mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/10595 Reviewed By: bwasti Differential Revision: D9110099 fbshipit-source-id: e1ed66c7d82b2f9987b7eb9c7f98877a6dbeb902
337 lines
14 KiB
Python
337 lines
14 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from hypothesis import given
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
|
|
from caffe2.python.transformations import Transformer
|
|
from caffe2.python import core, workspace, test_util
|
|
|
|
transformer = Transformer()
|
|
|
|
|
|
def str_compare(a, b, encoding="utf8"):
|
|
if isinstance(a, bytes):
|
|
a = a.decode(encoding)
|
|
if isinstance(b, bytes):
|
|
b = b.decode(encoding)
|
|
return a == b
|
|
|
|
|
|
class TestTransformations(test_util.TestCase):
|
|
def test_transformer_AddNNPACK(self):
|
|
net = core.Net("net")
|
|
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
|
|
net.Relu(["Y"], ["Y2"])
|
|
transformer.AddNNPACK(net)
|
|
assert str_compare(net.Proto().op[0].engine, "NNPACK")
|
|
|
|
def test_transformer_FuseNNPACKConvRelu(self):
|
|
net = core.Net("net")
|
|
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
|
|
net.Relu(["Y"], ["Y2"])
|
|
transformer.AddNNPACK(net) # get the NNPACK engine
|
|
assert str_compare(net.Proto().op[0].engine, "NNPACK")
|
|
transformer.FuseNNPACKConvRelu(net)
|
|
assert len(net.Proto().op) == 1
|
|
has_activation_arg = False
|
|
for arg in net.Proto().op[0].arg:
|
|
if str_compare(arg.name, "activation"):
|
|
assert str_compare(arg.s, "Relu")
|
|
has_activation_arg = True
|
|
assert has_activation_arg
|
|
|
|
def test_noFuseNNPACKConvRelu(self):
|
|
net = core.Net("net")
|
|
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
|
|
net.Relu(["Y"], ["Y2"])
|
|
net.Relu(["Y"], ["Y3"])
|
|
transformer.AddNNPACK(net) # get the NNPACK engine
|
|
assert str_compare(net.Proto().op[0].engine, "NNPACK")
|
|
transformer.FuseNNPACKConvRelu(net)
|
|
assert len(net.Proto().op) == 3
|
|
has_activation_arg = False
|
|
for arg in net.Proto().op[0].arg:
|
|
if str_compare(arg.name, "activation") and str_compare(arg.s, "Relu"):
|
|
has_activation_arg = True
|
|
assert not has_activation_arg
|
|
|
|
def test_transformer_FuseNNPACKConvReluNoInplace(self):
|
|
net = core.Net("net")
|
|
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
|
|
net.Relu(["Y"], ["X"])
|
|
transformer.AddNNPACK(net) # get the NNPACK engine
|
|
assert str_compare(net.Proto().op[0].engine, "NNPACK")
|
|
transformer.FuseNNPACKConvRelu(net)
|
|
assert len(net.Proto().op) == 1
|
|
has_activation_arg = False
|
|
for arg in net.Proto().op[0].arg:
|
|
if str_compare(arg.name, "activation"):
|
|
assert str_compare(arg.s, "Relu")
|
|
has_activation_arg = True
|
|
assert has_activation_arg
|
|
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
|
|
|
|
def test_transformer_FuseNNPACKConvReluInplaceRelu(self):
|
|
net = core.Net("net")
|
|
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
|
|
net.Relu(["Y"], ["Y"])
|
|
transformer.AddNNPACK(net) # get the NNPACK engine
|
|
assert str_compare(net.Proto().op[0].engine, "NNPACK")
|
|
transformer.FuseNNPACKConvRelu(net)
|
|
assert len(net.Proto().op) == 1
|
|
has_activation_arg = False
|
|
for arg in net.Proto().op[0].arg:
|
|
if str_compare(arg.name, "activation"):
|
|
assert str_compare(arg.s, "Relu")
|
|
has_activation_arg = True
|
|
assert has_activation_arg
|
|
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
|
|
|
|
def test_transformer_FuseNNPACKConvReluPingPongNaming(self):
|
|
net = core.Net("net")
|
|
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
|
|
net.Relu(["Y"], ["X"])
|
|
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
|
|
transformer.AddNNPACK(net) # get the NNPACK engine
|
|
assert str_compare(net.Proto().op[0].engine, "NNPACK")
|
|
transformer.FuseNNPACKConvRelu(net)
|
|
assert len(net.Proto().op) == 2
|
|
has_activation_arg = False
|
|
for arg in net.Proto().op[0].arg:
|
|
if str_compare(arg.name, "activation"):
|
|
assert str_compare(arg.s, "Relu")
