pytorch/torch/csrc/jit/script/compiler.cpp
Zachary DeVito efefd1d7cf Unify aten_dispatch and aten_schema into a single operator abstraction with human-readable schema. (#8885)
Summary:
This is a series of two commits that should probably be read separately. They are stacked on top of #9018 since the second commit requires it for correctness.

Commit 1
=======

This commit is the first in a series that will clean up how we handle declaring operators and intrinsics in the JIT to make it more modular and readable. This introduces readable declarations that can be used to register operators and switches gen_jit_dispatch to generate this schema. A follow up PR will remove the dispatch keys like "add-3" and resolve ops directly based on the registered schema, further simplifying the generation process.

* Switches schema over to parsed declarations, in the future this will allow something like:

```
  registry.register_intrinsic("foo(Tensor a, Tensor b) -> Tensor", [](Stack& stack) {
    ...
  })
```

This will allow the scalable registration of intrinsics for lists, tuples, and other ops, as long as meta-data for these ops (e.g. derivatives and size propagation routines).

The declarations resemble those used by PythonArgParser but have been singificantly cleaned up to minimize the number of types that can appear in the declaration. We should strive to get the other parts of PyTorch switched over to this restricted declaration set when possible, but it is too much to do in a single PR. My hope is that eventually we will use a very similar language to describe declarations in C10, and this can serve as a guide for that.

Parsing is done using the script lexer, so it is very robust to whitespace and extensible for future types.

This removes the other way we encoded schema, and makes it easier to see what schema are registered.

Current generated declarations: https://gist.github.com/zdevito/a96a17766fb3a098d69a91ee00abaaf6

* Switches how we handle attempting to use an integer in the place of a fixed-sized int list, such as in conv (e.g. 'int[3] stride=1'). Now that we can statically distinguish between int and Tensor, we handle the expansion as an implicit conversion in the compiler. This allows us to simplify the interpreter since it no longer needs to handle the conversion itself.

* Schema declarations have been changed so that they match the type system in the IR exactly. In particular, attribute_info which was used by liftConstantAttributes has been dropped and constant attributes are lifted purely based on the type of the input. Type conversions in compiler have been simplified due to this change.

* Error highlighting in ErrorReport now only reports at most 20 lines of code, to make reading where an error occurred easier.

Commit 2
=======

This commit unifies aten_dispatch and aten_schema into a single Operator object that both contains schema and implementation information. In the future we can use this object to also contain functionality like shape prop and autodiff needed by all operators. Operators are registered globally, and dispatch logic uses the schema information to figure out which variant to use. Descriptor keys, a frequent source of inscrutable debug errors, have been removed.

* Introduce Operator, to replace TensorOp. Unlike TensorOp, we use Operator for all op implementations, including primitives that may occur in the graphs. The only exceptions are ops that are only known to the interpreter like jumps, and GraphExecutors where we need to record additional debug info.

* Adds a global registry for Operator implementations. aten_dispatch.cpp turns into register_aten_ops.cpp, which registers all the Operators for aten with the operator registry. register_prim_ops.cpp now contains the implementations for primitive operators that used to be in the interpreter. This means that it is now safe to use `getOperation(node)` to lookup the true interpreter function for the node, which will simplify const-propagation passes.

* Remove addInterpreterOpHandler in favor of global operator registry.

* Instead of descriptors, we match Node arguments directly against FunctionSchema describing expected inputs in `matchSchema`. `matchSchema` knows how parse both attributes and positional inputs from a node and match it to the appropriate registered operator. Debug error messages when we try to run an invalid operator are significantly improved: they now automatically display the schema for the op with the same name that are registered.

* Merge aten_schema into regsiter_aten_ops. Each Operator takes a string schema which is parsed to determine when to dispatch to that op.

* Cleans up gen_jit_dispatch.py now that we do not need to write out descriptors.  In particular, skip_scalar_overloads can be removed since Richard's code sorts declarations to put Tensor, Tensor declarations first.

