pytorch/test/distributed/optim/test_zero_redundancy_optimizer.py
Andrew Gu f0e4e4be72 Clean Up ZeRO (#60285)
Summary:
**Overview:**
Being relatively new to PyTorch and ZeRO, I found parts of the code slightly hard to follow. This change strives to clean up the `ZeroRedundancyOptimizer` code in `zero_redundancy_optimizer.py` by reorganizing some computations, making variable names more explicit and consistent, and unifying terminology in the documentation. The goal is for the code to be easier to extend afterwards.

**Changes:**
1) `state_dict()`: The [logic](85517a2b70/torch/distributed/optim/zero_redundancy_optimizer.py (L510)) for updating the global `state_dict` with each rank's local `state_dict` is simplified and made more explicit. Notably, the `dict` [`local_index_to_param_id`](85517a2b70/torch/distributed/optim/zero_redundancy_optimizer.py (L513)) is unneeded. It maps `local_pg["params"][i]` to `id(global_pg["params"][i])`, so it is equivalent to make a single pass over both lists in tandem, effectively iterating over `i`, without a need for the explicit `dict`.
2) `_update_trainable()`: The function [initializes](85517a2b70/torch/distributed/optim/zero_redundancy_optimizer.py (L597)) the local optimizer if it does not exist. I am unaware of any reason for the local optimizer to be destroyed after initialization, so I moved that logic to its own function `_init_local_optimizer()`, which is called once in the constructor.
After [discussion](https://github.com/pytorch/pytorch/pull/60285#discussion_r654706728), I removed the function `_update_trainable()` itself in favor of adding a check for `parameters_as_bucket_view` in `build_param_buckets()` directly.
3) `rank_local_state_dict()`: This [function](85517a2b70/torch/distributed/optim/zero_redundancy_optimizer.py (L528)) is currently broken. It appears to be legacy and relies on the input `state_dict` to have the key `"partitions"`. For now, I have removed it and added an [issue](https://github.com/pytorch/pytorch/issues/60284). Is it a notable use case to want to access another rank's `state_dict` in particular (as opposed to consolidating the entire state and then accessing)?
4) `local_state_dict():` After [discussion](https://github.com/pytorch/pytorch/pull/60285#discussion_r655571043), I removed the function.
5) `partition_parameters()`: After [discussion](https://github.com/pytorch/pytorch/pull/60285#discussion_r654708183), I renamed the function to `_partition_parameters()` to mark it as private.
6) `_param_to_index`: After [discussion](https://github.com/pytorch/pytorch/pull/60285#discussion_r654828100), I changed the key to be the parameter itself rather than its integer ID.
7) `buckets`: I renamed the data structure to `_buckets` to mark it as private.
8) Terminology: I tried to reduce the set of terms being used instead of juggling a number of synonyms. In particular, I made an effort to distinguish between "local" and "global" and to make names more indicative of typing.
9) Style: Per the [PyTorch contributing guide](https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md#writing-documentation), I made all docstrings abide by the 80 character limit, except for the one [line](554891f6fa/torch/distributed/optim/zero_redundancy_optimizer.py (L142)) showing the example ZeRO usage. Some code lines violate the limit for readability. Also, I unified some of the minor stylistic usages out of habit.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60285

Test Plan:
The test suite passes as expected (on the AI AWS cluster):
```
gpurun python test/distributed/optim/test_zero_redundancy_optimizer.py
```
I visually inspected the generated HTML doc (as generated following [this](https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md#writing-documentation)).

