pytorch/torch/_subclasses/fake_tensor.py
Edward Z. Yang f19e07b056 Memoize local_scalar_dense calls, refactor all memos (#125623)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125623
Approved by: https://github.com/eellison
2024-05-11 21:12:35 +00:00

2012 lines
77 KiB
Python

import contextlib
import functools
import logging
import os
import traceback
import weakref
from collections import defaultdict
from dataclasses import dataclass
from typing import (
Any,
Callable,
cast,
Dict,
List,
Optional,
Tuple,
Type,
TYPE_CHECKING,
TypeVar,
Union,
)
from weakref import ReferenceType
import torch
import torch._custom_op
import torch._logging
from torch._C._functorch import is_functorch_wrapped_tensor
from torch._guards import Source
from torch._ops import OpOverload
from torch._prims_common import suggest_memory_format
from torch._subclasses.meta_utils import (
assert_eq,
assert_metadata_eq,
is_sparse_any,
is_sparse_compressed,
MetaConverter,
)
from torch._utils import render_call
from torch.fx.operator_schemas import normalize_function
from torch.multiprocessing.reductions import StorageWeakRef
from torch.overrides import TorchFunctionMode
from torch.utils._mode_utils import no_dispatch
from torch.utils._python_dispatch import (
is_traceable_wrapper_subclass,
TorchDispatchMode,
)
from torch.utils._pytree import PyTree, tree_map, tree_map_
from torch.utils._stats import count
from torch.utils._traceback import CapturedTraceback
if TYPE_CHECKING:
from torch.fx.experimental.symbolic_shapes import ShapeEnv
from torch.types import _bool
class _Unassigned:
pass
_UNASSIGNED = _Unassigned()
DimList = List
log = logging.getLogger(__name__)
# TODO: Hack to unblock https://github.com/pytorch/pytorch/pull/108186
# Proper fix tracked by https://github.com/pytorch/pytorch/issues/120105
try:
not_implemented_log = torch._logging.getArtifactLogger(__name__, "not_implemented")
except ValueError as e:
if "'not_implemented' not registered" in str(e):
import logging as not_implemented_log
else:
raise e
pytree = torch.utils._pytree
T = TypeVar("T")
TensorWeakRef = Any
aten = torch._ops.ops.aten
CONSTANT_NUMEL_LIMIT = 1
RECURSION_COUNT = 0
# Small helper that increments recursion count, and
# resets it when the object goes out of scope. Useful
# if you don't want to increase indentation which is
# what a context manager would do.
class IncrementRecursionCount:
def __init__(self):
global RECURSION_COUNT
RECURSION_COUNT += 1
def __del__(self):
global RECURSION_COUNT
RECURSION_COUNT -= 1
@dataclass
class UnsupportedFakeTensorException(RuntimeError):
reason: str
@dataclass
class DynamicOutputShapeException(RuntimeError):
func: OpOverload
@dataclass
class DataDependentOutputException(RuntimeError):
func: OpOverload
@dataclass
class UnsupportedOperatorException(RuntimeError):
func: OpOverload
def ordered_set(*items):
return dict.fromkeys(items, True)
@contextlib.contextmanager
def unset_fake_temporarily():
old = torch._C._unset_dispatch_mode(torch._C._TorchDispatchModeKey.FAKE)
try:
yield old
finally:
if old is not None:
torch._C._set_dispatch_mode(old)
def is_fake(x):
if isinstance(x, FakeTensor):
return True
if is_traceable_wrapper_subclass(x):
attrs, _ = type(x).__tensor_flatten__(x)
flattened_tensors = [getattr(x, attr) for attr in attrs]
# need to recurse because we could have nested subclasses
all_fake = all(is_fake(x) for x in flattened_tensors)
any_fake = any(is_fake(x) for x in flattened_tensors)
assert all_fake == any_fake, "got mixed fake and real tensors!"
return all_fake
elif isinstance(x, torch.Tensor) and torch._is_functional_tensor(x):
reapply_views = torch._C._functionalization_reapply_views_tls()
unwrapped = torch._C._functorch._unwrap_functional_tensor(x, reapply_views)
return is_fake(unwrapped)
elif isinstance(x, torch.Tensor) and is_functorch_wrapped_tensor(x):
unwrapped = torch._C._functorch.get_unwrapped(x)
return is_fake(unwrapped)
return False
def maybe_get_fake_mode(t):
if isinstance(t, FakeTensor):
return t.fake_mode
if is_traceable_wrapper_subclass(t):
inner_tensor_names, _ = t.__tensor_flatten__()
modes = [
maybe_get_fake_mode(getattr(t, t_name)) for t_name in inner_tensor_names
]
m = modes[0]
assert all(m is x for x in modes)
return m
elif isinstance(t, torch.Tensor) and torch._is_functional_tensor(t):
reapply_views = torch._C._functionalization_reapply_views_tls()
unwrapped = torch._C._functorch._unwrap_functional_tensor(t, reapply_views)
return maybe_get_fake_mode(unwrapped)
elif isinstance(t, torch.Tensor) and is_functorch_wrapped_tensor(t):
unwrapped = torch._C._functorch.get_unwrapped(t)
return maybe_get_fake_mode(unwrapped)
return None
@functools.lru_cache(None)
def get_schema_info(func):
return torch._C._SchemaInfo(func._schema) # type: ignore[attr-defined]
# many of the decompositions registered to torch/_prims do not at the moment model
# aliasing or strides, so as an incremental step, just enable the decompositions in
# torch/_decomp/decompositions.py.
# decomps are used for aot autograd tracing so we would like to unify on their
# implementation and add additional testing to them
@functools.lru_cache(None)
def torch_decomp_decompositions(func):
from torch._decomp import decomposition_table
decompositions = torch._decomp.decompositions
# Note that the function in the decomposition table might be
# different from the one in the module because of the difference
# in out handling in aten API and torch public API
return decomposition_table[func].__module__.startswith(
"torch._decomp"
) and decomposition_table[func].__name__ in dir(decompositions)
def tree_flatten_only(ty: Type[T], tree: PyTree):
flat_vals = pytree.tree_leaves(tree)
return [elem for elem in flat_vals if isinstance(elem, ty)]
# Similar to `MetaConverter`, this is a class for converting
# multiple tensors into fake tensors which share the same view/storage
# structure. Like `MetaConverter`, it uses `WeakIdRef` to
# hold a weak reference for all memoized tensors.
class FakeTensorConverter:
@property
def tensor_memo(self):
return self.meta_converter.tensor_memo
meta_converter: MetaConverter
constant_storage_mapping: Dict[StorageWeakRef, List[ReferenceType]]
def __init__(self):
self.meta_converter = MetaConverter()
# map from to storage to corresponding constant tensors
self.constant_storage_mapping = {}
def add_constant_storage_mapping(self, fake_tensor):
# when you have a constant, aliased tensor:
# const_tensor.add_(torch.rand([1]))
# all aliases of it must become no longer const
assert isinstance(fake_tensor, FakeTensor) and fake_tensor.constant is not None
weak_st = StorageWeakRef(fake_tensor.constant._typed_storage())
# we need a map from a weak storage to all of its corresponding
# constant tensors. python doesn't have the weak value equivalent
# of defaultdict(list), so we are using a WeakValueDictionary as one
if weak_st not in self.constant_storage_mapping:
self.constant_storage_mapping[weak_st] = []
self.constant_storage_mapping[weak_st].append(weakref.ref(fake_tensor))
def invalidate_constant_aliases(self, tensor):
assert not isinstance(tensor, FakeTensor)
weak_st = StorageWeakRef(tensor._typed_storage())
if weak_st not in self.constant_storage_mapping:
return
for weak_tensor_ref in self.constant_storage_mapping[weak_st]:
ten = weak_tensor_ref()
if ten is not None:
ten._fix_weakref()
ten.constant = None
del self.constant_storage_mapping[weak_st]
def _get_memo(self, t):
tid = self.meta_converter.describer.lookup_tensor.get(t)
if tid is None:
return None
return self.tensor_memo.get(tid)
def set_tensor_memo(self, t, v):
tid = self.meta_converter.describer.get_tensor_id(t)