* remove matchSchemaAndLiftConstantAttributes and use emitBuiltinCall instead to remove code duplication

* refactor stack manipulation functions into a separate header file.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/8885

Reviewed By: jamesr66a

Differential Revision: D8751048

Pulled By: zdevito

fbshipit-source-id: 312aabfbf88307c5f6ab947b6caf691468b94557
2018-07-10 10:24:48 -07:00

1738 lines
59 KiB
C++

#include "torch/csrc/jit/script/compiler.h"
#include "torch/csrc/jit/passes/lower_tuples.h"
#include "torch/csrc/jit/operator.h"
#include "torch/csrc/jit/interpreter.h"
#include "torch/csrc/jit/ir.h"
#include "torch/csrc/jit/script/parser.h"
#include "torch/csrc/utils/object_ptr.h"
#include "torch/csrc/jit/operator.h"
#include "torch/csrc/jit/tensor_conversions.h"
#include "ATen/optional.h"
#include <climits>
#include <set>
namespace torch {
namespace jit {
namespace script {
using SugaredValuePtr = std::shared_ptr<SugaredValue>;
using FunctionTable = std::unordered_map<std::string, Method&>;
using ValueTable = std::unordered_map<std::string, SugaredValuePtr>;
using AttributeMap = std::unordered_map<std::string, Const>;
using ListAttributeMap = std::unordered_map<std::string, std::vector<Const>>;
// what type will this have in the interpreter, ignoring extra static information
// in particular Tensor(2x3) -> Dynamic, and Tuple(Tensor(2x3),...) -> Tuple(Dynamic,...)
static TypePtr interpreterType(const TypePtr& type) {
if(TupleType* t = type->cast<TupleType>()) {
return std::make_shared<TupleType>(fmap(t->elements(), interpreterType));
} else if(type->kind() == TypeKind::TensorType) {
return DynamicType::get();
} else {
return type;
}
}
// Auxiliary data structure for desugaring variable binding into our always
// explicitly scoped language as we descend down
// nested control structures in the frontend (which themselves don't introduce
// scopes)
//
// The algorithm is roughly as follows:
// 1) While emitting a block within a control operator, add inputs and outputs
// from the block for each value referenced (both "reads" and "writes").
// This sets the value up as a candidate loop carried dependency.
// 2) When we reach the end of the block, examine all the values in the current
// scope's value map. If the name also resides in an outer scope with a
// different Value*, this is a true loop-carried dependency. If not, this
// value was not assigned to. Replace all references to the block input
// with the Value* pointed to in the tightest enclosing scope. Then delete
// that block input and output.
// 3) When we emit the actual control operator, take all of the loop-carried
// dependency values as inputs and return them as outputs from the control
// op
//
// Note that an alternative implementation could only add the loop-carried dep
// inputs and outputs when we see a value that is mutated. This, however
// requires replacing all references to that value *within the current
// block* with a new input. That is to say: we need to traverse the pre-
// decessor nodes and replace inputs that reference that value with the
// newly-created input. This could be made less expensive with a change to
// the IR API, but for now we choose to pessimisitically create inputs and
// delete unnecessary ones later with replaceAllusesWith().
struct Environment {
Environment(Method & method, const Resolver& resolver, Block* b, std::shared_ptr<Environment> next = nullptr)
: method(method), resolver(resolver), b(b), next(next) {}
Method & method;
const Resolver& resolver;
std::vector<std::string> captured_inputs;
Block* b;
std::shared_ptr<Environment> next;
SugaredValuePtr findInThisFrame(const std::string& name) {
if (value_table.count(name)) {
return value_table.at(name);
}
return nullptr;
}
SugaredValuePtr findInParentFrame(const std::string& name) {
return next ? next->findInAnyFrame(name) : nullptr;
}
SugaredValuePtr findInAnyFrame(const std::string& name) {
for (auto runner = this; runner; runner = runner->next.get()) {
if(auto r = runner->findInThisFrame(name)) {
return r;
}
}
return nullptr;
}
Value* getValueInThisFrame(const SourceRange& loc, const std::string& name) {
return value_table.at(name)->asValue(loc, method);
}