Reviewed By: mrshenli

Differential Revision: D29320726

Pulled By: andwgu

fbshipit-source-id: 23f69a19ecc5e877a38fe1df0da11329428311dd
2021-06-23 07:21:40 -07:00

663 lines
27 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import copy
import os
import sys
from contextlib import suppress
from typing import List, Any, Type, cast
import numpy as np
import torch
import torch.distributed as dist
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
from torch.distributed.optim import ZeroRedundancyOptimizer
from torch.distributed.optim.zero_redundancy_optimizer import _broadcast_object
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import SGD
from torch.testing._internal import common_utils, common_distributed
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def check_same_model_params(model_a: torch.nn.Module, model_b: torch.nn.Module, message: str = "") -> None:
for p_a, p_b in zip(model_a.parameters(), model_b.parameters()):
assert torch.allclose(p_a, p_b, atol=1e-3), f"Model parameters differ\n{p_a} {p_b}\n" + message
for b_a, b_b in zip(model_a.buffers(), model_b.buffers()):
assert torch.allclose(b_a, b_b), f"Model buffers differ {b_a} - {b_b}\n" + message
class TestZeroRedundancyOptimizer(common_distributed.MultiProcessTestCase):
def setUp(self):
super(TestZeroRedundancyOptimizer, self).setUp()
os.environ["WORLD_SIZE"] = str(self.world_size)
self._spawn_processes()
@property
def device(self):
return torch.device(self.rank) if BACKEND == dist.Backend.NCCL else torch.device("cpu")
@property
def world_size(self):
return 1
def tearDown(self):
try:
torch.distributed.destroy_process_group()
except AssertionError:
pass
try:
os.remove(self.file_name)
except OSError:
pass
def dist_init(self, rank, world_size=-1):
if (world_size < 1):
world_size = self.world_size
store = dist.FileStore(self.file_name, world_size)
return dist.init_process_group(backend=BACKEND, store=store, rank=rank, world_size=world_size)
class TestZeroRedundancyOptimizerSingleRank(TestZeroRedundancyOptimizer):
def test_state_dict(self):
"""Check that the ZeroRedundancyOptimizer exposes the expected state dict interface,
irrespective of the sharding.
"""
self.dist_init(self.rank)
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=0.1, momentum=0.9)
x.backward()
o.step()
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
self.assertEqual(o.optim.state[x]["momentum_buffer"], torch.tensor([1.0], device=DEVICE))
o.zero_grad()
o.consolidate_state_dict() # Sync state dict in between replicas - even if there are none
state_dict = o.state_dict()
# Check that the state dict is pytorch-compliant key wise
self.assertIn("param_groups", state_dict.keys())
self.assertIn("state", state_dict.keys())
# Check that the pulled state is what we expect, and that we have all the expected keys
self.assertEqual(state_dict["param_groups"][0]["lr"], 0.1)
self.assertEqual(state_dict["param_groups"][0]["momentum"], 0.9)
self.assertFalse(state_dict["param_groups"][0]["nesterov"])
self.assertEqual(state_dict["param_groups"][0]["weight_decay"], 0.0)
self.assertEqual(state_dict["param_groups"][0]["dampening"], 0.0)
# Check that the pulled state and the .param_groups attribute are in sync
for k in state_dict["param_groups"][0].keys():
if k != "params":
self.assertEqual(state_dict["param_groups"][0][k], o.param_groups[0][k])
# Check that it's correctly loaded
o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=0.01)
o.load_state_dict(state_dict)
# Check that state is correct and on proper device
self.assertEqual(o.optim.state[x]["momentum_buffer"], torch.tensor([1.0], device=DEVICE))
# We should now be using a lr of 0.1, both within the optimizer
# and as exposed by the .param_groups attribute
assert o.param_groups[0]["lr"] == 0.1
x.backward()
o.step()
self.assertEqual(x, torch.tensor([0.71], device=DEVICE))
self.assertEqual(o.optim.state[x]["momentum_buffer"], torch.tensor([1.9], device=DEVICE))
# Check that the exposed param_groups are on the proper device
self.assertEqual(o.param_groups[0]["params"][0].device, x.device)
def test_lr_scheduler(self):
