mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/37014 User should only pass name as key in dict. Test Plan: Imported from OSS Differential Revision: D21283696 fbshipit-source-id: e6babbe9302c812d6ae03ed7f843d2816b752e78
142 lines
5.4 KiB
Python
142 lines
5.4 KiB
Python
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
from typing import List, Optional
|
|
|
|
import torch
|
|
from .qconfig import QConfig
|
|
from torch.jit._recursive import wrap_cpp_module
|
|
|
|
class ConvPackedParams(torch.nn.Module):
|
|
def __init__(self):
|
|
super(ConvPackedParams, self).__init__()
|
|
wq = torch._empty_affine_quantized([1, 1, 1, 1], scale=1.0, zero_point=0, dtype=torch.qint8)
|
|
self.stride = [1, 1]
|
|
self.padding = [0, 0]
|
|
self.dilation = [1, 1]
|
|
self.groups = 1
|
|
self.set_weight_bias(wq, None)
|
|
|
|
@torch.jit.export
|
|
def set_conv_params(self, stride, padding, dilation, groups):
|
|
# type: (List[int], List[int], List[int], int) -> None
|
|
self.stride = stride
|
|
self.padding = padding
|
|
self.dilation = dilation
|
|
self.groups = groups
|
|
|
|
@torch.jit.export
|
|
def set_weight_bias(self, weight, bias):
|
|
# type: (torch.Tensor, Optional[torch.Tensor]) -> None
|
|
self._packed_params = torch.ops.quantized.conv2d_prepack(weight, bias, self.stride,
|
|
self.padding, self.dilation, self.groups)
|
|
|
|
@torch.jit.export
|
|
def _weight_bias(self):
|
|
return torch.ops.quantized.conv2d_unpack(self._packed_params)
|
|
|
|
def forward(self, x):
|
|
return x
|
|
|
|
@torch.jit.export
|
|
def __getstate__(self):
|
|
qweight, bias = self._weight_bias()
|
|
return (qweight,
|
|
bias,
|
|
self.stride,
|
|
self.padding,
|
|
self.dilation,
|
|
self.groups,
|
|
self.training)
|
|
|
|
@torch.jit.export
|
|
def __setstate__(self, state):
|
|
self.stride = state[2]
|
|
self.padding = state[3]
|
|
self.dilation = state[4]
|
|
self.groups = state[5]
|
|
self.set_weight_bias(state[0],
|
|
state[1])
|
|
self.training = state[6]
|
|
|
|
linear_packed_params = None
|
|
conv_packed_params = None
|
|
if 'fbgemm' in torch.backends.quantized.supported_engines:
|
|
linear_packed_params = torch.jit.script(torch.nn.quantized.modules.linear.LinearPackedParams())._c
|
|
conv_packed_params = torch.jit.script(ConvPackedParams())._c
|
|
|
|
def _check_is_script_module(model):
|
|
if not isinstance(model, torch.jit.ScriptModule):
|
|
raise ValueError('input must be a script module, got: ' + str(type(model)))
|
|
|
|
def _check_forward_method(model):
|
|
if not model._c._has_method('forward'):
|
|
raise ValueError('input script module does not have forward method')
|
|
|
|
def script_qconfig(qconfig):
|
|
return QConfig(
|
|
activation=torch.jit.script(qconfig.activation())._c,
|
|
weight=torch.jit.script(qconfig.weight())._c)
|
|
|
|
def get_scripted_qconfig_dict(qconfig_dict):
|
|
return {k: script_qconfig(v) if v else None for k, v in qconfig_dict.items()}
|
|
|
|
def _prepare_script(model, qconfig_dict, is_dynamic):
|
|
_check_is_script_module(model)
|
|
if any(map(lambda x : not isinstance(x, str), qconfig_dict.keys())):
|
|
raise ValueError('qconfig_dict should contain names(str) as keys.')
|
|
scripted_qconfig_dict = get_scripted_qconfig_dict(qconfig_dict)
|
|
return wrap_cpp_module(torch._C._jit_pass_insert_observers(model._c,
|
|
'forward',
|
|
scripted_qconfig_dict,
|
|
False,
|
|
is_dynamic))
|
|
|
|
def prepare_script(model, qconfig_dict, inplace=False):
|
|
if not inplace:
|
|
model = model.copy()
|
|
return _prepare_script(model, qconfig_dict, is_dynamic=False)
|
|
|
|
def prepare_dynamic_script(model, qconfig_dict):
|
|
return _prepare_script(model, qconfig_dict, is_dynamic=True)
|
|
|
|
def _convert_script(model, is_dynamic, debug=False):
|
|
_check_is_script_module(model)
|
|
model.eval()
|
|
model = wrap_cpp_module(torch._C._jit_pass_insert_quant_dequant(model._c, 'forward', False, is_dynamic))
|
|
if not debug:
|
|
model = wrap_cpp_module(torch._C._jit_pass_quant_finalize(model._c, is_dynamic))
|
|
return model
|
|
|
|
def convert_script(model, inplace=False, debug=False):
|
|
if not inplace:
|
|
model = model.copy()
|
|
return _convert_script(model, is_dynamic=False, debug=debug)
|
|
|
|
def convert_dynamic_script(model, debug=False):
|
|
return _convert_script(model, is_dynamic=True, debug=debug)
|
|
|
|
def _quantize_script(model, qconfig_dict, run_fn=None, run_args=None, is_dynamic=False, debug=False):
|
|
_check_is_script_module(model)
|
|
_check_forward_method(model)
|
|
torch._C._jit_pass_dedup_module_uses(model._c)
|
|
model = wrap_cpp_module(torch._C._jit_pass_fold_convbn(model._c))
|
|
if is_dynamic:
|
|
model = prepare_dynamic_script(model, qconfig_dict)
|
|
model(*run_args)
|
|
model = convert_dynamic_script(model, debug)
|
|
else:
|
|
model = prepare_script(model, qconfig_dict, True)
|
|
run_fn(model._c._get_method('forward'), *run_args)
|
|
model = convert_script(model, True, debug)
|
|
|
|
return model
|
|
|
|
def quantize_script(model, qconfig_dict, run_fn, run_args, inplace=False, debug=False):
|
|
assert not inplace, "We don't support inplace right now"
|
|
if not inplace:
|
|
model = model.copy()
|
|
return _quantize_script(model, qconfig_dict, run_fn, run_args, is_dynamic=False, debug=debug)
|
|
|
|
def quantize_dynamic_script(model, qconfig_dict, sample_model_inputs, debug=False):
|
|
return _quantize_script(model, qconfig_dict, run_args=sample_model_inputs, is_dynamic=True, debug=debug)
|