SugaredValuePtr createCapturedInput(Value* orig, const std::string& name) {
// Create the input
Value* new_input = b->addInput()->setType(orig->type());
// Associate this name with this value
auto sv = std::make_shared<SimpleValue>(new_input);
value_table[name] = sv;
// List as a positional input
captured_inputs.push_back(name);
return sv;
}
SugaredValuePtr createCapturedInputIfNeeded(const SourceRange& loc, std::string ident) {
auto in_frame = findInThisFrame(ident);
if (in_frame)
return in_frame;
// recursively handles the case where parent blocks are also loops
auto from_parent = next ? next->createCapturedInputIfNeeded(loc, ident) : nullptr;
// recursively create the captured input if it is the loop block
if (from_parent && getBlockOwningKind() == prim::Loop) {
if (Value* simple_val = asSimple(from_parent))
from_parent = createCapturedInput(simple_val, ident);
}
return from_parent;
}
Block* block() {
return b;
}
Symbol getBlockOwningKind() {
Symbol owning_kind = Symbol();
if (b->owningNode()) {
owning_kind = b->owningNode()->kind();
}
return owning_kind;
}
void setVar(const SourceRange& loc, const std::string& name, Value* value) {
setSugaredVar(loc, name, std::make_shared<SimpleValue>(value));
}
static Value* asSimple(SugaredValuePtr value) {
if(SimpleValue* sv = dynamic_cast<SimpleValue*>(value.get())) {
return sv->getValue();
}
return nullptr;
}
void setSugaredVar(const SourceRange& loc, const std::string& name, SugaredValuePtr value) {
Value* as_simple_value = asSimple(value);
if (as_simple_value)
as_simple_value->setUniqueName(name);
// prevent re-assignment involving any sugared values
// any reassignment like:
// a = ...
// while ...
// a = ..
// requires 'a' to be first-class in the graph since its value depends on
// control flow
if(auto parent = findInParentFrame(name)) {
if(!as_simple_value) {
throw ErrorReport(loc) << "Cannot re-assign '" << name << "' to a value of type " << value->kind() <<
" because " << name << " is not a first-class value. Only reassignments to first-class values are allowed";
}
Value* simple_parent = asSimple(parent);
if(!simple_parent) {
throw ErrorReport(loc) << "Cannot re-assign '" << name << "' because it has type " << value->kind() <<
" and " << name << " is not a first-class value. Only reassignments to first-class values are allowed";
}
if(!as_simple_value->type()->isSubtypeOf(*interpreterType(simple_parent->type()))) {
throw ErrorReport(loc) << "variable '" << name << "' previously has type " << simple_parent->type()->str()
<< " but is now being assigned to a value of type " << as_simple_value->type()->str();
}
}
if (as_simple_value)
createCapturedInputIfNeeded(loc, name);
value_table[name] = std::move(value);
}
SugaredValuePtr getSugaredVar(const Ident& ident, bool required=true) {
return getSugaredVar(ident.name(), ident.range());
}
Value* getVar(const Ident& ident) {
return getSugaredVar(ident)->asValue(ident.range(), method);
}
SugaredValuePtr getSugaredVar(const std::string& ident, SourceRange range, bool required=true) {
auto retval = createCapturedInputIfNeeded(range, ident);
if(!retval) {
retval = resolver(ident);
}
if (!retval && required) {
throw ErrorReport(range) << "undefined value " << ident;
}
return retval;
}
Value* getVar(const std::string& ident, SourceRange range) {
return getSugaredVar(ident, range)->asValue(range, method);
}
// Given that after emitting statements in a block, we've added block inputs
// for all value references and assignments, delete inputs for which there was
// no assignment, only references.
void deleteExtraInputs(const SourceRange& loc) {
// note: skip i == 0, it is the loop trip count for inputs
// and the loop condition for outputs.
// captured_inputs is indexed by i - 1 since it only contains loop
// carried dependencies
// inputs: loop_counter, lcd0, lcd1, ...
// outputs: loop_condition, lcd0, lcd1, ...
// captured_inputs: lcd0, lcd1, ...
JIT_ASSERT(b->inputs().size() == b->outputs().size());
JIT_ASSERT(b->inputs().size() == captured_inputs.size() + 1);
for(size_t i = b->inputs().size() - 1; i > 0; i--) {
// nothing changed along this loop
if(b->inputs()[i] == b->outputs()[i]) {
auto name = captured_inputs[i - 1];
Value* orig = findInParentFrame(name)->asValue(loc, method);