self.meta_converter.tensor_memo[tid] = v
# You can have a real tensor that you need to convert into a fake tensor.
# If you have a meta tensor already, call from_meta_and_device.
#
# You're allowed to pass a meta tensor to be turned into a fake
# tensor; although an odd thing to do, this can occur if you're doing
# cross ref testing and the inner test is already operating on meta tensors.
def from_real_tensor(
self,
fake_mode,
t,
make_constant=False,
shape_env=None,
*,
source=None,
symbolic_context=None,
):
# see note [Tensor Fakification and Symbol Caching]
if not symbolic_context and not source and shape_env:
if tracing_context := torch._guards.TracingContext.try_get():
if t in tracing_context.tensor_to_context:
symbolic_context = tracing_context.tensor_to_context[t]
source = symbolic_context.tensor_source
maybe_memo = self._get_memo(t)
if maybe_memo is not None:
return maybe_memo
existing_device = t.device
# not yet supported in metatensors
if t.is_quantized:
raise UnsupportedFakeTensorException("quantized nyi in meta tensors")
if type(t) is torch.nn.Parameter:
assert not make_constant
def mk_fake_tensor(make_meta_t):
from torch._dynamo.utils import clone_input
# NB: don't use in_kernel_invocation_manager. to
# ensure FakeTensor can internally do constant computation
# as necessary. Invocation manager is "more correct" as
# it works for more operators in make_meta_t, but
# invariant is that make_meta_t only calls factories
# for which it is not strictly necessary to use the
# invocation manager (I think!)
with no_dispatch():
return FakeTensor(
fake_mode,
make_meta_t(),
existing_device,
# TODO: callback might be used in recursive contexts, in
# which case using t is wrong! BUG!
constant=t if make_constant else None,
# TODO: This won't preserve aliasing relationships, so if
# there is mutation you won't see it reflect elsewhere.
# This is fine because propagate_real_tensors isn't
# intended to give you exact results and some inaccuracy
# is OK, although if its use case expands we would want to
# do something similar to meta converter, but poking in
# real tensors at the storage cloning phase
real_tensor=(
(t if make_constant else clone_input(t))
if fake_mode.propagate_real_tensors
else None
),
)
out = self.meta_converter(
t,
shape_env=shape_env,
callback=mk_fake_tensor,
source=source,
symbolic_context=symbolic_context,
)
if out is NotImplemented:
raise UnsupportedFakeTensorException("meta converter nyi")
if make_constant:
self.add_constant_storage_mapping(out)
# NB: meta_converter set the memo
return out
# If you specify the device, it MUST be a meta tensor.
def from_meta_and_device(self, fake_mode, t, device):
assert (
t.device.type == "meta"
), f"tensor's device must be `meta`, got {t.device.type} instead"
# This is a bit abusive (this is not the "real" tensor) but whatever,
# the meta tensor should be fresh so there's no way to get it wrong
maybe_memo = self._get_memo(t)
if maybe_memo is not None:
return maybe_memo
out = FakeTensor(fake_mode, t, device)
self.set_tensor_memo(t, out)
return out
@functools.lru_cache(None)
def init_cuda_context():
# Backward will error with cuda Fake Tensors if no cuda tensors have been initialized first
if torch.cuda.is_available():
torch.empty(1, device="cuda") if torch.version.hip is None else torch.zeros(
1, device="cuda"
)
@contextlib.contextmanager
def in_kernel_invocation_manager(fake_mode):
# See: note [Fake Tensor Dispatch Keys]
prev_in_kernel = fake_mode.in_kernel_invocation
meta_in_tls = torch._C._meta_in_tls_dispatch_include()
assert meta_in_tls == prev_in_kernel, f"{meta_in_tls}, {prev_in_kernel}"
with torch._C._DisableTorchDispatch():
fake_mode.in_kernel_invocation = True
# Unfortunately _set_meta_in_tls_dispatch_include(False) can leave
# `Dense` turned on (because it's implied by `Meta`)
with torch._C._PreserveDispatchKeyGuard():
torch._C._set_meta_in_tls_dispatch_include(True)
try:
yield
finally:
fake_mode.in_kernel_invocation = prev_in_kernel
# torch._C._set_meta_in_tls_dispatch_include(prev_in_kernel)
# Return if the function allows Python numbers to bind to Tensors
def should_allow_numbers_as_tensors(func: OpOverload):
return torch._C._should_allow_numbers_as_tensors(
func.name().split("::")[-1].split(".")[0]
)
class FakeTensorConfig:
debug = os.environ.get("TORCH_FAKE_TENSOR_DEBUG", "0") == "1"
# This memorizes the unbacked SymInt representing quantities like the number
# of nonzero elements in this tensor. There is one instance of the descriptor
# per particular quantity to memoize.
#
# Memoization is helpful if you do something like x[mask] and y[mask];
# mask.nonzero() gets repeatedly called and should give a consistent unbacked
# SymInt. It needs to be invalidated in the same way constant is.
#
# Making this a descriptor may seem overly fancy, but actually it's the most
# convenient way to make sure we have access to FakeTensor during access,
# which is required for testing version counter and epoch validity
class UnbackedMemoDescriptor:
_name: str
def __set_name__(self, owner, name):
self._name = name
def _memo(self, obj):
return f"_{self._name}"
def _memo_vc(self, obj):
return f"_{self._name}_vc"
# When we retrace, we need to invalidate all the memos so that we can
# accurately identify the first time unbacked SymInts are allocated.
# This is only relevant for inputs; for intermediates, they will get fresh
# fake tensors so you won't have a memo anyway
def _memo_epoch(self, obj):
return f"_{self._name}_epoch"
def __get__(self, obj: "FakeTensor", objtype=None):
if (r := getattr(obj, self._memo(obj))) is None:
return None
# Version counter based tracking isn't 100% sound but it's close
# enough
if (
getattr(obj, self._memo_vc(obj)) != obj._version
or getattr(obj, self._memo_epoch(obj)) != obj.fake_mode.epoch
):
setattr(obj, self._memo(obj), None)
return None
return r
def __set__(self, obj, value):
if value is None:
setattr(obj, self._memo(obj), None)
setattr(obj, self._memo_vc(obj), None)
setattr(obj, self._memo_epoch(obj), None)
elif not torch.is_inference_mode_enabled():
setattr(obj, self._memo(obj), value)
setattr(obj, self._memo_vc(obj), obj._version)
setattr(obj, self._memo_epoch(obj), obj.fake_mode.epoch)
class FakeTensor(torch.Tensor):
"""
Meta tensors give you the ability to run PyTorch code without having to
actually do computation through tensors allocated on a `meta` device.
Because the device is `meta`, meta tensors do not model device propagation.
FakeTensor extends MetaTensors to also carry an additional `fake_device`
which tracks devices that would have been used.
"""
fake_device: torch.device
fake_mode: "FakeTensorMode"
constant: Optional[torch.Tensor]
real_tensor: Optional[torch.Tensor]
# TODO: Generalize this as needed, e.g., into a trie of memos, if
# you do something like x[0].item() (x[0] is fresh each time, so
# memo mechanism here won't work)
nonzero_memo = UnbackedMemoDescriptor()
item_memo = UnbackedMemoDescriptor()
unique_memo = UnbackedMemoDescriptor()
# Indicates to our torch_dispatch dispatching infra that
# this is an "infra" mode with lower dispatching precedence.
_mode_key = torch._C._TorchDispatchModeKey.FAKE
@property
def device(self):
if self.fake_mode.in_kernel_invocation:
return torch.device("meta")
else:
return self.fake_device
# Note: [Fake Tensor Dispatch Keys]
# In order to model the behavior of device-specific autocast
# and autograd logic, we update the dispatch keys of FakeTensors
# to reflect their fake device. This includes the BackendComponent
# (DispatchKey::Meta -> DispatchKey::CUDA), and also the BackendComponent
# related Autocast and Autograd keys. __torch__dispatch__ sits below
# Autocast and Autograd, and is only invoked when we are at the
# kernel for the BackendComponent. Then, we add Meta to the
# thread-local dispatch include set to hit the meta kernel
# instead of the kernel of the BackendComponent for the fake device.
# The `device_for_backend_keys` does that below
# NOTE: this probably will not do the right thing for backends
# that have dispatch keys which are higher than the "meta" key:
# https://github.com/pytorch/pytorch/blob/main/c10/core/DispatchKey.h#L189
# We don't support named tensors; graph break
@property
def names(self):
raise UnsupportedFakeTensorException(
"torch.compile doesn't support named tensors"
)
@staticmethod
def __new__(cls, fake_mode, elem, device, constant=None, real_tensor=None):
self = torch.Tensor._make_subclass(
cls,
elem,
elem.requires_grad,
dispatch_device=True,
device_for_backend_keys=device,
)
if not fake_mode._allow_unsafe_data_ptr_access:
torch._C._set_throw_on_mutable_data_ptr(self)
else:
torch._C._set_warn_deprecated_on_mutable_data_ptr(self)
assert elem.device.type == "meta", elem.device.type
device = device if isinstance(device, torch.device) else torch.device(device)
# NB: it is fine, if a little confusing, for device to be meta
# (we are faking a meta tensor in that case). However, it often
# indicates some sort of confusion (e.g., you accidentally passed
# in a meta tensor when you should have passed in the real tensor).
# So by default we disallow meta, and if you are working in a situation
# where it is helpful (e.g., crossref testing) you can turn it back
# on
if not fake_mode.allow_meta:
assert device.type != "meta"
# normalize device.
if device.type == "cuda":
init_cuda_context()
if (
device.type
in ["cuda", "hpu", "xpu", torch._C._get_privateuse1_backend_name()]
and device.index is None
):
if getattr(torch, device.type).is_initialized():
device = torch.device(
f"{device.type}:{getattr(torch, device.type).current_device()}"
)
else:
device = torch.device(f"{device.type}:0")
self.fake_device = device # type: ignore[attr-defined]
self.fake_mode = fake_mode # type: ignore[attr-defined]
self.constant = constant # type: ignore[attr-defined]
assert not isinstance(real_tensor, FakeTensor)
self.real_tensor = real_tensor # type: ignore[attr-defined]
self.nonzero_memo = None
self.item_memo = None
self.unique_memo = None
if FakeTensorConfig.debug:
self._debug_trace = CapturedTraceback.extract() # type: ignore[attr-defined]
return self
# In some circumstances, a conventional torch.Tensor constructor
# will get rewritten to call into FakeTensor. We must provide an
# __init__ method that can accept the Python interpreters initialization
# in such a situation; we must also be able to handle direct fake
# tensor construction via FakeTensor().
#
# In particular, the __init__ call will look funny in the following case:
#
# with FakeTensorMode():
# x = torch.Tensor([1, 2, 3])
#
# this desugars into:
#
# with FakeTensorMode():
# x = torch.Tensor.__new__([1, 2, 3])
# # NB: x is a fake tensor, because of the mode!
# x.__init__([1, 2, 3]) # not the normal fake tensor args!
#
def __init__(self, *args, **kwargs):
super().__init__()
@staticmethod
def from_tensor(t, fake_mode):
return fake_mode.from_tensor(t)
@classmethod
@count
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
# need to handle here to avoid infinite recursion
# see [in_kernel_invocation]
if func == torch.ops.prim.device.default:
assert len(args) == 1 and isinstance(args[0], FakeTensor)
if args[0].fake_mode.in_kernel_invocation:
return torch.device("meta")
else:
return args[0].fake_device
# this handler must be done inside FakeTensor subclass, not mode, because
# we can end up dispatching here when we have a fake tensor with
# symbolic sizes running under in_kernel_invocation_manager.
# The subclass is asked to handle this query because size (not
# sym_size) was called, but we are unable to serve it directly because
# there are symbolic sizes in the class. The use of
# in_kernel_invocation_manager means it's incorrect to activate a
# mode to actually handle this (this caused
# https://github.com/pytorch/pytorch/issues/122772).
if handler := _DISPATCH_META_HANDLERS.get(func):
return handler(args)
# Because fake mode can return NotImplemented (if it sees a subclass
# it doesn't know how to deal with), this test here is important
# because the next dispatch after a fake mode will attempt to use
# subclasses of tensors to dispatch, and any FakeTensor arguments
# will be considered eligible.
unrecognized_types = [
t for t in types if not issubclass(t, FakeTensor) and t is not torch.Tensor
]
if unrecognized_types:
not_implemented_log.debug(
"FakeTensor unrecognized subclass(es): %s", unrecognized_types
)
return NotImplemented
fake_mode = None
for arg in pytree.arg_tree_leaves(*args, **kwargs):
if isinstance(arg, FakeTensor):
fake_mode = arg.fake_mode
break
assert fake_mode is not None
# If the fake mode is already active, don't try to reapply it!
# NotImplemented is the right thing to return here, because the
# typical situation this can occur is if ProxyTensorMode returned a
# NotImplemented because of a not implemented subclass; we may have
# unluckily attempted to hit FakeTensor's dispatch first,
# NotImplemented lets us keep chaining until we find the actual
# subclass
maybe_cur_fake_mode = torch._C._get_dispatch_mode(
torch._C._TorchDispatchModeKey.FAKE
)
if maybe_cur_fake_mode:
not_implemented_log.debug(
"FakeTensor mode already active: %s in %s",
fake_mode,
maybe_cur_fake_mode,
)
return NotImplemented
assert not fake_mode.in_kernel_invocation
with fake_mode: # type: ignore[attr-defined]
return func(*args, **kwargs)
@staticmethod
def _find_common_device(func, flat_args) -> Tuple[torch.device, bool]:
# Returns: (common_device, has_scalar_only_inputs)
# cpu - zero-dim tensors can be called in cuda kernels,
# so overwrite the common_device if it the only existing
# device comes from a cpu zero-dim tensor
common_device = None
has_scalar_only_inputs = False
is_cpu_zero_dim = None
def cpu_zero_dim(t):
return t.device.type == "cpu" and t.dim() == 0
def merge_devices(t):
nonlocal common_device
nonlocal is_cpu_zero_dim
if not isinstance(t, FakeTensor):
return
if common_device is None:
common_device = t.device
is_cpu_zero_dim = cpu_zero_dim(t)
return
t_is_cpu_zero_dim = cpu_zero_dim(t)
if t.device == common_device:
if is_cpu_zero_dim:
is_cpu_zero_dim = t_is_cpu_zero_dim
return
# mismatching devices !
# if current tensor is cpu 0 dim, defer to existing device
if t_is_cpu_zero_dim:
return
# current device is from cpu 0 dim tensor, overwrite
if is_cpu_zero_dim:
common_device = t.device
is_cpu_zero_dim = t_is_cpu_zero_dim
return
# mismatching devices of non-zero dim tensors, throw
# This might be valid behavior and need to be explicitly modeled, e.g. reshape_as
raise RuntimeError(
f"Unhandled FakeTensor Device Propagation for {func}, found two different devices {common_device}, {t.device}"
)
for arg in flat_args:
merge_devices(arg)
# some functions that allow Python numbers to bind to Tensors
# if we have failed to find a device, and we're running one of these operators,
# we must have scalar only inputs
if should_allow_numbers_as_tensors(func) and common_device is None:
# ops with scalar only inputs always have result on cpu
has_scalar_only_inputs = True
common_device = torch.device("cpu")
assert common_device is not None, f"Could not find common device for {func}"
return common_device, has_scalar_only_inputs
# We must handle tolist in a special way for FakeTensors here in the case
# where tolist is called from torch dispatch for tensor subclasses.
# Ordinarily, if a program calls .tolist compiling still works because there is
# special handling in dynamo, but for tensor subclasses if .tolist is called
# inside torch dispatch, the .tolist call may be directly on a FakeTensor.
# This would result in an error since wrapper subclasses don't have storage.
# To avoid this, we handle the FakeTensor case by (1) specializing on the size
# of the tensor to create the output Python list, and (2) creating unbacked
# symints for each element of the list.
def tolist(self):
assert self.dim() == 1, "NYI for higher dims"
shape_env = self.fake_mode.shape_env
out = []
# Specialize on the length of the list
for _ in range(self.shape[0]):
s = shape_env.create_unbacked_symint()
# max value?
torch._check_is_size(s)
torch._check(s >= 2)
out.append(s)
return out
@dataclass(frozen=True)
class TensorMetadata:
"""
The Tensor metadata relevant to hashing FakeTensors when caching.
"""
dtype: torch.dtype
shape: torch.Size
stride: Tuple[Any, ...]
device: torch.device
layout: torch.layout
memory_format: Optional[torch.memory_format]
storage_offset: int
storage_bytes: Optional[int]
requires_grad: bool
is_quantized: bool
is_conj: bool
is_neg: bool
is_inference: bool
is_sparse: bool # read: is sparse COO
is_coalesced: Optional[bool]
dense_dim: Optional[int]
sparse_dim: Optional[int]
def extract_tensor_metadata(t: torch.Tensor) -> "TensorMetadata":
"""
Extract the TensorMetadata of a tensor.