|
|
has_activation_arg = True
|
|
assert has_activation_arg
|
|
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
|
|
assert net.Proto().op[1].output[0] != net.Proto().op[1].input[0]
|
|
|
|
def test_transformer_FuseNNPACKConvReluFollowedByMultipleInputOp(self):
|
|
net = core.Net("net")
|
|
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
|
|
net.Relu(["Y"], ["Y2"])
|
|
net.Conv(["Y2", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
|
|
net.Relu(["Y"], ["Y2"])
|
|
transformer.AddNNPACK(net) # get the NNPACK engine
|
|
assert str_compare(net.Proto().op[0].engine, "NNPACK")
|
|
transformer.FuseNNPACKConvRelu(net)
|
|
assert len(net.Proto().op) == 2
|
|
has_activation_arg = False
|
|
for arg in net.Proto().op[0].arg:
|
|
if str_compare(arg.name, "activation"):
|
|
assert str_compare(arg.s, "Relu")
|
|
has_activation_arg = True
|
|
assert has_activation_arg
|
|
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
|
|
assert net.Proto().op[1].output[0] != net.Proto().op[1].input[0]
|
|
|
|
def test_transformer_FuseNNPACKConvReluInplaceFollowedByMultipleInputOp(self):
|
|
net = core.Net("net")
|
|
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
|
|
net.Relu(["Y"], ["Y"])
|
|
net.Conv(["Y", "w", "b"], ["Y2"], stride=1, pad=0, kernel=3, order="NCHW")
|
|
net.Relu(["Y2"], ["Y2"])
|
|
transformer.AddNNPACK(net) # get the NNPACK engine
|
|
assert str_compare(net.Proto().op[0].engine, "NNPACK")
|
|
transformer.FuseNNPACKConvRelu(net)
|
|
assert len(net.Proto().op) == 2
|
|
has_activation_arg = False
|
|
for arg in net.Proto().op[0].arg:
|
|
if str_compare(arg.name, "activation"):
|
|
assert str_compare(arg.s, "Relu")
|
|
has_activation_arg = True
|
|
assert has_activation_arg
|
|
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
|
|
assert net.Proto().op[1].output[0] != net.Proto().op[1].input[0]
|
|
|
|
def test_transformer_SinkMaxPool(self):
|
|
net = core.Net("net")
|
|
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
|
|
net.MaxPool(["Y"], ["Y1"], kernel=3)
|
|
net.Relu(["Y1"], ["Y1"])
|
|
transformer.SinkMaxPool(net)
|
|
assert str_compare(net.Proto().op[1].type, "Relu")
|
|
assert str_compare(net.Proto().op[2].type, "MaxPool")
|
|
|
|
@given(
|
|
size=st.integers(7, 10),
|
|
input_channels=st.integers(1, 10),
|
|
seed=st.integers(0, 65535),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
|
|
)
|
|
def test_transformer_FuseConvBN(self, size, input_channels, seed, order, epsilon):
|
|
workspace.ResetWorkspace()
|
|
net = core.Net("net")
|
|
c = input_channels
|
|
h = size
|
|
w = size
|
|
k = 3
|
|
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=k, order=order)
|
|
net.SpatialBN(
|
|
["Y", "scale", "bias", "mean", "var"],
|
|
["Y2"],
|
|
is_test=True,
|
|
order=order,
|
|
epsilon=epsilon,
|
|
)
|
|
|
|
np.random.seed(seed)
|
|
if order == "NCHW":
|
|
workspace.FeedBlob("X", np.random.rand(1, c, h, w).astype(np.float32))
|
|
workspace.FeedBlob("w", np.random.rand(c, c, k, k).astype(np.float32))
|
|
else:
|
|
workspace.FeedBlob("X", np.random.rand(1, h, w, c).astype(np.float32))
|
|
workspace.FeedBlob("w", np.random.rand(c, k, k, c).astype(np.float32))
|
|
workspace.FeedBlob("b", np.random.rand(c).astype(np.float32))
|
|
workspace.FeedBlob("scale", np.random.rand(c).astype(np.float32))
|
|
workspace.FeedBlob("bias", np.random.rand(c).astype(np.float32))
|
|
workspace.FeedBlob("mean", np.random.rand(c).astype(np.float32))
|
|
# This is necessary because 1/sqrt(var) is used and if var is too small
|
|
# we get floating point artifacts that cause test failures
|
|
workspace.FeedBlob("var", np.random.rand(c).astype(np.float32) + 0.5)
|
|
workspace.RunNetOnce(net)
|
|
preTransformOutput = workspace.FetchBlob("Y2").flatten()
|
|
workspace.FeedBlob("Y2", np.zeros((1, 1)))
|
|
transformer.FuseConvBN(net)
|
|
|
|
# Ensure fusion
|
|
assert len(net.Proto().op) == 1
|
|
workspace.RunNetOnce(net)
|
|
postTransformOutput = workspace.FetchBlob("Y2").flatten()
|
|