b->inputs()[i]->replaceAllUsesWith(orig);
b->eraseInput(i);
b->eraseOutput(i);
captured_inputs.erase(captured_inputs.begin() + i - 1);
}
}
}
std::vector<std::string> definedVariables() {
std::vector<std::string> result;
for(auto & kv : value_table) {
result.push_back(kv.first);
}
return result;
}
private:
ValueTable value_table;
};
std::shared_ptr<SugaredValue> packOutputs(Graph& g, at::ArrayRef<Value*> values) {
if(values.size() == 1) {
return std::make_shared<SimpleValue>(values[0]);
}
return std::make_shared<SimpleValue>(g.insertNode(g.createTuple(values))->output());
}
Value* createConstant(Graph& g, const SourceRange& loc, const at::Tensor& val) {
auto n = g.createConstant(val);
n->setSourceLocation(std::make_shared<SourceRange>(loc));
return g.insertNode(n)->output();
}
Value* createNumber(Graph& g, const SourceRange& loc, const at::Tensor& val) {
JIT_ASSERT(val.numel() == 1);
auto* output = createConstant(g, loc, val);
if (val.type().scalarType() == at::kLong) {
output->setType(IntType::get());
} else if (val.type().scalarType() == at::kFloat) {
output->setType(FloatType::get());
} else {
throw ErrorReport(loc) << "createNumber with unknown scalar type ("
<< val.type().scalarType() << "). Please file a bug report.";
}
return output;
}
Value* createStack(Graph& g, const SourceRange& loc, at::ArrayRef<Value*> inputs) {
// bake in constant propagation for the all-constant case because it is
// common to see constant lists like [1, 2] passed to attributes
bool all_constant = std::all_of(inputs.begin(), inputs.end(), [&](Value* v) {
return v->node()->kind() == prim::Constant;
});
if(all_constant) {
auto values = fmap(inputs, [&](Value* v) {
return v->node()->t(attr::value);
});
return createConstant(g, loc, at::stack(values));
}
return g.insertNode(g.create(aten::stack, inputs)
->i_(attr::dim, 0)
->setSourceLocation(std::make_shared<SourceRange>(loc)))->output();
}
static bool isTensorSubtype(Value* v) {
return v->type()->isSubtypeOf(*DynamicType::get());
}
static bool isNumberSubtype(const Value* v) {
return v->type()->isSubtypeOf(*NumberType::get());
}
static bool isNumberSubtype(const TypePtr& type) {
return type->isSubtypeOf(*NumberType::get());
}
at::optional<std::vector<int64_t>> getIntListAttribute(at::optional<int32_t> N, Value* input) {
auto list = constant_as<at::IntList>(input);
if(list)
return std::vector<int64_t>(*list);
// broadcast IntList[3] with value 4 -> {4, 4, 4}
if(!N)
return at::nullopt;
auto r = constant_as<int64_t>(input);
if(!r)
return at::nullopt;
// broadcast to attribute size
return std::vector<int64_t>(*N, *r);
}
// try to turn constant inputs into attributes
void liftConstantAttributes(const FunctionSchema& schema, Node* node) {
// we shouldn't start with attributes, just inputs
JIT_ASSERT(!node->hasAttributes());
std::vector<Value*> new_inputs;
Attributes<Node> attributes;
for(size_t i = 0, n = 0; i < schema.arguments.size(); ++i) {
const auto& arg = schema.arguments[i];
// this was a builtin with a vararg list lowered,
if(*arg.type == *ListType::ofTensors()) {
// we need to skip all the vararg nodes, and continue parsing the
// possible attribute nodes
size_t vararg_list_size = node->inputs().size() - (schema.arguments.size() - 1);
while(n < i + vararg_list_size) {
new_inputs.push_back(node->input(n++));
}
continue;
}
auto input = node->input(n++);
switch(arg.type->kind()) {
case TypeKind::IntType:{
auto r = constant_as<int64_t>(input);
if(!r)
return;
attributes.i_(Symbol::attr(arg.name), *r);
} break;
case TypeKind::FloatType: {
auto r = constant_as<double>(input);
if(!r)
return;
attributes.f_(Symbol::attr(arg.name), *r);
} break;
case TypeKind::NumberType: {
auto r = constant_as<at::Tensor>(input);
if(!r)
return;
attributes.t_(Symbol::attr(arg.name), *r);
} break;
case TypeKind::ListType: {
auto elem = arg.type->expect<ListType>()->getElementType();
if(elem->kind() == TypeKind::IntType) {
auto r = getIntListAttribute(arg.N, input);
if(!r)
return;
attributes.is_(Symbol::attr(arg.name), *r);
} else {
// only IntLists can become attributes, other
// types are not attribute-able
new_inputs.push_back(input);
}
} break;
default:
new_inputs.push_back(input);
}
}
// nothing changed no need to modify the node
if(!attributes.hasAttributes())
return;
