pytorch/torch/csrc/jit/tensorexpr/ir.cpp
Mikhail Zolotukhin f3743f097f [TensorExpr] Nuke tensorexpr::ScalarType and instead use c10::ScalarType directly. (#56825)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/56825

Test Plan: Imported from OSS

Reviewed By: bertmaher

Differential Revision: D27977461

Pulled By: ZolotukhinM

fbshipit-source-id: f8a72938ba395e426e2d9449627113abb1c9c34f
2021-04-26 01:51:21 -07:00

226 lines
5.8 KiB
C++

#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
namespace torch {
namespace jit {
namespace tensorexpr {
static Dtype ChooseDtype(const Dtype& buffer_dtype, const Dtype& index_dtype) {
return Dtype(buffer_dtype, index_dtype.lanes());
}
static Dtype dtypeOfIndices(const std::vector<const Expr*>& indices) {
if (!indices.size()) {
// Return something so we can handle scalar buffers.
return kInt;
}
return indices.at(0)->dtype();
}
void castIndicesToInts(std::vector<const Expr*>& indices) {
// Cast all indices to Int
// TODO: Should we use int64 here?
auto index_dtype = ScalarType::Int;
for (auto& index : indices) {
const Dtype& dt = index->dtype();
if (c10::isIntegralType(dt.scalar_type(), true) &&
dt.scalar_type() != index_dtype) {
index = new Cast(Dtype(index_dtype, dt.lanes()), index);
}
}
}
Load::Load(Dtype dtype, const Buf* buf, std::vector<const Expr*> indices)
: ExprNodeBase(dtype), buf_(buf), indices_(std::move(indices)) {
castIndicesToInts(indices_);
}
Load::Load(const Buf* buf, const std::vector<const Expr*>& indices)
: Load(ChooseDtype(buf->dtype(), dtypeOfIndices(indices)), buf, indices) {}
ExprHandle Load::make(
Dtype dtype,
const BufHandle& buf,
const std::vector<ExprHandle>& indices) {
return ExprHandle(
new Load(dtype, buf.node(), ExprHandleVectorToExprVector(indices)));
}
ExprHandle Load::make(
const BufHandle& buf,
const std::vector<ExprHandle>& indices) {
return Load::make(buf.dtype(), buf, indices);
}
Store::Store(
const Buf* buf,
std::vector<const Expr*> indices,
const Expr* value)
: buf_(buf), indices_(std::move(indices)), value_(value) {
castIndicesToInts(indices_);
}
Store* Store::make(
const BufHandle& buf,
const std::vector<ExprHandle>& indices,
const ExprHandle& value) {
return new Store(
buf.node(), ExprHandleVectorToExprVector(indices), value.node());
}
const Expr* flatten_index(
const std::vector<const Expr*>& dims,
const std::vector<const Expr*>& indices) {
// Handle already flattened indices first
if (indices.size() == 1) {
return indices[0];
}
size_t ndim = dims.size();
if (ndim != indices.size()) {
throw malformed_input("dimensions mismatch in flatten_index");
}
if (ndim == 0) {
return new IntImm(0);
}
std::vector<const Expr*> strides(ndim);
// stride[i] = stride[i+1]*dims[i+1], i < ndim-1
// stride[i] = 1, i = ndim-1
strides[ndim - 1] = new IntImm(1);
for (size_t i = 1; i < ndim; i++) {
strides[ndim - 1 - i] = new Mul(strides[ndim - i], dims[ndim - i]);
}
const Expr* total_index = new IntImm(0);
for (size_t i = 0; i < ndim; i++) {
total_index = new Add(total_index, new Mul(indices[i], strides[i]));
}
return total_index;
}
Dtype Intrinsics::IntrinsicsDtype(IntrinsicsOp op_type, Dtype dt1) {
if (op_type == kIsNan) {
return dt1.cloneWithScalarType(ScalarType::Int);
}
// TODO: check the op_type and make a real decision
return dt1;
}
Dtype Intrinsics::IntrinsicsDtype(IntrinsicsOp op_type, Dtype dt1, Dtype dt2) {
// TODO: check the op_type and make a real decision
return dt1;
}
Dtype Intrinsics::IntrinsicsDtype(
IntrinsicsOp op_type,
const std::vector<const Expr*>& params) {
// TODO: check the op_type and make a real decision
// Doesnt this fail with kRand?
if (params.size() == 0) {
throw malformed_input("invalid params in Intrinsics");
} else if (params.size() == 1) {
return IntrinsicsDtype(op_type, params[0]->dtype());
} else if (params.size() == 2) {
return IntrinsicsDtype(op_type, params[0]->dtype(), params[1]->dtype());
}
return params[0]->dtype();
}
int Intrinsics::OpArgCount(IntrinsicsOp op_type) {
switch (op_type) {
case kSin:
case kCos:
case kTan:
case kAsin:
case kAcos:
case kAtan:
case kSinh:
case kCosh:
case kTanh:
case kSigmoid:
case kExp:
case kExpm1:
case kAbs:
case kLog:
case kLog2:
case kLog10:
case kLog1p:
case kErf:
case kErfc:
case kSqrt:
case kRsqrt:
case kCeil:
case kFloor:
case kRound:
case kTrunc:
case kFrac:
case kLgamma:
case kIsNan:
return 1;
case kRand:
return 0;
case kAtan2:
case kFmod:
case kPow:
case kRemainder:
return 2;
default:
throw std::runtime_error("invalid op_type: " + c10::to_string(op_type));
}
}
ExternalCall* ExternalCall::make(
BufHandle buf,
const std::string& func_name,
const std::vector<BufHandle>& buf_args,
const std::vector<ExprHandle>& args) {
std::vector<const Buf*> buf_arg_nodes;
buf_arg_nodes.reserve(buf_args.size());
for (const BufHandle& buf_arg : buf_args) {
buf_arg_nodes.push_back(buf_arg.node());
}
return new ExternalCall(
buf.node(), func_name, buf_arg_nodes, ExprHandleVectorToExprVector(args));
}
std::vector<const Expr*> ExprHandleVectorToExprVector(
const std::vector<ExprHandle>& v) {
std::vector<const Expr*> result(v.size());
for (size_t i = 0; i < v.size(); i++) {
result[i] = v[i].node();
}
return result;
}
std::vector<ExprHandle> ExprVectorToExprHandleVector(
const std::vector<const Expr*>& v) {
std::vector<ExprHandle> result(v.size());
for (size_t i = 0; i < v.size(); i++) {
result[i] = ExprHandle(v[i]);
}
return result;
}
std::vector<const Var*> VarHandleVectorToVarVector(
const std::vector<VarHandle>& v) {
std::vector<const Var*> result(v.size());
for (size_t i = 0; i < v.size(); i++) {
result[i] = v[i].node();
}
return result;
}
std::vector<VarHandle> VarVectorToVarHandleVector(
const std::vector<const Var*>& v) {
std::vector<VarHandle> result(v.size());
for (size_t i = 0; i < v.size(); i++) {
result[i] = VarHandle(v[i]);
}
return result;
}
} // namespace tensorexpr
} // namespace jit
} // namespace torch