"""
memory_format: Optional[torch.memory_format] = suggest_memory_format(t)
if is_sparse_any(t) or not t.is_contiguous(memory_format=memory_format):
memory_format = None
return TensorMetadata(
dtype=t.dtype,
shape=t.shape,
stride=t.stride() if t.layout == torch.strided else (),
device=t.device,
layout=t.layout,
memory_format=memory_format,
storage_offset=t.storage_offset(),
# Only set storage_bytes for tensors that have storage (not sparse)
storage_bytes=t.untyped_storage().nbytes() if not t.is_sparse else None,
requires_grad=t.requires_grad,
is_quantized=t.is_quantized,
is_conj=t.is_conj(),
is_neg=t.is_neg(),
is_inference=t.is_inference(),
is_sparse=t.is_sparse,
is_coalesced=t.is_coalesced() if t.is_sparse else None,
dense_dim=t.dense_dim() if t.is_sparse else None,
sparse_dim=t.sparse_dim() if t.is_sparse else None,
)
class _DispatchCacheKey(list):
"""
Key for the FakeTensor dispatch cache. Inspired by (copied from)
_HashedSeq from the functools.lru_cache implementation.
"""
__slots__ = "hashvalue" # noqa: PLC0205
def __init__(self, tup, hash=hash):
self[:] = tup
self.hashvalue = hash(tup)
def __hash__(self):
return self.hashvalue
@dataclass(frozen=True)
class _DispatchCacheEntry:
"""
Entry type for the FakeTensor dispatch cache. Accounts for two possibilities:
1) The op is inplace, and a hit means we need to alias the argument at a given
index. 2) We need to synthesize a new FakeTensor given tensor metadata. For view
ops, we further capture the index of the arg to alias.
"""
inplace_idx: Optional[int] = None
metadata: Optional[TensorMetadata] = None
view_idx: Optional[int] = None
@dataclass(frozen=True)
class _BypassDispatchCache(Exception):
"""
Signals cases that should skip FakeTensor caching.
"""
reason: str
@dataclass(frozen=True)
class DispatchCacheInfo:
"""
Information about the state of the FakeTensor dispatch cache.
"""
hits: int
misses: int
bypasses: Dict[str, int]
size: int
# We keep one instantiation of `fake_tensor_converter` active
# for the duration of `with FakeTensorMode()`.
# This allows accurate storage aliasing across invocation of
# different operators. While this will keep all freshly allocated
# tensors alive during `FakeTensorMode`, there will no be no
# new allocations of Tensors which have non-meta storage so
# memory should not significantly increase.
class FakeTensorMode(TorchDispatchMode):
cache: Dict[_DispatchCacheKey, _DispatchCacheEntry] = {}
cache_hits: int = 0
cache_misses: int = 0
cache_bypasses: Dict[str, int] = defaultdict(int)
# Every time you retrace using the same fake tensor mode, you should
# advance the epoch so we don't reuse unbacked memos
epoch: int = 0
in_kernel_invocation: bool = False
def __init__(
self,
*,
allow_fallback_kernels=True,
allow_non_fake_inputs=False,
shape_env=None,
static_shapes=None,
):
log.debug("create_mode 0x%x", id(self))
self.allow_fallback_kernels = allow_fallback_kernels
self.fake_tensor_converter = FakeTensorConverter()
if static_shapes is not None:
self.static_shapes = static_shapes
else:
self.static_shapes = shape_env is None
import torch._dynamo.config
import torch._functorch.config
# This is temporarily patched to True in Dynamo to grandfather in some
# places where we unconditionally allow scalar outputs, TO BE REMOVED
self.allow_scalar_outputs = False
self.propagate_real_tensors = (
torch._functorch.config.fake_tensor_propagate_real_tensors
)
self._allow_unsafe_data_ptr_access = (
torch._functorch.config.fake_tensor_allow_unsafe_data_ptr_access
)
self.allow_meta = torch._functorch.config.fake_tensor_allow_meta
self.cache_enabled = (
torch._dynamo.config.fake_tensor_cache_enabled
and not self.propagate_real_tensors
)
self.cache_crosscheck_enabled = (
torch._dynamo.config.fake_tensor_cache_crosscheck_enabled
)
# A flag that controls, whether we want to invoke ops on mix of
# real weights/global variables and fake inputs
self.allow_non_fake_inputs = allow_non_fake_inputs
# [in_kernel_invocation]
# when FakeTensor is invoked in user code, .device should return
# the fake_device of the tensor so that code such as as `if x.is_cuda`
# or torch.zeros([10, 10], device=x.device) continues to execute as if
# the FakeTensor were real. However, within kernel execution, we return
# the `Meta` device because all computation within the kernels should
# behave as if the Tensors are on meta devices. Kernels should allocate
# new tensors on meta devices, and checks like `is_meta` should return true.
# within python refs, we always return the real device by defining
# the device property
self.in_kernel_invocation = False
# True if we enter'ed and actually enabled fake tensor mode,
# false if it was a no-op. Not thread safe but neither is
# in_kernel_invocation
# If another fake mode was already active when we enter, we also stash it here.
# That way when we exit, we know to re-enable the previous fake mode.
self.enter_stack: List[
Tuple[bool, Optional[TorchDispatchMode], Optional[_bool]]
] = []
self.shape_env: ShapeEnv = shape_env
self._stack_trace = traceback.extract_stack()
self._stack = None
# Indicates to our torch_dispatch dispatching infra that
# this is an "infra" mode with lower dispatching precedence.
self._mode_key = torch._C._TorchDispatchModeKey.FAKE
# Typically, there is only one fake tensor mode and you test for it by
# doing an isinstance test. However, in some situations, there might be
# TWO fake tensor modes. The canonical example of this is exporting
# a fake model: there is an outer fake mode created by the user, and
# an inner fake mode created by Dynamo. The two phase process is required
# because the outer fake mode typically won't have a ShapeEnv, even if
# the user is interested in exporting with dynamic shapes (so the inner
# fake mode will actually have a ShapeEnv and swap in symbolic sizes.)
#
# In this case, it's insufficient to test only one FakeTensor: you need
# to distinguish between our fake tensor and other fake tensors. That's
# what this function does.
def is_our_fake(self, t):
return isinstance(t, FakeTensor) and t.fake_mode is self
# If we should avoid device init. This changes the behavior of various APIs:
# - We avoid constant-prop on Tensors with ops that move them to another device
# - We change the torch.tensor ctor contract to never materialize
# tensors on device
# (see NOTE: [torch.tensor, lift_fresh, and device movement])
@property
def avoid_device_init(self):
return not torch.cuda.is_available()
@property
def stack(self):
if self._stack is None:
self._stack = "".join(traceback.format_list(self._stack_trace))
return self._stack
@count
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
# FakeTensorMode should not be set when we're inside of it.
assert (
torch._C._get_dispatch_mode(torch._C._TorchDispatchModeKey.FAKE) is None
), func
try:
return self.dispatch(func, types, args, kwargs)
except TypeError:
log.exception("fake tensor raised TypeError")
raise
# No-op if FakeTensorMode is already in use
def __enter__(self):
prev_only_lift_cpu_tensors = None
if self.avoid_device_init:
# See NOTE: [torch.tensor, lift_fresh, and device movement]
prev_only_lift_cpu_tensors = torch._C._only_lift_cpu_tensors()
torch._C._set_only_lift_cpu_tensors(True)
maybe_prev_fake_mode = torch._C._unset_dispatch_mode(self._mode_key)
if self is not maybe_prev_fake_mode:
self.enter_stack.append(
(True, maybe_prev_fake_mode, prev_only_lift_cpu_tensors)
)
return super().__enter__()
else:
# no-op (still need to re-set the fake mode though since we unset it)
torch._C._set_dispatch_mode(self)
self.enter_stack.append((False, None, prev_only_lift_cpu_tensors))
return self
def __exit__(self, a, b, c):
(
live,
maybe_prev_fake_mode,
maybe_prev_only_lift_cpu_tensors,
) = self.enter_stack.pop()
if live:
out = super().__exit__(a, b, c)
# Re-enable the previous fake mode, if there was one.
if maybe_prev_fake_mode is not None:
torch._C._set_dispatch_mode(maybe_prev_fake_mode)
if maybe_prev_only_lift_cpu_tensors is not None:
torch._C._set_only_lift_cpu_tensors(maybe_prev_only_lift_cpu_tensors)
@classmethod
def cache_info(cls) -> DispatchCacheInfo:
"""
Query the state of the dispatch cache.