node->removeAllInputs();
for(Value* input : new_inputs) {
node->addInput(input);
}
node->copyAttributes(attributes);
}
at::ArrayRef<Value*> createTupleUnpack(Value* v) {
// small peephole optimization to ensure IntList attributes can still turn
// into constants e.g. in x.expand([3, 4])
if(v->node()->kind() == prim::TupleConstruct)
return v->node()->inputs();
auto & g = *v->owningGraph();
return g.insertNode(g.createTupleUnpack(v))->outputs();
}
static Value* numToTensor(
const SourceRange& loc,
Graph& graph,
Value* value) {
JIT_ASSERT(isNumberSubtype(value));
auto* result = graph.insertNode(graph.create(prim::NumToTensor, {value})
->setSourceLocation(std::make_shared<SourceRange>(loc)))
->output();
result->setType(DynamicType::get());
return result;
}
static Value* tensorToNum(
const SourceRange& loc,
Graph& graph,
Value* value,
const TypePtr type) {
JIT_ASSERT(isTensorSubtype(value));
JIT_ASSERT(isNumberSubtype(type));
auto* result = graph.insertNode(graph.create(prim::TensorToNum, {value})
->setSourceLocation(std::make_shared<SourceRange>(loc)))
->output();
result->setType(type);
return result;
}
static inline bool isIntUsedAsIntList(
const Value* value,
const Argument& arg) {
// Look for int[N]
return value->type()->kind() == TypeKind::IntType &&
*arg.type == *ListType::ofInts() && arg.N;
}
at::optional<std::vector<Value*>> tryMatchSchema(
const FunctionSchema& schema,
const SourceRange& loc,
Graph& graph,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
std::ostream& failure_messages) {
auto err = [&]() -> std::ostream& {
failure_messages << "\nfor operator " << schema << ":\n";
return failure_messages;
};
std::vector<at::optional<NamedValue>> positional_inputs(schema.arguments.size(), at::nullopt);
size_t total_inputs = attributes.size() + inputs.size();
if(total_inputs > schema.arguments.size()) {
err() << "expected at most " << schema.arguments.size() << " arguments "
<< "but found " << total_inputs << "\n" << loc << "\n";
return at::nullopt;
}
// fill in positional arguments
for(size_t i = 0; i < inputs.size(); ++i) {
positional_inputs[i] = inputs[i];
}
// fill in named arguments
for(const NamedValue& nv : attributes) {
auto idx = schema.argumentIndexWithName(nv.name);
if(!idx) {
err() << "unknown keyword argument '" << nv.name << "'\n" << nv.loc;
return at::nullopt;
}
if(positional_inputs[*idx]) {
err() << "argument '" << nv.name << "' specified twice \n" << nv.loc;
return at::nullopt;
}
positional_inputs[*idx] = nv;
}
// fill in default values
for(size_t i = 0; i < positional_inputs.size(); ++i) {
if(positional_inputs[i])
continue;
auto default_value = schema.arguments[i].default_value;
if(!default_value) {
err() << "argument '" << schema.arguments[i].name << "' not provided.\n" << loc;
return at::nullopt;
}
positional_inputs[i] = NamedValue(
loc,
i,
createConstant(graph, loc, *default_value)
->setType(schema.arguments[i].type));
}
// check input types
std::vector<Value*> flat_inputs;
for(size_t i = 0; i < schema.arguments.size(); ++i) {
NamedValue v = *positional_inputs[i];
const auto& arg = schema.arguments[i];
// some functions that take lists of integers for fixed size arrays
// also allow single ints to be passed in their place.
// the single int is then repeated to the length of the list
if (isIntUsedAsIntList(v.value, arg)) {
std::vector<Value*> repeated(*arg.N, v.value);
v.value = graph.insertNode(graph.createTuple(repeated))->output();
}
// Tuples of integers are created using TuplePack which we do not actually
// support in the interpreter, so we have to replace it with a
// stack call, which creates a Tensor to represent the list.
if(*ListType::ofInts() == *arg.type &&
v.value->type()->kind() == TypeKind::TupleType &&
v.value->type()->isSubtypeOf(*ListType::ofInts())) {
auto unpacked = createTupleUnpack(v.value);
// elements are numbers so we have to convert to tensors before
// stack will be valid
auto unpacked_t = fmap(unpacked, [&](Value* e) {
return numToTensor(v.loc, graph, e);
});
v.value = createStack(graph, loc, unpacked_t)->setType(ListType::ofInts());
}
// implicit conversion from Tensor to Python Number
// FIXME: remove this when we support passing numbers into script fns
if (isTensorSubtype(v.value) && isNumberSubtype(arg.type)) {