""" Check that a normal torch lr_scheduler is usable with ZeroRedundancyOptimizer"""
self.dist_init(self.rank)
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
x2 = torch.tensor([1.0], device=DEVICE, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=0.01)
o2 = torch.optim.SGD([x2], lr=0.01)
s = torch.optim.lr_scheduler.StepLR(o, 1)
s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
for _ in range(5):
x.backward()
o.zero_grad()
o.step()
s.step()
x2.backward()
o2.zero_grad()
o2.step()
s2.step()
self.assertEqual(x, x2)
def test_step_with_kwargs(self):
""" Check that the `step(**kwargs)` interface is properly exposed"""
self.dist_init(self.rank)
class SGDWithStepKWArg(torch.optim.SGD):
def step(self, closure=None, kwarg=None):
super().step()
kwarg.append(5)
kwarg: List[Any] = []
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optimizer_class=SGDWithStepKWArg, lr=0.1)
x.backward()
o.step(0, kwarg=kwarg)
self.assertEqual(kwarg, [5])
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
def test_step_with_extra_inner_key(self):
"""Check that an optimizer adding extra keys to the param_groups
is properly handled, in that the new key is exposed to the user
"""
self.dist_init(self.rank)
class SGDWithNewKey(torch.optim.SGD):
# Dummy optimizer which adds a new key to the param groups
def step(self, closure=None):
super().step()
self.param_groups[0]["new_key"] = 0.1
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optimizer_class=SGDWithNewKey, lr=0.1)
x.backward()
o.step()
self.assertEqual(o.param_groups[0]["new_key"], 0.1)
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
def test_step_without_closure(self):
"""Check that the step() method (without closure) is handlded as expected"""
self.dist_init(self.rank)
class SGDWithoutClosure(torch.optim.SGD):
def step(self):
return super().step()
x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optimizer_class=SGDWithoutClosure, lr=0.1)
x.backward()
o.step()
self.assertEqual(x, torch.tensor([0.9], device=DEVICE))
def test_zero_grad(self):
"""Check that the zero_grad attribute is properly handled"""
self.dist_init(self.rank)
x = torch.rand(1)
m = torch.nn.Linear(1, 1)
o = ZeroRedundancyOptimizer(m.parameters(), optimizer_class=SGD, lr=0.1)
y = m(x)
y.backward(x)
self.assertNotEqual(m.weight.grad, torch.zeros_like(m.weight))
self.assertNotEqual(m.weight.grad, torch.zeros_like(m.weight))
o.zero_grad()
self.assertFalse(m.weight.grad)
self.assertFalse(m.bias.grad)
def test_constructor(self):
"""Check the robustness of the ZeroRedundancyOptimizer constructor by
passing different values for `params`"""
self.dist_init(self.rank)
m = torch.nn.Linear(1, 1)
# (input, expected error)
inputs = [
([], ValueError), # empty parameter list
(torch.randn(1), TypeError), # non-iterable: `torch.Tensor`
(1.2, TypeError), # non-iterable: `float`
([{"params": m.parameters()}], TypeError), # iterable of dict
(list(m.parameters()) + [42], TypeError), # iterable containing non-`torch.Tensor`
(m.parameters(), None), # `params` as a generator
(list(m.parameters()), None) # `params` as a list
]
for input, error in inputs:
if (error):
with self.assertRaises(error):
ZeroRedundancyOptimizer(input, optimizer_class=SGD, lr=0.1)
else:
ZeroRedundancyOptimizer(input, optimizer_class=SGD, lr=0.1)
def test_same_dense_param_type(self):
"""Check that ZeroRedundancyOptimizer raises an exception if the input
parameters include sparse tensors or different dense types.
NOTE: This test should be removed once support for sparse parameters
and varying parameter types is added.
"""
self.dist_init(self.rank)
inputs = [
[torch.sparse_coo_tensor(size=(2, 3))],
[torch.FloatTensor(1), torch.DoubleTensor(1)],
[torch.FloatTensor(1), torch.FloatTensor(1),
torch.sparse_coo_tensor(size=(2, 3))]
]
for input in inputs:
with self.assertRaises(ValueError):
ZeroRedundancyOptimizer(input, optimizer_class=SGD, lr=0.1)
def test_same_param_device(self):
"""Check that ZeroRedundancyOptimizer raises an exception if the input
parameters are sharded on multiple devices.
NOTE: This test should be removed once support for sharding a rank's
model parameters across multiple devices is added.