# Check that there is no numerical difference
|
|
assert np.allclose(
|
|
preTransformOutput,
|
|
postTransformOutput,
|
|
rtol=5e-02,
|
|
atol=1e-03
|
|
)
|
|
|
|
@given(
|
|
size=st.integers(7, 10),
|
|
input_channels=st.integers(1, 10),
|
|
seed=st.integers(0, 65535),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
|
|
)
|
|
def test_transformer_FuseConvBNNoConvBias(self, size, input_channels, seed, order, epsilon):
|
|
workspace.ResetWorkspace()
|
|
net = core.Net("net")
|
|
c = input_channels
|
|
h = size
|
|
w = size
|
|
k = 3
|
|
net.Conv(["X", "w"], ["Y"], stride=1, pad=0, kernel=k, order=order)
|
|
net.SpatialBN(
|
|
["Y", "scale", "bias", "mean", "var"],
|
|
["Y2"],
|
|
is_test=True,
|
|
order=order,
|
|
epsilon=epsilon,
|
|
)
|
|
|
|
np.random.seed(seed)
|
|
if order == "NCHW":
|
|
workspace.FeedBlob("X", np.random.rand(1, c, h, w).astype(np.float32))
|
|
workspace.FeedBlob("w", np.random.rand(c, c, k, k).astype(np.float32))
|
|
else:
|
|
workspace.FeedBlob("X", np.random.rand(1, h, w, c).astype(np.float32))
|
|
workspace.FeedBlob("w", np.random.rand(c, k, k, c).astype(np.float32))
|
|
workspace.FeedBlob("scale", np.random.rand(c).astype(np.float32))
|
|
workspace.FeedBlob("bias", np.random.rand(c).astype(np.float32))
|
|
workspace.FeedBlob("mean", np.random.rand(c).astype(np.float32))
|
|
# This is necessary because 1/sqrt(var) is used and if var is too small
|
|
# we get floating point artifacts that cause test failures
|
|
workspace.FeedBlob("var", np.random.rand(c).astype(np.float32) + 0.5)
|
|
workspace.RunNetOnce(net)
|
|
preTransformOutput = workspace.FetchBlob("Y2").flatten()
|
|
workspace.FeedBlob("Y2", np.zeros((1, 1)))
|
|
transformer.FuseConvBN(net)
|
|
|
|
# Ensure fusion
|
|
assert len(net.Proto().op) == 1
|
|
workspace.RunNetOnce(net)
|
|
postTransformOutput = workspace.FetchBlob("Y2").flatten()
|
|
# Check that there is no numerical difference
|
|
assert np.allclose(
|
|
preTransformOutput,
|
|
postTransformOutput,
|
|
rtol=5e-02,
|
|
atol=1e-03
|
|
)
|
|
|
|
@given(
|
|
size=st.integers(7, 10),
|
|
input_channels=st.integers(1, 10),
|
|
seed=st.integers(0, 65535),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
|
|
)
|
|
def test_transformer_FuseConvBNNoConvBiasDuplicatedName(self, size, input_channels, seed, order, epsilon):
|
|
workspace.ResetWorkspace()
|
|
net = core.Net("net")
|
|
c = input_channels
|
|
h = size
|
|
w = size
|
|
k = 3
|
|
net.Conv(["X", "w"], ["Y"], stride=1, pad=0, kernel=k, order=order)
|
|
net.SpatialBN(
|
|
["Y", "scale", "_bias0", "mean", "var"],
|
|
["Y2"],
|
|
is_test=True,
|
|
order=order,
|
|
epsilon=epsilon,
|
|
)
|
|
|
|
np.random.seed(seed)
|
|
if order == "NCHW":
|
|
workspace.FeedBlob("X", np.random.rand(1, c, h, w).astype(np.float32))
|
|
workspace.FeedBlob("w", np.random.rand(c, c, k, k).astype(np.float32))
|
|
else:
|
|
workspace.FeedBlob("X", np.random.rand(1, h, w, c).astype(np.float32))
|
|
workspace.FeedBlob("w", np.random.rand(c, k, k, c).astype(np.float32))
|
|
workspace.FeedBlob("scale", np.random.rand(c).astype(np.float32))
|
|
workspace.FeedBlob("_bias0", np.random.rand(c).astype(np.float32))
|
|
workspace.FeedBlob("mean", np.random.rand(c).astype(np.float32))
|
|
# This is necessary because 1/sqrt(var) is used and if var is too small
|
|
# we get floating point artifacts that cause test failures
|
|
workspace.FeedBlob("var", np.random.rand(c).astype(np.float32) + 0.5)
|
|
workspace.RunNetOnce(net)
|
|
preTransformOutput = workspace.FetchBlob("Y2").flatten()
|
|
workspace.FeedBlob("Y2", np.zeros((1, 1)))
|
|
transformer.FuseConvBN(net)
|
|
|
|
# Ensure fusion
|
|
assert len(net.Proto().op) == 1
|
|
workspace.RunNetOnce(net)
|
|
postTransformOutput = workspace.FetchBlob("Y2").flatten()
|
|
print("pre")
|
|
print(preTransformOutput)
|
|
print("after")
|
|
print(postTransformOutput)
|
|
# Check that there is no numerical difference
|
|
assert np.allclose(
|
|
preTransformOutput,
|
|
postTransformOutput,
|
|
rtol=5e-02,
|
|
atol=1e-03
|
|
)
|