v.value = tensorToNum(loc, graph, v.value, arg.type);
}
if(!v.value->type()->isSubtypeOf(*arg.type)) {
err() << "expected a value of type " << arg.type->str() << " for argument '" << arg.name << "' but found "
<< v.value->type()->str() << "\n"
<< v.loc;
return at::nullopt;
}
// we only support tensor lists for builtins, where they must be flattened
if(arg.type->isSubtypeOf(*ListType::ofTensors())) {
auto outputs = createTupleUnpack(v.value);
flat_inputs.insert(flat_inputs.end(), outputs.begin(), outputs.end());
} else {
flat_inputs.push_back(v.value);
}
}
return flat_inputs;
}
static std::shared_ptr<SugaredValue> tryEmitBuiltin(
const FunctionSchema& schema,
std::stringstream& failure_messages,
const SourceRange& loc,
Method& method,
const std::string & name,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes) {
auto graph = method.graph();
auto flat_inputs = tryMatchSchema(schema, loc, *graph, inputs, attributes, failure_messages);
if(!flat_inputs)
return nullptr;
// we successfully matched this schema, construct the node
// note: we always construct purely positional nodes here
// the pass liftConstantAttributes replaces the node with with one that
// uses attributes if all the attributes ended up as constants
NodeKind kind(Symbol::aten(name));
auto n = graph->insertNode(graph->create(kind, *flat_inputs, 0))
->setSourceLocation(std::make_shared<SourceRange>(loc));
size_t num_outputs = schema.returns.size();
// special case for chunk when the chunks=<const> is known
// DO NOT ADD MORE SPECIAL CASES HERE, REFACTOR INTO A FUNCTION IF
// NEEDED
if(n->kind() == aten::chunk) {
auto value = constant_as<int64_t>((*flat_inputs)[1]);
if(!value) {
throw ErrorReport(loc) << "argument 'chunks' must be a constant";
}
num_outputs = *value;
}
for(size_t i = 0; i < num_outputs; ++i)
n->addOutput();
liftConstantAttributes(schema, n);
// assert that we did indeed create an op that has implementation
// otherwise schema and dispatch are not in sync
getOperation(n);
return packOutputs(*graph, n->outputs());
}
static std::string prefixLine(const std::string& str, std::string prefix) {
std::stringstream ss;
bool was_newline = true;
for(auto c : str) {
if(was_newline)
ss << prefix;
ss.put(c);
was_newline = c == '\n';
}
return ss.str();
}
std::shared_ptr<SugaredValue> emitBuiltinCall(
const SourceRange& loc,
Method& method,
const std::string & name,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
// if true, emitBuiltinCall will throw an exception if this builtin does not exist,
// otherwise it will return nullptr if the builtin is not found.
bool required) {
const auto& variants = getAllOperatorsFor(Symbol::aten(name));
std::stringstream failure_messages;
for (const std::shared_ptr<Operator>& op : variants) {
if (auto result = tryEmitBuiltin(
op->schema, failure_messages, loc, method, name, inputs, attributes)) {
return result;
}
}
// none of the options worked
if(!required) {
return nullptr;
}
if(variants.size() == 0) {
throw ErrorReport(loc) << "unknown builtin op";
}
throw ErrorReport(loc) << "arguments for call are not valid:\n"
<< prefixLine(failure_messages.str(), " ")
<< "for call at";
}
struct NoneValue : SugaredValue {
NoneValue() {}
virtual std::string kind() const override {
return "None";
}
};
static Value* ensureTensor(const SourceRange& range, Value* v) {
if(!isTensorSubtype(v)) {
throw ErrorReport(range) << "expected a tensor value but found a "
<< *v->type();
}
return v;
}
static Value* ensureTensorOrNumber(const SourceRange& range, Value* v) {
if(!isNumberSubtype(v) && !isTensorSubtype(v)) {
throw ErrorReport(range) << "expected a Number or Tensor value but found a "
<< *v->type();
}
return v;
}
void ensureTensors(const SourceRange& range, at::ArrayRef<Value*> values) {
for(auto value : values) {
ensureTensor(range, value);
}
}
static Value* identity(const SourceRange& range, Value* v) {
return v;
}
std::shared_ptr<SugaredValue> BuiltinFunction::call(
SourceRange loc,
Method & m,
at::ArrayRef<NamedValue> inputs_,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) {
std::vector<NamedValue> inputs;
if (value)
inputs.push_back(*value);
inputs.insert(inputs.end(), inputs_.begin(), inputs_.end());
return emitBuiltinCall(loc, m, name, inputs, attributes, true);