"""
return DispatchCacheInfo(
FakeTensorMode.cache_hits,
FakeTensorMode.cache_misses,
dict(FakeTensorMode.cache_bypasses),
len(FakeTensorMode.cache),
)
@classmethod
def cache_clear(cls):
"""
Clear the dispatch cache.
"""
cls.cache_hits = 0
cls.cache_misses = 0
cls.cache_bypasses.clear()
cls.cache.clear()
def _cached_dispatch_impl(
self,
func: OpOverload,
types: Tuple[Any, ...],
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
):
"""
Lookup a cache entry for the given arguments. If none exists, dispatch
and cache the result (if the result is eligible for caching).
"""
output: Union[FakeTensor, _Unassigned] = _UNASSIGNED
try:
key = self._cache_key(func, args, kwargs)
entry = FakeTensorMode.cache.get(key, None)
if entry is not None:
output = self._output_from_cache_entry(entry, func, args)
FakeTensorMode.cache_hits += 1
if self.cache_crosscheck_enabled:
# For debugging / testing: Validate that the output synthesized
# from the cache matches the output created by normal dispatch.
self._crosscheck_cache_output(output, func, types, args, kwargs)
else:
self._validate_cache_key(func, args, kwargs)
output = self._dispatch_impl(func, types, args, kwargs)
entry = self._make_cache_entry(key, func, args, kwargs, output)
FakeTensorMode.cache[key] = entry
FakeTensorMode.cache_misses += 1
except _BypassDispatchCache as e:
FakeTensorMode.cache_bypasses[e.reason] += 1
if output is _UNASSIGNED:
output = self._dispatch_impl(func, types, args, kwargs)
return output
def _cache_key(
self,
func: OpOverload,
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
) -> _DispatchCacheKey:
"""
Create a cache key given the dispatch args. Raises _BypassDispatchCache
for any situation that precludes caching.
"""
key_values = (
func,
# Translate any FakeTensor args to metadata.
self._prep_args_for_hash(args) if args else (),
self._prep_args_for_hash(kwargs) if kwargs else (),
# Capture the default_dtype mode since that can affect the output tensor,
# e.g., when operating on constant float values.
torch.get_default_dtype(),
# Capture the current device to support, e.g., cache tensor creation,
# where there isn't necessarily a tensor to take the device from.
torch._C._get_default_device(),
# We want to create tensors from cached metadata only when the inference
# mode is the same.
torch.is_inference_mode_enabled(),
# Shape env settings could affect behavior. One example seen in the wild:
# Disallowing dynamic shapes can introduce a DynamicOutputShapeException
# where it wasn't seen on a previous instance of the same op.
self.shape_env.settings if self.shape_env else None,
)
return _DispatchCacheKey(key_values)
def _validate_cache_key(
self,
func: OpOverload,
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
):
"""
Validate that the cache key generated by _cache_key will be
reasonable.
"""
# Avoid caching for any ops that would require a more sophisticated
# caching implementation, e.g., data dependent ops or ops that modify
# the inputs.
if torch.Tag.data_dependent_output in func.tags:
raise _BypassDispatchCache("data dependent output")
if torch.Tag.dynamic_output_shape in func.tags:
raise _BypassDispatchCache("dynamic output shape")
if torch.Tag.inplace_view in func.tags:
raise _BypassDispatchCache("inplace view")
if func == aten._unsafe_view.default:
raise _BypassDispatchCache("unsafe view")
if func in self.lift_fns:
raise _BypassDispatchCache("lift")
if func.name() == "inductor::resize_storage_bytes_":
raise _BypassDispatchCache("inductor::resize_storage_bytes_")
if not torch._library.utils.is_builtin(func):
raise _BypassDispatchCache("non-builtin")
# In order to handle storage aliasing, we need to establish the alias
# for any view op on a cache hit. But CompositeImplicitAutograd ops may
# or may not alias the input, so just punt on caching these.
if func.is_view and torch._C._dispatch_has_kernel_for_dispatch_key(
func.name(), torch._C.DispatchKey.CompositeImplicitAutograd
):
raise _BypassDispatchCache("CompositeImplicitAutograd")
def _prep_args_for_hash(self, args: Any) -> Any:
"""
Translate the provided args into a form suitable for caching at FakeTensor
dispatch, i.e., convert unhashable types like lists & dicts into tuples and
convert FakeTensors into metadata. Raises _BypassDispatchCache to signal
unsupported cases that should bypass caching.
"""
if isinstance(args, dict):
args = list(args.keys()) + list(args.values())
result: List[Any] = []
for arg in args:
if isinstance(arg, FakeTensor):
if not self.is_our_fake(arg):
raise _BypassDispatchCache("not our fake")
if arg._has_symbolic_sizes_strides:
raise _BypassDispatchCache("symbolic shape")
if arg.constant is not None:
raise _BypassDispatchCache("constant attribute")
if arg.is_sparse:
raise _BypassDispatchCache("sparse tensor")
if arg.layout in [
torch.sparse_csr,
torch.sparse_csc,
torch.sparse_bsr,
torch.sparse_bsc,
]:
# Does this subsume arg.is_sparse?
raise _BypassDispatchCache("sparse tensor layout")
# sparse tensors don't have storage, so check is after
if isinstance(arg.untyped_storage().nbytes(), torch.SymInt):
raise _BypassDispatchCache("symbolic nbytes")
if is_sparse_compressed(arg):
raise _BypassDispatchCache("sparse compressed tensor")
result.append(extract_tensor_metadata(arg))
elif isinstance(arg, torch.Tensor):
raise _BypassDispatchCache("non-fake tensor")
elif isinstance(arg, (torch.SymBool, torch.SymInt, torch.SymFloat)):
raise _BypassDispatchCache("symbolic shape")
elif isinstance(arg, (list, tuple, dict)):
result.extend(self._prep_args_for_hash(arg))
else:
# It's important to capture the type of the arg since, e.g., 1 and 1.0
# hash to the same value, but can produce different dtypes for the
# output tensor.
result.append((type(arg), arg))
return tuple(result)
def _make_cache_entry(
self,
key: _DispatchCacheKey,
func: OpOverload,
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
output: FakeTensor,
) -> _DispatchCacheEntry:
"""
Make a cache entry object for the given 'output' Tensor. Raises
_BypassDispatchCache if the output tensor has characteristics that
prevent caching it.
"""
# Some ops return tuples of Tensors, but it's rare, so avoid
# the complexity of caching other types.
if not isinstance(output, FakeTensor):
raise _BypassDispatchCache("non-FakeTensor output")
# Avoid caching FakeTensors with constants attached since those
# can be invalidated.
if output.constant is not None:
raise _BypassDispatchCache("constant attribute")
# TODO: support caching sparse outputs?
if output.is_sparse:
raise _BypassDispatchCache("sparse output")
if is_sparse_compressed(output):
raise _BypassDispatchCache("sparse compressed output")
# Can an in-place op really reference a kwarg? If so, then we need
# to extend the implementation to handle it.
for kval in kwargs.values():
if id(kval) == id(output):
raise _BypassDispatchCache("kwarg aliases output")
# If this is an in-place op, the entry records which input arg is aliased.
for idx in range(len(args)):
if id(args[idx]) == id(output):
return _DispatchCacheEntry(
inplace_idx=idx, metadata=None, view_idx=None
)
# Otherwise, create an entry that records the output tensor's metadata.
view_idx = None
if func.is_view:
idxs = [i for i, t in enumerate(args) if isinstance(t, torch.Tensor)]
assert len(idxs) == 1
view_idx = idxs[0]
metadata = extract_tensor_metadata(output)
entry = _DispatchCacheEntry(
inplace_idx=None, metadata=metadata, view_idx=view_idx
)
# N.B.: Some checks for bypassing the cache would be performed on the
# output tensor synthesized from the cached metadata. As an optimization,
# we can synthesize a tensor here and do the checks on that instance.
# This approach keeps the (more frequent) cache-hit path as lightweight
# as possible.
synth_output = self._output_from_cache_entry(entry, func, args)
# Make sure the dispatch_key_set from the synthesized output tensor will
# be the same.
synth_key_set = torch._C._dispatch_key_set(synth_output)
key_set = torch._C._dispatch_key_set(output)
if synth_key_set != key_set:
raise _BypassDispatchCache("dispatch_key_set mismatch")
return entry
def _output_from_cache_entry(
self, entry: _DispatchCacheEntry, func: OpOverload, args: Tuple[Any, ...]
