mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Breakup test_misc so that a test for a file is in test_filename. I think we might want to wait on moving test files into the source directory, since that would involve moving some tests over to the C10 folder, and this goes 99% of the way for test discoverability IMO anyway. I added a file test_utils for common functions invoked in the tests. Pull Request resolved: https://github.com/pytorch/pytorch/pull/18071 Differential Revision: D14485787 Pulled By: eellison fbshipit-source-id: dcb20d1978d490999d435ea20c1d0503413a5c80
168 lines
4.6 KiB
C++
168 lines
4.6 KiB
C++
#pragma once
|
|
|
|
#include <torch/csrc/jit/testing/file_check.h>
|
|
#include "test/cpp/jit/test_base.h"
|
|
#include "torch/csrc/jit/autodiff.h"
|
|
#include "torch/csrc/jit/interpreter.h"
|
|
#include "torch/csrc/jit/symbolic_variable.h"
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace test {
|
|
|
|
using Var = SymbolicVariable;
|
|
using tensor_list = std::vector<at::Tensor>;
|
|
using namespace torch::autograd;
|
|
|
|
// work around the fact that variable_tensor_list doesn't duplicate all
|
|
// of std::vector's constructors.
|
|
// most constructors are never used in the implementation, just in our tests.
|
|
Stack createStack(std::vector<at::Tensor>&& list) {
|
|
return Stack(
|
|
std::make_move_iterator(list.begin()),
|
|
std::make_move_iterator(list.end()));
|
|
}
|
|
|
|
void assertAllClose(const tensor_list& a, const tensor_list& b) {
|
|
ASSERT_EQ(a.size(), b.size());
|
|
for (size_t i = 0; i < a.size(); ++i) {
|
|
ASSERT_TRUE(a[i].is_same_size(b[i]));
|
|
ASSERT_TRUE(a[i].allclose(b[i]));
|
|
}
|
|
}
|
|
|
|
std::vector<at::Tensor> run(
|
|
InterpreterState& interp,
|
|
const std::vector<at::Tensor>& inputs) {
|
|
std::vector<IValue> stack(inputs.begin(), inputs.end());
|
|
interp.run(stack);
|
|
return fmap(stack, [](const IValue& i) { return i.toTensor(); });
|
|
}
|
|
|
|
std::pair<tensor_list, tensor_list> runGradient(
|
|
Gradient& grad_spec,
|
|
tensor_list& tensors_in,
|
|
tensor_list& tensor_grads_in) {
|
|
static const auto as_tensorlist = [](const Stack& stack) {
|
|
return fmap(stack, [](const IValue& i) { return i.toTensor(); });
|
|
};
|
|
Code f_code{grad_spec.f}, df_code{grad_spec.df};
|
|
InterpreterState f_interpreter{f_code}, df_interpreter{df_code};
|
|
|
|
auto f_stack = fmap<IValue>(tensors_in);
|
|
f_interpreter.run(f_stack);
|
|
|
|
Stack df_stack;
|
|
df_stack.insert(
|
|
df_stack.end(), tensor_grads_in.begin(), tensor_grads_in.end());
|
|
for (auto offset : grad_spec.df_input_captured_inputs)
|
|
df_stack.push_back(tensors_in[offset]);
|
|
for (auto offset : grad_spec.df_input_captured_outputs)
|
|
df_stack.push_back(f_stack[offset]);
|
|
df_interpreter.run(df_stack);
|
|
|
|
// Outputs of f needs to be sliced
|
|
f_stack.erase(f_stack.begin() + grad_spec.f_real_outputs, f_stack.end());
|
|
return std::make_pair(as_tensorlist(f_stack), as_tensorlist(df_stack));
|
|
}
|
|
|
|
std::tuple<Var, Var> build_lstm_body(
|
|
Graph& g,
|
|
Var input,
|
|
Var hx,
|
|
Var cx,
|
|
Var w_ih,
|
|
Var w_hh) {
|
|
auto gates = input.mm(w_ih);
|
|
gates = gates + hx.mm(w_hh);
|
|
auto outputs = gates.chunk(4, 1);
|
|
auto ingate = outputs[0];
|
|
auto forgetgate = outputs[1];
|
|
auto cellgate = outputs[2];
|
|
auto outgate = outputs[3];
|
|
ingate = ingate.sigmoid();
|
|
outgate = outgate.sigmoid();
|
|
cellgate = cellgate.tanh();
|
|
forgetgate = forgetgate.sigmoid();
|
|
|
|
auto cy = forgetgate * cx;
|
|
cy = cy + ingate * cellgate;
|
|
auto hy = outgate * cy.tanh();
|
|
|
|
return std::make_tuple(hy, cy);
|
|
}
|
|
|
|
std::shared_ptr<Graph> build_lstm() {
|
|
auto r = std::make_shared<Graph>();
|
|
auto& g = *r;
|
|
Value* input = g.addInput();
|
|
Value* hx = g.addInput();
|
|
Value* cx = g.addInput();
|
|
Value* w_ih = g.addInput();
|
|
Value* w_hh = g.addInput();
|
|
|
|
Var hy;
|
|
Var cy;
|
|
std::tie(hy, cy) = build_lstm_body(g, input, hx, cx, w_ih, w_hh);
|
|
|
|
hy.addAsOutput();
|
|
cy.addAsOutput();
|
|
g.lint();
|
|
|
|
return r;
|
|
}
|
|
|
|
at::Tensor t_use(at::Tensor x) {
|
|
return x;
|
|
}
|
|
at::Tensor t_def(at::Tensor x) {
|
|
return x.t();
|
|
}
|
|
|
|
// given the difference of output vs expected tensor, check whether the
|
|
// difference is within a relative tolerance range. This is a standard way of
|
|
// matching tensor values upto certain precision
|
|
bool checkRtol(const at::Tensor& diff, const std::vector<at::Tensor> inputs) {
|
|
double maxValue = 0.0;
|
|
for (auto& tensor : inputs) {
|
|
maxValue = fmax(tensor.abs().max().item<float>(), maxValue);
|
|
}
|
|
return diff.abs().max().item<float>() < 2e-6 * maxValue;
|
|
}
|
|
bool almostEqual(const at::Tensor& a, const at::Tensor& b) {
|
|
return checkRtol(a - b, {a, b});
|
|
}
|
|
|
|
bool exactlyEqual(const at::Tensor& a, const at::Tensor& b) {
|
|
return (a - b).abs().max().item<float>() == 0.f;
|
|
}
|
|
|
|
std::pair<at::Tensor, at::Tensor> lstm(
|
|
at::Tensor input,
|
|
at::Tensor hx,
|
|
at::Tensor cx,
|
|
at::Tensor w_ih,
|
|
at::Tensor w_hh) {
|
|
auto gates = input.mm(t_use(w_ih)) + hx.mm(t_use(w_hh));
|
|
|
|
auto chunked_gates = gates.chunk(4, 1);
|
|
auto ingate = chunked_gates[0];
|
|
auto forgetgate = chunked_gates[1];
|
|
auto cellgate = chunked_gates[2];
|
|
auto outgate = chunked_gates[3];
|
|
|
|
ingate = ingate.sigmoid();
|
|
outgate = outgate.sigmoid();
|
|
cellgate = cellgate.tanh();
|
|
forgetgate = forgetgate.sigmoid();
|
|
|
|
auto cy = (forgetgate * cx) + (ingate * cellgate);
|
|
auto hy = outgate * cy.tanh();
|
|
|
|
return {hy, cy};
|
|
}
|
|
|
|
} // namespace test
|
|
} // namespace jit
|
|
} // namespace torch
|