"""
if not torch.cuda.is_available() or torch.cuda.device_count() < 2:
return
self.dist_init(self.rank)
# Move the parameters to cuda:0 and cuda:1 respectively
params = [torch.Tensor(1).to(0), torch.Tensor(1).to(1)]
with self.assertRaises(ValueError):
ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=0.1)
class TestZeroRedundancyOptimizerDistributed(TestZeroRedundancyOptimizer):
@property
def world_size(self):
return min(4, max(2, torch.cuda.device_count()))
@common_distributed.skip_if_rocm
def test_step(self):
""" Check that the ZeroRedundancyOptimizer wrapper properly exposes the `.step()` interface"""
if self.rank >= self.world_size or (BACKEND == dist.Backend.NCCL and torch.cuda.device_count() < 2):
return
self.dist_init(self.rank, world_size=self.world_size)
context = suppress() if not torch.cuda.is_available() else torch.cuda.device(self.rank)
with context:
x = torch.tensor([float(self.rank + 1)], device=self.device)
m = torch.nn.Linear(1, 1)
m.weight.data = torch.tensor([[1.0]])
m.bias.data = torch.tensor([2.0])
m_zero = copy.deepcopy(m)
m.to(self.device)
m_zero.to(self.device)
lr = 0.1
o = SGD(m.parameters(), lr=lr)
o_zero = ZeroRedundancyOptimizer(m_zero.parameters(), optimizer_class=SGD, lr=lr)
y = m(x)
y.backward(x)
y_zero = m_zero(x)
y_zero.backward(x)
for p in m.parameters():
dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
p.grad.data /= self.world_size
o.step()
for p in m_zero.parameters():
dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
p.grad.data /= self.world_size
o_zero.step()
self.assertEqual(m.weight, m_zero.weight)
self.assertEqual(m.bias, m_zero.bias)
@common_distributed.skip_if_rocm
def test_step_with_closure(self):
""" Check that the ZeroRedundancyOptimizer wrapper properly exposes the `.step(closure)` interface"""
if self.rank >= self.world_size or (BACKEND == dist.Backend.NCCL and torch.cuda.device_count() < 2):
return
self.dist_init(self.rank, world_size=self.world_size)
context = suppress() if not torch.cuda.is_available() else torch.cuda.device(self.rank)
with context:
for bucket_view in [False, True]:
x_val = self.rank + 1
weight = 1.0
bias = 2.0
error = 1.0
target = torch.tensor([x_val * weight + bias + error], device=self.device)
loss_fn = torch.nn.L1Loss()
x = torch.tensor([float(x_val)], device=self.device)
m = torch.nn.Linear(1, 1)
m.weight.data = torch.tensor([[weight]])
m.bias.data = torch.tensor([bias])
m.to(self.device)
o = ZeroRedundancyOptimizer(
m.parameters(),
optimizer_class=SGD,
parameters_as_bucket_view=bucket_view,
lr=0.1,
)
y = m(x)
y.backward(x)
for p in m.parameters():
dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
p.grad.data /= self.world_size
def closure():
o.zero_grad()
output = m(x)
loss = loss_fn(output, target)
loss.backward()
return loss
loss = o.step(closure=closure)
self.assertEqual(loss, torch.tensor(error))
self.assertEqual(m.weight, torch.tensor([[1.1]]))
self.assertEqual(m.bias, torch.tensor([2.1]))
def test_sharding(self):
""" Check the sharding at construction time
NOTE: The correctness of this test depends on the ZeRO implementation
using the sorted-greedy partitioning algorithm. For details, see
`ZeroRedundancyOptimizer._partition_parameters()` in
`zero_redundancy_optimizer.py`.
"""
self.dist_init(self.rank)
sizes = [9, 7, 5, 3]
params = []
for size in sizes * self.world_size:
params.append(torch.rand(size, 1))
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=0.1)
self.assertEqual(sum([x.numel() for x in o.optim.param_groups[0]["params"]]), sum(sizes))
def test_add_param_group(self):
"""Check that ZeroRedundancyOptimizer properly handles adding a new param_group a posteriori,
and that all ranks get a shard
NOTE: The correctness of this test depends on the ZeRO implementation
using the sorted-greedy partitioning algorithm. For details, see
`ZeroRedundancyOptimizer._partition_parameters()` in
`zero_redundancy_optimizer.py`.
"""
self.dist_init(self.rank)
# Test with all parameters trainable to begin with
def all_trainable():
params = []
sizes = [9, 7, 5, 3]
sizes_world = sizes * self.world_size
for size in sizes_world[:-1]:
params.append(torch.rand(size, 1))
# Make sure that the params are trainable, enforces size-based partitioning
for p in params:
p.requires_grad = True
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=0.1)
assert len(o.param_groups) == 1
o.add_param_group({"params": [torch.rand(3, 1)]})
