mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/63587 Now that there is no classes using KernelArena for memory management we can remove it. Differential Revision: D30429115 D30429115 Test Plan: Imported from OSS Reviewed By: navahgar Pulled By: ZolotukhinM fbshipit-source-id: 375f6f9294d27790645eeb7cb5a8e87047a57544
41 lines
1.2 KiB
C++
41 lines
1.2 KiB
C++
#include <gtest/gtest.h>
|
|
#include <torch/csrc/jit/tensorexpr/eval.h>
|
|
#include <torch/csrc/jit/tensorexpr/loopnest.h>
|
|
#include <torch/csrc/jit/tensorexpr/operators/operators.h>
|
|
#include <torch/torch.h>
|
|
|
|
using namespace torch::jit::tensorexpr;
|
|
|
|
using Tensors = std::vector<Tensor>;
|
|
using Args = std::vector<CodeGen::BufferArg>;
|
|
std::unique_ptr<SimpleIREvaluator> compile(
|
|
const Args& inputs,
|
|
const Tensors& outputs) {
|
|
LoopNest nest({outputs});
|
|
nest.prepareForCodegen();
|
|
nest.simplify();
|
|
auto join = inputs;
|
|
join.insert(join.end(), outputs.begin(), outputs.end());
|
|
return std::make_unique<SimpleIREvaluator>(nest.root_stmt(), join);
|
|
}
|
|
|
|
TEST(Ops, Sum) {
|
|
std::vector<IntList> testDims = {{0}, {1}, {0, 1}};
|
|
for (auto const& dims : testDims) {
|
|
constexpr int M = 8;
|
|
constexpr int N = 16;
|
|
|
|
Placeholder a("a", kFloat, {M, N});
|
|
Tensor b = computeSum({a.handle(), dims, false}, c10::kFloat);
|
|
auto cg = compile({a}, {b});
|
|
|
|
auto at = at::arange(M * N, at::kFloat).view({M, N});
|
|
auto ref = at::sum(at, dims);
|
|
auto bt = at::empty_like(ref);
|
|
|
|
cg->call({at.data_ptr<float>(), bt.data_ptr<float>()});
|
|
|
|
ASSERT_TRUE(at::allclose(bt, ref));
|
|
}
|
|
}
|