pytorch/docs/source/cudnn_persistent_rnn.rst
Natalia Gimelshein 134b5d62e8 don't copy weight gradients in rnn (#12600)
Summary:
This PR gets rid of unnecessary copy of weight gradients in cudnn rnn. Also removes unnecessary check for  input size when deciding whether to use persistent rnn, and adds doc string explaining when persistent rnn can be used. cc ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12600

Differential Revision: D10359981

Pulled By: soumith

fbshipit-source-id: 0fce11b527d543fabf21e6e9213fb2879853d7fb
2018-10-12 13:34:10 -07:00

10 lines
310 B
ReStructuredText

.. note::
If the following conditions are satisfied:
1) cudnn is enabled,
2) input data is on the GPU
3) input data has dtype ``torch.float16``
4) V100 GPU is used,
5) input data is not in ``PackedSequence`` format
persistent algorithm can be selected to improve performance.