assert len(o.param_groups) == 2
# Verify that added group is added to the correct partition making all have the same elements.
assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == sum(sizes)
assert len(o.optim.param_groups) == 2
# Test a pathological config with a first big non-trainable param
def some_trainable():
params = []
for size in [100, 3, 5, 2, 6, 4]:
params.append(torch.rand(size, 1))
# Make sure that the params are trainable, enforces size-based partitioning
for p in params[1:]:
p.requires_grad = True
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=0.1)
assert len(o.param_groups) == 1
o.add_param_group({"params": [torch.rand(3, 1)]})
assert len(o.param_groups) == 2
assert len(o.optim.param_groups) == 2
all_trainable()
some_trainable()
@common_distributed.skip_if_lt_x_gpu(2)
def test_collect_shards(self):
""" Check the state consolidation mechanism, and the state dict exposed by ZeroRedundancyOptimizer"""
self.dist_init(self.rank)
RECIPIENT_RANK = 0
# Run a dummy step so that the optimizer state dict exists
batch, input_width, hidden, target_width = 3, 20, 10, 5
target = torch.rand((batch, target_width), device=self.device)
inputs = torch.rand((batch, input_width), device=self.device)
model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
model.to(self.device)
loss_fn = torch.nn.L1Loss()
loss_fn.to(self.device)
# With SGD, Momentum is required to get a state to shard
optimizer = ZeroRedundancyOptimizer(model.parameters(), optimizer_class=SGD, lr=0.1, momentum=0.99)
def closure():
optimizer.zero_grad()
output = model(inputs)
loss = loss_fn(output, target)
loss.backward()
return loss
_ = optimizer.step(closure=closure)
# Update the optimizer state on the reference rank
optimizer.consolidate_state_dict(to=RECIPIENT_RANK)
# Fetch the state on the reference rank
# - check that it has the correct size
# - load it again
if self.rank == RECIPIENT_RANK:
optimizer_state_dict = optimizer.state_dict()
self.assertEqual(len(optimizer_state_dict["state"]), len(list(model.parameters())))
else:
optimizer_state_dict = {}
optimizer_state_dict = _broadcast_object(
optimizer_state_dict,
src_rank=RECIPIENT_RANK,
group=dist.group.WORLD,
device=self.device,
)
# Load the optimizer state dict, check that no exception is raised
optimizer.load_state_dict(optimizer_state_dict)
def test_multiple_groups(self):
""" Check that the ZeroRedundancyOptimizer handles working with multiple process groups"""
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(backend="gloo", store=store, rank=self.rank, world_size=self.world_size)
# Only work with the even ranks, to check that the global_rank indexing is properly used
sub_group_ranks = list(filter(lambda x: x % 2 == 0, range(self.world_size)))
process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend="gloo")
# Make sure that all the ranks get different training data
# So that the sync check in between their models is meaningful
torch.manual_seed(self.rank)
np.random.seed(self.rank)
# Standard deep learning setup
epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5
loss_fn = torch.nn.L1Loss().to(self.device)
def check(optimizer):
# Just run a couple of epochs, check that the model is properly updated
for _ in range(epochs):
target = torch.rand((batch, target_width), device=self.device)
inputs = torch.rand((batch, input_width), device=self.device)
def closure():
optimizer.zero_grad()
output = model(inputs)
loss = loss_fn(output, target)
loss /= self.world_size
loss.backward()
dist.all_reduce(loss, group=process_group) # Not strictly needed for the test below
return loss
_ = optimizer.step(closure=closure)
# Check that all the params are the same on all ranks
for pg in optimizer.param_groups:
for p in pg["params"]:
receptacle = [p.clone() for _ in sub_group_ranks] if self.rank == 0 else []
dist.gather(p, receptacle, dst=0, group=process_group)
if self.rank == 0:
for sync_p in receptacle[1:]:
assert torch.all(torch.eq(receptacle[0], sync_p)), "Models differ in between ranks"
if self.rank in sub_group_ranks:
# Model fitting in the broadcast bucket
model = torch.nn.Sequential(
torch.nn.Linear(input_width, hidden),
torch.nn.Linear(hidden, target_width),
).to(self.device)
