pytorch/torch/testing/_internal/common_distributed.py
Pritam Damania f050b16dd9 Move pytorch distributed tests to separate folder for contbuild. (#30445)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30445

Create distributed and rpc directories under caffe/test for better management
of unit tests.

Differential Revision: D18702786

fbshipit-source-id: e9daeed0cfb846ef68806f6decfcb57c0e0e3606
2020-01-22 21:16:59 -08:00

284 lines
9.2 KiB
Python

from __future__ import absolute_import, division, print_function, unicode_literals
import sys
import tempfile
import time
import unittest
import logging
import six
import traceback
from collections import namedtuple
from functools import wraps
import torch
import torch.distributed as c10d
from functools import partial, reduce
from torch.testing._internal.common_utils import TestCase, TEST_WITH_ROCM
TestSkip = namedtuple('TestSkip', 'exit_code, message')
TEST_SKIPS = {
"multi-gpu": TestSkip(75, "Need at least 2 CUDA devices"),
"nccl": TestSkip(76, "c10d not compiled with NCCL support"),
"known_issues": TestSkip(77, "Test skipped due to known issues"),
"skipIfRocm": TestSkip(78, "Test skipped for ROCm")
}
def skip_if_not_multigpu(func):
"""Multi-GPU tests requires at least 2 GPUS. Skip if this is not met."""
@wraps(func)
def wrapper(*args, **kwargs):
if torch.cuda.is_available() and torch.cuda.device_count() >= 2:
return func(*args, **kwargs)
sys.exit(TEST_SKIPS['multi-gpu'].exit_code)
return wrapper
def skip_if_lt_x_gpu(x):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
if torch.cuda.is_available() and torch.cuda.device_count() >= x:
return func(*args, **kwargs)
sys.exit(TEST_SKIPS['multi-gpu'].exit_code)
return wrapper
return decorator
def skip_for_known_issues(func):
"""Skips a test due to known issues (for c10d)."""
@wraps(func)
def wrapper(*args, **kwargs):
sys.exit(TEST_SKIPS['known_issues'].exit_code)
return wrapper
def requires_gloo():
return unittest.skipUnless(
c10d.is_gloo_available(),
"c10d was not compiled with the Gloo backend",
)
def requires_nccl_version(version, msg):
if not c10d.is_nccl_available():
return unittest.skip(
"c10d was not compiled with the NCCL backend",
)
else:
return unittest.skipIf(
torch.cuda.nccl.version() < version,
"Requires NCCL version greater than or equal to: {}, found: {}, reason: {}".format(
version,
torch.cuda.nccl.version(), msg),
)
def requires_nccl():
return unittest.skipUnless(
c10d.is_nccl_available(),
"c10d was not compiled with the NCCL backend",
)
def requires_mpi():
return unittest.skipUnless(
c10d.is_mpi_available(),
"c10d was not compiled with the MPI backend",
)
def skip_if_rocm(func):
"""Skips a test for ROCm"""
@wraps(func)
def wrapper(*args, **kwargs):
if not TEST_WITH_ROCM:
return func(*args, **kwargs)
sys.exit(TEST_SKIPS['skipIfRocm'].exit_code)
return wrapper
TIMEOUT_DEFAULT = 100
TIMEOUT_OVERRIDE = {}
def get_timeout(test_id):
return TIMEOUT_OVERRIDE.get(test_id.split('.')[-1], TIMEOUT_DEFAULT)
def simple_sparse_reduce_tests(rank, world_size, num_inputs=1):
"""
Generate a number of basic test cases for sparse reduction.
These cover tensors with a varying number of sparse dimensions and a varying
number of dense dimensions. The only reduction operation we support is sum.
"""
def generate(rank, world_size, sparse_dims=1, dense_dims=0):
# First sparse dimension is [0..rank].
# Subsequent dimensions are always 0, so we know there is
# a non-empty intersection between any two sparse tensors.
indices = [range(rank + 1)]
shape = [world_size] + [2 for _ in range(dense_dims)]
for _ in range(sparse_dims - 1):
indices.append([0] * (rank + 1))
shape.append(world_size)
values = torch.ones([rank + 1] + [2 for _ in range(dense_dims)])
return torch.sparse_coo_tensor(indices, values, shape)
def compute_sum(fn, world_size):
return reduce(lambda a, b: a + b, [fn(rank, world_size) for rank in range(world_size)])
return [
(
[
fn(num_inputs * rank + i, num_inputs * world_size)
for i in range(num_inputs)
],
[
compute_sum(fn, num_inputs * world_size)
for i in range(num_inputs)
],
)
for fn in [