) -> FakeTensor:
"""
Create a new FakeTensor from the cache entry.
"""
if entry.inplace_idx is not None:
# This is an in-place op; return the aliased arg.
return args[entry.inplace_idx]
# Synthesize a new FakeTensor with the cached metadata.
metadata = entry.metadata
assert metadata and not metadata.is_sparse
empty = torch.empty_strided(
metadata.shape,
metadata.stride,
dtype=metadata.dtype,
layout=metadata.layout,
device="meta",
requires_grad=metadata.requires_grad,
)
if metadata.is_conj:
torch._C._set_conj(empty, True)
if metadata.is_neg:
torch._C._set_neg(empty, True)
maybe_suppress: Callable[[], Any] = contextlib.nullcontext
if self.shape_env is not None:
maybe_suppress = self.shape_env.suppress_guards
if func.is_view:
# For view ops, the storage should be the same as the tensor input.
storage = args[cast(int, entry.view_idx)].untyped_storage()
with in_kernel_invocation_manager(self), maybe_suppress():
empty.set_(
storage, metadata.storage_offset, metadata.shape, metadata.stride
)
elif metadata.storage_offset != 0:
storage = empty.untyped_storage()
with in_kernel_invocation_manager(self), maybe_suppress():
empty.set_(
storage, metadata.storage_offset, metadata.shape, metadata.stride
)
if metadata.storage_bytes == 0:
empty.untyped_storage().resize_(0)
return FakeTensor(self, empty, metadata.device)
def _crosscheck_cache_output(
self,
output: FakeTensor,
func: OpOverload,
types: Tuple[Any, ...],
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
):
"""
Helper to validate that the output synthesized from the cache matches
the output created by normal dispatch.
"""
try:
true_output = self._dispatch_impl(func, types, args, kwargs)
except Exception as e:
raise RuntimeError(
f"FakeTensor cache crosscheck failure: func={func}, "
f"args={args}, kwargs={kwargs}: Dispatch raised={e}"
) from e
try:
assert_metadata_eq(assert_eq, true_output, output)
except Exception as e:
raise RuntimeError(
f"FakeTensor cache crosscheck failure: func={func}, "
f"args={args}, kwargs={kwargs}"
) from e
def dispatch(self, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
with no_dispatch():
log.debug("%s %s %s", func, args, kwargs)
if func in _DISPATCH_META_HANDLERS:
return _DISPATCH_META_HANDLERS[func](args)
if log.getEffectiveLevel() <= logging.DEBUG:
log.debug(
"%sFakeTensorMode.__torch_dispatch__: %s", " " * RECURSION_COUNT, func
)
# NOTE: incr is intentionally unused for a RAII pattern
incr = IncrementRecursionCount()
# Some attribute queries that can be serviced directly
# See Note [is_coalesced is dispatched]
if func in _DISPATCH_HANDLE_DIRECTLY:
# NB: no_dispatch is ok here too, this func is very simple
with in_kernel_invocation_manager(self):
return func(*args, **kwargs)
if self.cache_enabled:
return self._cached_dispatch_impl(func, types, args, kwargs)
else:
return self._dispatch_impl(func, types, args, kwargs)
def _dispatch_impl(self, func, types, args, kwargs) -> FakeTensor:
flat_args, args_spec = pytree.tree_flatten((args, kwargs))
flat_arg_fake_tensors = [t for t in flat_args if self.is_our_fake(t)]
has_symbolic_sizes = any(
i._has_symbolic_sizes_strides for i in flat_arg_fake_tensors
) or any(isinstance(a, torch.SymInt) for a in flat_args)
converter = self.fake_tensor_converter
is_lift_func = func in self.lift_fns
# To constant propagate through these functions:
# 1, If this is a lift due to a torch.tensor call,
# the input tensor is guaranteed to be a
# constant, so we keep a copy of the original argument along so
# we can query it if we're asked to item() it at some later point.
# (Note that you can always call a lift fn manually, so we do
# have to check if there are any fake tensors!)
# 2, Some functions that allow Python numbers to bind to Tensors, e.g, torch.div
if (is_lift_func and not flat_arg_fake_tensors) or (
should_allow_numbers_as_tensors(func)
and not has_symbolic_sizes
and not flat_arg_fake_tensors
):
assert all(
t.constant is not None for t in flat_arg_fake_tensors
), f"{func} should not have fake inputs without constants"
const_flat_args = [
a.constant if self.is_our_fake(a) else a for a in flat_args
]
const_args, const_kwargs = pytree.tree_unflatten(const_flat_args, args_spec)
out = func(*const_args, **const_kwargs)
if type(out) is torch.Tensor and self.may_turn_const(out):
# NB: not in_kernel_invocation_manager because we're doing real
# compute here
# NB: no_dispatch() here is VERY DANGEROUS (like, segfault
# dangerous) if this is actually a wrapper subclass tensor,
# therefore the exact type test above
with no_dispatch():
out = out.clone()
return converter.from_real_tensor(self, out, make_constant=True)
# See [subclass inputs] below
# NB: If you're seeing a mysterious infinite loop involving fake
# tensor, it might be related to this line. Though I'm not sure
# how you'll know to read this comment, as this line won't show up
# in the stack trace.
has_unrecognized_types = _check_for_subclass(flat_args)
if has_unrecognized_types:
unrecognized_types = [
type(x) for x in flat_args if _check_for_subclass_arg(x)
]
not_implemented_log.debug(
"FakeTensorMode unrecognized subclass(es): %s", unrecognized_types
)
return NotImplemented
# if we are in the dispatch mode, we will enter this function even if the inputs
# are not FakeTensors. For now, throw if any non-Fake Tensor inputs
# and just support constructors.
# this is generated from torch.tensor(), which does not use the
# dispatcher, to allow wrapper subclasses to wrap the new tensor
if is_lift_func:
assert len(kwargs) == 0 and len(args) == 1, f"{args} {kwargs}"
if type(args[0]) is torch.Tensor:
return converter.from_real_tensor(self, args[0])
# If we are trying to avoid device init, then we need to avoid constant
# prop on constant tensors for ops that change devices.
avoiding_device_init = False
if self.avoid_device_init:
if (
func == torch.ops.aten._to_copy.default
and "device" in kwargs
and kwargs["device"] != "cpu"
):
avoiding_device_init = True
if func == torch.ops.prims.device_put.default:
avoiding_device_init = True
# Recompute flat_arg_fake_tensors here again in case some of the inputs
# were real tensors and fakified in validate_and_convert_non_fake_tensors
(flat_args, flat_arg_fake_tensors) = self.validate_and_convert_non_fake_tensors(
func, converter, flat_args, args_spec
)