}
struct to_ir {
to_ir(
Def def,
FunctionTable& function_table,
const Resolver& resolver,
SugaredValuePtr self,
Method& method) // method being constructed
: method(method)
, graph(method.graph())
, def(def)
, function_table(function_table)
, resolver(resolver)
, environment_stack(nullptr) {
pushFrame(graph->block());
std::vector<Argument> arguments, returns; // for schema
// inputs
auto it = def.params().begin();
auto end = def.params().end();
if(self) {
if(it == end)
throw ErrorReport(def.params().range()) << "methods must have a self argument";
environment_stack->setSugaredVar(def.range(), (*it).ident().name(), self);
++it;
}
for(;it != end; ++it) {
auto& name = (*it).ident().name();
arguments.push_back({name, DynamicType::get()});
environment_stack->setVar((*it).ident().range(), name, graph->addInput(name));
}
// body
auto stmts = def.statements();
auto stmts_begin = stmts.begin();
auto stmts_end = stmts.end();
bool has_return = false;
if (stmts_begin != stmts_end && (*std::prev(stmts_end)).kind() == TK_RETURN) {
--stmts_end;
has_return = true;
}
emitStatements(stmts_begin, stmts_end);
// outputs
if (has_return) {
auto return_stmt = Return(*stmts_end);
auto results = getValues(return_stmt.values(), true, identity);
// a single return value that is a tuple expands in place:
// return a
if (return_stmt.values().size() == 1 && results.size() == 1) {
auto result = results.at(0);
if(result->type()->cast<TupleType>()) {
results = createTupleUnpack(result);
}
}
ensureTensors(return_stmt.range(), results);
for(auto r : results) {
graph->registerOutput(r);
returns.push_back({"", DynamicType::get()});
}
}
method.setSchema({def.name().name(), std::move(arguments), std::move(returns)});
// remove any uses of tuples that we inserted
LowerTuples(graph);
}
private:
Method& method;
std::shared_ptr<Graph> graph;
Def def;
FunctionTable& function_table;
const Resolver& resolver;
// Singly-linked list of environments. This top element contains a member
// `next` that points to the most immediate enclosing scope's value.
std::shared_ptr<Environment> environment_stack;
void pushFrame(Block * b) {
environment_stack = std::make_shared<Environment>(method, resolver, b, environment_stack);
}
std::shared_ptr<Environment> popFrame() {
auto old_frame = environment_stack;
environment_stack = environment_stack->next;
return old_frame;
}
void emitStatements(const List<Stmt>& statements) {
return emitStatements(statements.begin(), statements.end());
}
void emitStatements(List<Stmt>::const_iterator begin, List<Stmt>::const_iterator end) {
for (; begin != end; ++begin) {
auto stmt = *begin;
switch (stmt.kind()) {
case TK_IF:
emitIf(If(stmt));
break;
case TK_WHILE:
emitWhile(While(stmt));
break;
case TK_FOR:
emitFor(For(stmt));
break;
case TK_ASSIGN:
emitAssignment(Assign(stmt));
break;
case TK_GLOBAL:
for (auto ident : Global(stmt).names()) {
const auto& name = Ident(ident).name();
environment_stack->setVar(ident.range(), name, graph->addInput(name));
}
break;
case TK_EXPR_STMT: {
auto exprs = ExprStmt(stmt).exprs();
for (const auto& expr : exprs) {
emitSugaredExpr(expr, 0);
}
}
break;
case TK_RETURN:
throw ErrorReport(stmt) << "return statements can appear only at the end "
<< "of the function body";
break;
}
}
}
std::shared_ptr<Environment> emitSingleIfBranch(
Block* b,
const List<Stmt> branch) {
pushFrame(b);
WithInsertPoint guard(b);
emitStatements(branch);
return popFrame();
}
Node* create(Symbol kind, const SourceRange& loc, size_t n_outputs) {
return graph
->create(kind, n_outputs)
->setSourceLocation(std::make_shared<SourceRange>(loc));
}
Value* emitTernaryIf(const TernaryIf& expr) {
Value* cond_value = emitExpr(expr.cond());
Node* n = graph->insertNode(create(prim::If, expr.range(), 0));
n->addInput(cond_value);
auto* true_block = n->addBlock();
auto* false_block = n->addBlock();
auto emit_if_expr = [this](Block* b, const Expr& expr) {
pushFrame(b);
WithInsertPoint guard(b);
Value* out_val = emitExpr(expr);
b->registerOutput(out_val);
popFrame();
};
emit_if_expr(true_block, expr.true_expr());
emit_if_expr(false_block, expr.false_expr());
// Add op outputs
auto expr_value = n->addOutput(); // Resulting value
return expr_value;
}
void emitIf(const If& stmt) {
