key.type, key.device);
}
};
inline bool operator==(const BucketKey& lhs, const BucketKey& rhs) {
return lhs.type == rhs.type && lhs.device == rhs.device;
}
} // namespace
// This is equivalent to take_tensors but returns indices into the
// tensor list argument for bucket assignment. Also, it is aware
// of device placement and will not allow buckets to span devices.
std::vector<std::vector<size_t>> compute_bucket_assignment_by_size(
const std::vector<at::Tensor>& tensors,
const std::vector<size_t>& bucket_size_limits,
const std::vector<bool>& expect_sparse_gradient) {
// Either expect_sparse_gradient is not specified or it has as many elements
// as the vector with tensors.
AT_ASSERT(
expect_sparse_gradient.empty() ||
(tensors.size() == expect_sparse_gradient.size()));
AT_ASSERT(tensors.size() > 0);
std::vector<std::vector<size_t>> result;
result.reserve(tensors.size());
// Keep iterator into the size_limit vector by tensor type and device.
// This is done so that we can use the consecutive bucket limits per type.
std::unordered_map<
BucketKey,
std::vector<size_t>::const_iterator,
torch::hash<BucketKey>>
bucket_size_limit_iterators;
// Local accumulator type for a single bucket.
struct BucketAccumulator {
std::vector<size_t> indices;
size_t size = 0;
};
// Keep vector of indices and size accumulator by tensor type and device.
std::unordered_map<BucketKey, BucketAccumulator, torch::hash<BucketKey>>
buckets;
for (size_t i = 0; i < tensors.size(); i++) {
const auto& tensor = tensors[i];
AT_ASSERTM(!tensor.is_sparse(), "No support for sparse tensors.");
// If we expect a sparse gradient to be produced for this tensor, it cannot
// be grouped together with other gradients and gets its own bucket.
if (!expect_sparse_gradient.empty() && expect_sparse_gradient[i]) {
result.push_back({i});
continue;
}
auto key = BucketKey(tensor.scalar_type(), tensor.device());
auto& bucket = buckets[key];
bucket.indices.push_back(i);
bucket.size += tensor.numel() * tensor.element_size();
// Initialize bucket size limit iterator if necessary.
if (bucket_size_limit_iterators.count(key) == 0) {
bucket_size_limit_iterators[key] = bucket_size_limits.begin();
}
auto& bucket_size_limit_iterator = bucket_size_limit_iterators[key];
const auto bucket_size_limit = *bucket_size_limit_iterator;
if (bucket.size >= bucket_size_limit) {
result.emplace_back(std::move(bucket.indices));
bucket = BucketAccumulator();
// Advance to the next bucket size limit for this type/device.
auto next = bucket_size_limit_iterator + 1;
if (next != bucket_size_limits.end()) {
bucket_size_limit_iterator = next;
}
}
}
// Add remaining buckets.
for (auto& it : buckets) {
auto& bucket = it.second;
if (!bucket.indices.empty()) {
result.emplace_back(std::move(bucket.indices));
}
}
// Sort resulting buckets by the minimum tensor index they include.
// We assume that the order of the tensors is the order in which they are
// used (or the reverse order in which their gradients are produced).
// This sorting step ensures that the buckets are ready in consecutive order.
std::sort(
result.begin(),
result.end(),
[](const std::vector<size_t>& a, const std::vector<size_t>& b) {
const auto amin = std::min_element(a.begin(), a.end());
const auto bmin = std::min_element(b.begin(), b.end());
return *amin < *bmin;
});
return result;
}
} // namespace c10d