del args, kwargs # Invalidated
# The current constant handling only support tracing systems
# (aot autograd, torchdynamo) where each operation is run consecutively.
# Because each operation is run in order, we can trace out and support
# sequences like: x = torch.tensor(0.); y = x.add_(1)
# Whenver a constant is written to but with inputs that cannot be evaluated
# statically, such as random_(), we invalidate all constants that alias the input
# We will rely on functionalization for use of fake tensors constants as persistent
# objects on an FX Graph.
# We dispatch size/stride/numel on the FakeTensor not its constant, so bail on inplace_view
all_constant = all(e.constant is not None for e in flat_arg_fake_tensors)
if (
torch.Tag.nondeterministic_seeded not in func.tags
and torch.Tag.inplace_view not in func.tags
and all_constant
and len(flat_arg_fake_tensors) != 0
and not has_symbolic_sizes
and not avoiding_device_init
):
const_flat_args = [
a.constant if self.is_our_fake(a) else a for a in flat_args
]
const_args, const_kwargs = pytree.tree_unflatten(const_flat_args, args_spec)
# NB: not in_kernel_invocation_manager(self) as we want to do REAL
# compute
with no_dispatch():
out = func(*const_args, **const_kwargs)
flat_out = pytree.tree_leaves(out)
flat_out_tensors = [t for t in flat_out if isinstance(t, torch.Tensor)]
all_constant = all(self.may_turn_const(t) for t in flat_out_tensors)
if all_constant:
return pytree.tree_map_only(
torch.Tensor,
lambda t: converter.from_real_tensor(self, t, make_constant=True),
out,
)
# we weren't able to turn outputs to constants,
# so invalidate all constants that might be aliases of the outputs
for ten in flat_out_tensors:
converter.invalidate_constant_aliases(ten)
# we are falling through to running non constant tensors, any input constant that
# is written to must be invalidated
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
self.invalidate_written_to_constants(func, flat_arg_fake_tensors, args, kwargs)
def maybe_to_real_tensor(t):
if isinstance(t, FakeTensor):
return t.real_tensor
elif isinstance(t, SymTypes):
return t.node.pytype(
t.node.expr.xreplace(self.shape_env.var_to_val).xreplace(
self.shape_env.unbacked_var_to_val
)
)
else:
return t
from torch.fx.experimental.symbolic_shapes import (
compute_unbacked_bindings,
free_unbacked_symbols,
SymTypes,
)
nil = object()
real_out = nil
if (
self.propagate_real_tensors
and all(e.real_tensor is not None for e in flat_arg_fake_tensors)
# TODO: Handle SymFloat/SymBool
and not any(
(
isinstance(a, torch.SymInt)
and (syms := free_unbacked_symbols(a))
and any(s not in self.shape_env.unbacked_var_to_val for s in syms)
)
for a in flat_args
)
):
real_flat_args = [maybe_to_real_tensor(a) for a in flat_args]
real_args, real_kwargs = pytree.tree_unflatten(real_flat_args, args_spec)
real_out = func(*real_args, **real_kwargs)
elif self.propagate_real_tensors:
# This can happen occasionally legitimately, specifically when you
# are inside the meta of a data dependent operation and you create
# a tensor on an unbacked SymInt; at this point in time we don't
# know what the unbacked SymInt is, but we will know later.
# However, if there's a bug in the condition above, this condition
# will also trigger.
log.debug(
"propagate_real_tensors skipped %s(%s, %s) %s",
func,
flat_arg_fake_tensors,
flat_args,
self.shape_env.unbacked_var_to_val,
)
def maybe_propagate_real_tensors(fake_out):
import sympy
def go(t, real_t):
if isinstance(t, FakeTensor):
# NB: unconditionally overwrite
t.real_tensor = real_t
elif isinstance(t, SymTypes) and free_unbacked_symbols(t):
if isinstance(t.node.expr, sympy.Symbol):
self.shape_env.set_unbacked_var_to_val(t.node.expr, real_t)
if real_out is not nil:
tree_map_(go, fake_out, real_out)
# If a data-dependent op is used in a decomposition, we
# may need to get the unbacked settings "early"
# TODO: Is this really needed?
compute_unbacked_bindings(self.shape_env, fake_out, peek=True)
return fake_out
# Try for fastpath
if has_symbolic_sizes:
fast_impl = get_fast_op_impls().get(func)
if fast_impl is not None:
return maybe_propagate_real_tensors(fast_impl(self, *args, **kwargs))
# If there's a Python meta, prefer that over the decomposition
from torch._decomp import meta_table as meta_table
if func not in meta_table and not self.cpp_meta_supports_symint(func):
from torch._decomp import decomposition_table
# Prefer Python decompositions over C++ ones
if func in decomposition_table and (
has_symbolic_sizes
or (
# TODO: Remove these exclusions, so that we can remove
# this leg entirely
torch_decomp_decompositions(func)
and all(not e.is_sparse for e in flat_arg_fake_tensors)
)
):
with self:
return decomposition_table[func](*args, **kwargs)
with self:
# Decomposes CompositeImplicitAutograd ops
r = func.decompose(*args, **kwargs)
if r is not NotImplemented:
return r
# prims already wrap FakeTensor inputs to FakeTensor outputs
# and do device logic, we dont need do anything but run them
# and ensure that Meta kernels are dispatched to (see)
# Fake Tensor Dispatch Keys
# TODO - we should be use the prim aten impl
# TODO - fix prims complex ops
if (
"prims::" in func._schema.name
and hasattr(func, "prim_meta_impl")
and not stride_incorrect_op(func)
):
with self:
return maybe_propagate_real_tensors(
func.prim_meta_impl(*args, **kwargs)
)
# Users can register FakeTensor rules for custom operators
# Call them if they exist.
maybe_abstract_impl = torch._library.simple_registry.singleton.find(
func.name()
).abstract_impl.kernel
if maybe_abstract_impl:
ctx = torch._library.abstract_impl.AbstractImplCtx(self, func)
with torch._library.abstract_impl.set_ctx_getter(lambda: ctx), self:
result = maybe_abstract_impl(*args, **kwargs)
return maybe_propagate_real_tensors(result)
# special handling for funcs registered through `register_op_impl`,
# e.g., manipulating args on constructor calls to construct meta tensors
# and then afterwards wrapping them to a FakeTensor
for run_impl_check, op_impl in op_implementations_checks:
if run_impl_check(func):
op_impl_out = op_impl(self, func, *args, **kwargs)
if op_impl_out != NotImplemented:
return maybe_propagate_real_tensors(op_impl_out)
def maybe_run_unsafe_fallback(error=None):
# We infer the meta of a custom ops that return None to just
# return None. custom ops are not allowed to mutate metadata
# of their inputs, so this is safe.
if torch._library.utils.can_generate_trivial_fake_impl(func):
return None
# no meta kernel registered, fallback to kernel for the device
if has_symbolic_sizes or not self.can_run_unsafe_fallback(func):
raise UnsupportedOperatorException(func)
if error is None:
error = UnsupportedOperatorException(func)
return run_fallback_kernel(self, func, flat_args, args_spec, error)
# Optimization: If there is no Meta kernel, it takes a surprisingly long
# amount of time to catch the NotImplementedError, so we check it here.
if not has_meta(func):
return maybe_propagate_real_tensors(maybe_run_unsafe_fallback())
# run kernel registered to meta for func, which include
# python meta registrations, prims, decomps, and c++ meta fns (structured kernels)
# It's possible that the kernel will return NotImplementedError
try:
with in_kernel_invocation_manager(self):
r = func(*args, **kwargs)
except NotImplementedError as not_implemented_error:
return maybe_run_unsafe_fallback(not_implemented_error)
except Exception:
log.exception("failed while attempting to run meta for %s", func)
raise
return maybe_propagate_real_tensors(
self.wrap_meta_outputs_with_default_device_logic(
r, func, flat_args, device=kwargs.get("device")
)
)
# WARNING: DO NOT add any additional namespaces/operators here if they refer to operators
# outside of the pytorch/pytorch library! Any pre-existing things here
# are either in the pytorch/pytorch library or have been grandfathered in.
# The fallback does not always work and MAY CRASH and emit unreadable error messages
# so it should not be allowed by default.
_can_run_unsafe_fallback_allowed_namespaces = ordered_set(
"debugprims",
"prims",
"aten",
"xla",
"vision",
"torchtext",
"torchaudio",
"quantized",
)
def can_run_unsafe_fallback(self, func: OpOverload):
if not self.allow_fallback_kernels:
return False
# It's OK to try the fallback for built-in ops (e.g. aten, prims)
# because we control and test these but the fallback leads to unexpected behavior
# in user-defined custom ops
return (
func.namespace in self._can_run_unsafe_fallback_allowed_namespaces
or func.name() == "fbgemm::gmm"
)
def validate_and_convert_non_fake_tensors(
self, func, converter, flat_args, args_spec
):
"""
Checks if the list of tensors are fake tensors.
If not, try to convert them to fake tensors.
Returns the original args, kwargs, and a flattened list of (args, kwargs) that are fake tensors.