# With SGD, Momentum is required to get a state to shard
optimizer = ZeroRedundancyOptimizer(
model.parameters(), optimizer_class=SGD, lr=0.1, momentum=0.99, group=process_group
)
check(optimizer)
# Model not-fitting in the broadcast bucket
model = torch.nn.Sequential(
torch.nn.Linear(input_width, hidden),
torch.nn.Linear(hidden, target_width),
).to(self.device)
# With SGD, Momentum is required to get a state to shard
optimizer = ZeroRedundancyOptimizer(
model.parameters(),
optimizer_class=SGD,
lr=0.1,
momentum=0.99,
group=process_group,
)
check(optimizer)
@common_distributed.skip_if_no_gpu
def test_local_optimizer_parity(self):
"""When combined with DDP, check that ZeroRedundancyOptimizer(optimizer) and the same monolithic optimizer
give the exact same results
"""
self.dist_init(self.rank)
BATCHS = 20
with torch.cuda.device(self.rank):
torch.manual_seed(self.rank)
np.random.seed(self.rank)
def check_optimizer_equivalence(optimizer: Type[torch.optim.Optimizer]):
# Any model works. Add one different buffer per rank
model = torch.nn.Sequential(
torch.nn.Linear(2, 3),
torch.nn.Linear(3, 3),
torch.nn.Linear(3, 3),
)
model.register_buffer("test_buffer", torch.ones((1)) * self.rank)
model.to(self.device)
sharded_optimizer = ZeroRedundancyOptimizer(
params=model.parameters(), optimizer_class=optimizer, lr=1e-3
)
sharded_ddp_model = DDP(
module=model, device_ids=[self.rank], broadcast_buffers=True, find_unused_parameters=True
)
ddp_model_single = copy.deepcopy(model)
ddp_model_single.to(self.device)
ddp_optimizer = optimizer(ddp_model_single.parameters(), lr=1e-3)
ddp_model = DDP(
ddp_model_single, device_ids=[self.rank], broadcast_buffers=True, find_unused_parameters=True
)
# The model should be synchronized in between the ranks at construction time, check that
check_same_model_params(sharded_ddp_model, ddp_model, "Models differ from the start")
def check_step():
input_tensor = torch.rand((64, 2))
def closure_ddp(input_tensor=input_tensor):
ddp_optimizer.zero_grad()
ddp_loss = ddp_model(input_tensor).abs().sum()
ddp_loss.backward()
return ddp_loss
def closure_sharded(input_tensor=input_tensor):
sharded_optimizer.zero_grad()
sharded_loss = sharded_ddp_model(input_tensor).abs().sum()
sharded_loss.backward()
return sharded_loss
loss_ddp = cast(torch.Tensor, ddp_optimizer.step(closure=closure_ddp))
loss_sharded_optim = cast(torch.Tensor, sharded_optimizer.step(closure=closure_sharded))
assert torch.allclose(
loss_ddp, loss_sharded_optim
), "Losses differ in between Pytorch optim and ZeroRedundancyOptimizer"
check_same_model_params(sharded_ddp_model, ddp_model, "Models differ after a step")
# The models should stay the same in between the ranks
for i in range(BATCHS):
check_step()
# Change the models trainability, check that parity is maintained
# only check after a couple of constant batchs to go through both regimes
if i > BATCHS // 2:
next(ddp_model.parameters()).requires_grad = bool(i % 2)
next(sharded_ddp_model.parameters()).requires_grad = bool(i % 2)
# Check that the checkpoints are compatible
reference_rank = 0
# - get states
ddp_state_dict = ddp_optimizer.state_dict()
sharded_optimizer.consolidate_state_dict(to=reference_rank)
sharded_optim_state_dict = [sharded_optimizer.state_dict() if self.rank == reference_rank else {}]
dist.broadcast_object_list(sharded_optim_state_dict, src=reference_rank, group=dist.group.WORLD)
sharded_optim_state_dict = sharded_optim_state_dict[0]
# - cross load the states
# run one step and check that the models are still the same
ddp_state_dict_ref = copy.deepcopy(ddp_state_dict) # OSS will remove some states
ddp_optimizer.load_state_dict(sharded_optim_state_dict) # mixup on purpose !
sharded_optimizer.load_state_dict(ddp_state_dict)
check_step()
# - self load, rewind, check no problem
# run one step and check that the models are still the same
ddp_optimizer.load_state_dict(ddp_state_dict_ref)
sharded_optimizer.load_state_dict(sharded_optim_state_dict)
check_step()
for opt in [torch.optim.SGD, torch.optim.Adam]:
check_optimizer_equivalence(opt)
if __name__ == "__main__":
# ! unittest should not be used here, else the tests are not properly registered
common_utils.run_tests()