partial(generate, sparse_dims=1),
partial(generate, sparse_dims=2),
partial(generate, sparse_dims=3),
partial(generate, dense_dims=1),
partial(generate, dense_dims=2),
partial(generate, dense_dims=3),
]
]
class MultiProcessTestCase(TestCase):
MAIN_PROCESS_RANK = -1
# This exit code is used to indicate that the test code had an error and
# exited abnormally. There are certain tests that might use sys.exit() to
# simulate failures and in those cases, we can't have an exit code of 0,
# but we still want to ensure we didn't run into any other errors.
TEST_ERROR_EXIT_CODE = 10
@property
def world_size(self):
return 4
@staticmethod
def join_or_run(fn):
@wraps(fn)
def wrapper(self):
if self.rank == self.MAIN_PROCESS_RANK:
self._join_processes(fn)
else:
try:
fn(self)
except Exception as e:
logging.error('Caught exception: \n{}exiting process with exit code: {}'
.format(traceback.format_exc(), MultiProcessTestCase.TEST_ERROR_EXIT_CODE))
sys.exit(MultiProcessTestCase.TEST_ERROR_EXIT_CODE)
return wrapper
# The main process spawns N subprocesses that run the test.
# This function patches overwrites every test function to either
# assume the role of the main process and join its subprocesses,
# or run the underlying test function.
@classmethod
def setUpClass(cls):
for attr in dir(cls):
if attr.startswith('test'):
fn = getattr(cls, attr)
setattr(cls, attr, cls.join_or_run(fn))
def setUp(self):
super(MultiProcessTestCase, self).setUp()
self.skip_return_code_checks = []
self.rank = self.MAIN_PROCESS_RANK
self.file_name = tempfile.NamedTemporaryFile(delete=False).name
def tearDown(self):
super(MultiProcessTestCase, self).tearDown()
for p in self.processes:
p.terminate()
def _current_test_name(self):
# self.id() == e.g. '__main__.TestDistributed.TestAdditive.test_get_rank'
return self.id().split(".")[-1]
def _start_processes(self, proc):
self.processes = []
for rank in range(int(self.world_size)):
process = proc(
target=self.__class__._run,
name='process ' + str(rank),
args=(rank, self._current_test_name(), self.file_name))
process.start()
self.processes.append(process)
def _fork_processes(self):
if six.PY3:
proc = torch.multiprocessing.get_context("fork").Process
else:
proc = torch.multiprocessing.Process
self._start_processes(proc)
def _spawn_processes(self):
if six.PY3:
proc = torch.multiprocessing.get_context("spawn").Process
else:
raise RuntimeError("Cannot use spawn start method with Python 2")
self._start_processes(proc)
@classmethod
def _run(cls, rank, test_name, file_name):
self = cls(test_name)
self.rank = rank
self.file_name = file_name
# self.id() == e.g. '__main__.TestDistributed.test_get_rank'
# We're retrieving a corresponding test and executing it.
getattr(self, test_name)()
# exit to avoid run teardown() for fork processes
sys.exit(0)
def _join_processes(self, fn):
timeout = get_timeout(self.id())
start_time = time.time()
for p in self.processes:
p.join(timeout)
elapsed_time = time.time() - start_time
if fn in self.skip_return_code_checks:
self._check_no_test_errors(elapsed_time)
else:
self._check_return_codes(elapsed_time)
def _check_no_test_errors(self, elapsed_time):
"""
Checks that we didn't have any errors thrown in the child processes.
"""
for i, p in enumerate(self.processes):
if p.exitcode is None:
raise RuntimeError('Process {} timed out after {} seconds'.format(i, elapsed_time))
self.assertNotEqual(self.TEST_ERROR_EXIT_CODE, p.exitcode)
def _check_return_codes(self, elapsed_time):
"""
Checks that the return codes of all spawned processes match, and skips
tests if they returned a return code indicating a skipping condition.
"""
first_process = self.processes[0]
for i, p in enumerate(self.processes):
if p.exitcode is None:
raise RuntimeError('Process {} terminated or timed out after {} seconds'.format(i, elapsed_time))
self.assertEqual(p.exitcode, first_process.exitcode)
for skip in TEST_SKIPS.values():
if first_process.exitcode == skip.exit_code:
raise unittest.SkipTest(skip.message)
self.assertEqual(first_process.exitcode, 0)
@property
def is_master(self):
return self.rank == 0