"""
flat_arg_fake_tensors: List[Any] = []
def validate(x):
if not isinstance(x, torch.Tensor):
return x
nonlocal flat_arg_fake_tensors
if not self.is_our_fake(x):
if torch.Tag.inplace_view in func.tags:
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
raise AssertionError(
f"Can't call metadata mutating ops on non-Fake Tensor inputs. Found in {render_call(func, args, kwargs)}"
)
if not self.allow_non_fake_inputs:
if isinstance(x, FakeTensor) and x.fake_mode is not self:
raise AssertionError("Mixing fake modes NYI")
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
raise AssertionError(
f"Please convert all Tensors to FakeTensors first or instantiate FakeTensorMode "
f"with 'allow_non_fake_inputs'. Found in {render_call(func, args, kwargs)}"
)
x = converter.from_real_tensor(self, x)
flat_arg_fake_tensors.append(x)
return x
validated_args = [validate(a) for a in flat_args]
return validated_args, flat_arg_fake_tensors
def wrap_meta_outputs_with_default_device_logic(self, r, func, flat_args, device):
converter = self.fake_tensor_converter
# Lazily initialized, in case there are no tensor returns
common_device = None
has_scalar_only_inputs = False
def wrap(e):
nonlocal common_device
nonlocal has_scalar_only_inputs
if not isinstance(e, torch.Tensor):
return e
if common_device is None:
(
common_device,
has_scalar_only_inputs,
) = FakeTensor._find_common_device(func, flat_args)
is_our_fake = self.is_our_fake(e)
if is_our_fake:
torch._check(
e.device == common_device,
lambda: f"FakeTensor is wrapped to wrong device, found {e.device}, expected {common_device}",
)
return e
elif converter is not None:
if has_scalar_only_inputs:
# Under FakeTensorMode, op accepts scalar only inputs, such as aten.add/sub/mul/div,
# returns a real scalar tensor on CPU. See TensorMeta() in _prims/__init__.py for details.
# We thus directly convert real tensor to fake tensor.
return converter.from_real_tensor(self, e)
else:
return converter.from_meta_and_device(
self, e, device or common_device
)
else:
return e
return tree_map(wrap, r)
_cpp_meta_supports_symint = ordered_set(
aten.empty.memory_format,
aten.empty_strided.default,
aten.as_strided_scatter.default,
aten.as_strided.default,
aten.as_strided_.default,
aten.zeros.default,
aten.detach.default,
aten.view_as_real.default,
aten.view_as_complex.default,
aten.set_.source_Storage_storage_offset,
aten._sparse_coo_tensor_with_dims_and_tensors.default,
)
def cpp_meta_supports_symint(self, func):
if torch.Tag.view_copy in func.tags:
return True
return func in self._cpp_meta_supports_symint
lift_fns = ordered_set(aten.lift_fresh.default, aten.lift_fresh_copy.default)
def may_turn_const(self, t):
return (
t.numel() <= CONSTANT_NUMEL_LIMIT
and not t.is_sparse
and not self.is_our_fake(t)
and not t.device.type == "meta"
)
def invalidate_written_to_constants(
self, func, flat_arg_fake_tensors, args, kwargs
):
any_constant = any(e.constant is not None for e in flat_arg_fake_tensors)
schema_info = get_schema_info(func)
if any_constant and schema_info.is_mutable():
_, new_kwargs = normalize_function(
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
for k, v in new_kwargs.items():
k = k if (k != "input" or schema_info.has_argument(k)) else "self"
if (
self.is_our_fake(v)
and schema_info.is_mutable(k)
and v.constant is not None
):
self.fake_tensor_converter.invalidate_constant_aliases(v.constant)
def from_tensor(
self,
tensor,
*,
static_shapes=None,
source: Optional[Source] = None,
symbolic_context=None,
):
shape_env: Optional[ShapeEnv] = self.shape_env
if static_shapes is None:
static_shapes = self.static_shapes
if static_shapes:
assert (
symbolic_context is None
), "cannot set both static_shapes and symbolic_context"
shape_env = None
return self.fake_tensor_converter.from_real_tensor(
self,
tensor,
shape_env=shape_env,
source=source,
symbolic_context=symbolic_context,
)
# NB: returns fake tensors
def run_fallback_kernel(
fake_mode, func, flat_args, args_spec, orig_not_implemented_exception
):
# these should all be supported, just to be safe
# avoid fallback for operators which inplace modify metadata
# because the input fake tensors would be umodified
if torch.Tag.inplace_view in func.tags:
raise orig_not_implemented_exception
inp_impls = {}
# Don't use in_kernel_invocation_manager(fake_mode) as we want to do
# REAL compute (not with meta device)
with no_dispatch():
def to_real_tensor(e):
if fake_mode.is_our_fake(e):
out = torch.zeros_like(e, device=e.fake_device)
if e.is_sparse:
out._coalesced_(e.is_coalesced())
inp_impls[id(out)] = e
return out
return e
flat_args = [to_real_tensor(a) for a in flat_args]
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
r = func(*args, **kwargs)
tensor_impls = set()
storages = set()
for e in flat_args:
if isinstance(e, torch.Tensor):
if not e.is_sparse:
storages.add(e._typed_storage()._cdata)
# TODO: also check metadata change on inputs
# proper aliasing/metadata relationship between outputs and inputs will
# not be set up, bc of conversion to device, unless we can reuse an
# input impl
def map_out(e):
if id(e) not in inp_impls and (
isinstance(e, torch.Tensor)
and not e.is_sparse
and e._typed_storage()._cdata in storages
):
raise orig_not_implemented_exception
if isinstance(e, torch.Tensor):
if id(e) in inp_impls:
return inp_impls[id(e)]
else:
return fake_mode.fake_tensor_converter.from_real_tensor(fake_mode, e)
else:
return e
return pytree.tree_map(map_out, r)
# Just for use to allow copying a module to fake tensors,
# does not apply elsewhere
class FakeCopyMode(TorchFunctionMode):
def __init__(self, fake_mode):
self.fake_mode = fake_mode
def __torch_function__(self, func, types, args=(), kwargs=None):
kwargs = kwargs if kwargs else {}
# clone will get called in Parameter deepcopy
if func == torch._C.TensorBase.clone:
return func(
self.fake_mode.from_tensor(args[0], static_shapes=True), **kwargs
)
elif func == torch.Tensor.__deepcopy__:
assert len(args) == 2 and len(kwargs) == 0
tensor, memo = args
if id(tensor) in memo:
return memo[id(tensor)]
out = self.fake_mode.from_tensor(tensor, static_shapes=True)
memo[id(tensor)] = out
return out
else:
with torch._C.DisableTorchFunctionSubclass():
return func(*args, **kwargs)
def _device_handler(args):
# NB: Don't use is_our_fake, just serve the fake information
# as is. Notice we don't use 'self'; we use args[0].fake_mode
# because they may not be the same. It would also be possible
# to return NotImplemented here, in which case the FakeTensor
# handler on args[0] would handle it, but we're being nice and
# short-circuiting quickly.
assert len(args) == 1 and isinstance(args[0], FakeTensor)
if args[0].fake_mode.in_kernel_invocation:
return torch.device("meta")
else:
return args[0].fake_device
# [subclass inputs]
# Suppose we enable fake tensor mode. This means that fake tensor
# mode will run first. But what if we do an operation that
# involves a tensor subclass that will desugar into normal tensor
# operations? Without returning NotImplemented, fake tensor mode will run first,
# decide that a conversion was made (since there was a non fake
# tensor argument), and report an error that converting non
# fake tensor is not supported. What we actually wanted to happen
# was to give the subclass a chance to figure out what it wants to
# before erroring out. Returning NotImplemented here allows this.
def _check_for_subclass(flat_args):
return any(_check_for_subclass_arg(x) for x in flat_args)
def _check_for_subclass_arg(x):
return (
not isinstance(x, FakeTensor)
and isinstance(x, torch.Tensor)
and type(x) is not torch.Tensor
and type(x) is not torch.nn.Parameter
)
_DISPATCH_META_HANDLERS = {
torch.ops.prim.device.default: _device_handler,
torch.ops.aten.size.default: lambda args: tuple(int(s) for s in args[0].size()),
torch.ops.aten.stride.default: lambda args: tuple(int(s) for s in args[0].stride()),
torch.ops.aten.storage_offset.default: lambda args: int(args[0].storage_offset()),
}
_DISPATCH_HANDLE_DIRECTLY = ordered_set(
torch.ops.aten.is_coalesced.default,
torch.ops.aten.dense_dim.default,
torch.ops.aten.sparse_dim.default,
)
from torch._subclasses.fake_impls import ( # noqa: F401
_device_not_kwarg_ops, # noqa: F401
_is_tensor_constructor, # noqa: F401
_like_tensor_constructors, # noqa: F401
contains_tensor_types, # noqa: F401
get_fast_op_impls,
has_meta,
op_implementations_checks,
stride_incorrect_op,
)