pytorch/test/cpp/tensorexpr/test_cpp_codegen.cpp
Mikhail Zolotukhin f0d274294d [TensorExpr] Nuke KernelArena and KernelScope. (#63587)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63587

Now that there is no classes using KernelArena for memory management we
can remove it.

Differential Revision:
D30429115
D30429115

Test Plan: Imported from OSS

Reviewed By: navahgar

Pulled By: ZolotukhinM

fbshipit-source-id: 375f6f9294d27790645eeb7cb5a8e87047a57544
2021-08-24 00:32:16 -07:00

56 lines
1.5 KiB
C++

#include <gtest/gtest.h>
#include <test/cpp/tensorexpr/test_base.h>
#include <torch/csrc/jit/tensorexpr/cpp_codegen.h>
#include <torch/csrc/jit/tensorexpr/stmt.h>
#include <torch/csrc/jit/testing/file_check.h>
namespace torch {
namespace jit {
using namespace torch::jit::tensorexpr;
TEST(CppPrinter, AllocateOnStackThenFree) {
std::vector<ExprPtr> dims = {alloc<IntImm>(2), alloc<IntImm>(3)};
BufPtr buf = alloc<Buf>("x", dims, kInt);
AllocatePtr alloc_ = alloc<Allocate>(buf);
FreePtr free_ = alloc<Free>(buf);
BlockPtr block = Block::make({alloc_, free_});
std::stringstream ss;
CppPrinter printer(&ss);
printer.visit(block);
const std::string expected = R"(
# CHECK: {
# CHECK: int x[6];
# CHECK: }
)";
torch::jit::testing::FileCheck().run(expected, ss.str());
}
TEST(CppPrinter, AllocateOnHeapThenFree) {
std::vector<ExprPtr> dims = {
alloc<IntImm>(20), alloc<IntImm>(50), alloc<IntImm>(3)};
BufPtr buf = alloc<Buf>("y", dims, kLong);
AllocatePtr alloc_ = alloc<Allocate>(buf);
FreePtr free_ = alloc<Free>(buf);
BlockPtr block = Block::make({alloc_, free_});
std::stringstream ss;
CppPrinter printer(&ss);
printer.visit(block);
// size(long) = 8;
// dim0 * dim1 * dim2 * size(long) = 24000.
const std::string expected = R"(
# CHECK: {
# CHECK: int64_t* y = static_cast<int64_t*>(malloc(24000));
# CHECK: free(y);
# CHECK: }
)";
torch::jit::testing::FileCheck().run(expected, ss.str());
}
} // namespace jit
} // namespace torch