Value* cond_value = emitExpr(stmt.cond());
Node* n = graph->insertNode(create(prim::If, stmt.range(), 0));
n->addInput(cond_value);
auto* true_block = n->addBlock();
auto* false_block = n->addBlock();
// Emit both blocks once to get the union of all mutated values
auto save_true = emitSingleIfBranch(true_block, stmt.trueBranch());
auto save_false = emitSingleIfBranch(false_block, stmt.falseBranch());
// In python, every variable assigned in an if statement escapes
// the scope of the if statement (all variables are scoped to the function).
// Script is a subset of python: we consider variables to be in scope
// as long as there is a definition of the variable along all paths
// through the if statemnent
// ----
// if ...:
// a =
// else:
// ...
// ... = a # error, a is not defined along all paths
// ----
// if ...:
// a =
// else:
// a =
// ... = a # OK, a is defined along all paths
// ----
// a = ...
// if ...:
// a =
// ... = a # OK, a is defined along all paths
//ordered set, because we want deterministic graph output
std::set<std::string> mutated_variables;
for(auto & v : save_true->definedVariables()) {
if(save_false->findInAnyFrame(v)) {
mutated_variables.insert(v);
}
}
for(auto & v : save_false->definedVariables()) {
if(save_true->findInAnyFrame(v)) {
mutated_variables.insert(v);
}
}
// Register outputs in each block
for (const auto& x : mutated_variables) {
auto tv = save_true->getVar(x, stmt.range());
true_block->registerOutput(tv);
auto fv = save_false->getVar(x, stmt.range());
false_block->registerOutput(fv);
environment_stack->setVar(stmt.range(), x, n->addOutput()->setType(tv->type()));
}
}
// *********************** Loop Operators ************************************
// Emits a loop operators conforming to the semantics specified at
// https://github.com/onnx/onnx/blob/master/docs/Operators.md#experimental-loop
// TODO: implement scan_outputs
// the format of the Loop instruction is:
// loop_carried_outputs* = Loop(max_trip_count, start_condition,
// loop_carried_inputs*)
// block0(loop_counter, loop_carried_block*) {
// <body>
// -> (continue_condition,
// loop_carried_block_outputs*)
// }
// all loop_carried_... lists are the same length and represent the value of
// loop-carried variables whose definitions are updated as the loop executes
// in a way that ensure single static assignment.
void emitLoopCommon(
SourceRange range,
at::optional<Expr> max_trip_count,
at::optional<Expr> cond,
const List<Stmt>& body,
at::optional<Ident> itr_ident) {
Node* n = graph->insertNode(create(prim::Loop, range, 0));
Value *max_trip_count_val, *cond_val;
{
WithInsertPoint guard(n);
if (max_trip_count) {
max_trip_count_val = emitExpr(max_trip_count.value(), ensureTensorOrNumber);
} else {
max_trip_count_val =
emitConst(Const::create(range, std::to_string(INT_MAX)));
}
if (cond) {
cond_val = emitExpr(cond.value(), ensureTensorOrNumber);
} else {
cond_val = emitBooleanConst(range, true);
}
}
n->addInput(max_trip_count_val);
n->addInput(cond_val);
auto* body_block = n->addBlock();
Value* trip_count = body_block->addInput(); // Iteration num
{
pushFrame(body_block);
if (itr_ident) {
environment_stack->setVar(itr_ident->range(), itr_ident->name(), trip_count);
}
WithInsertPoint guard(body_block);
emitStatements(body);
// Also emit the conditional
if (cond) {
Value* body_cond_value = emitExpr(cond.value(), ensureTensorOrNumber);
body_block->registerOutput(body_cond_value);
} else {
Value* cond_value_dummy = emitBooleanConst(range, true);
body_block->registerOutput(cond_value_dummy);
}
auto body_frame = popFrame();
auto outer_frame = environment_stack;
// Add block outputs to correspond to each captured input
// some of these will be removed.
for (const auto& x : body_frame->captured_inputs) {
auto fv = body_frame->getValueInThisFrame(range, x);
body_block->registerOutput(fv);
}
// Remove inputs for values that did not mutate within the
// block
body_frame->deleteExtraInputs(range);
// register node inputs/outputs for the true loop carried deps,
for(size_t i = 0; i < body_frame->captured_inputs.size(); ++i) {
auto x = body_frame->captured_inputs[i];
n->addInput(outer_frame->getVar(x, range));
// body_block->inputs(): loop_counter, lcd0, lcd1, ...
// captured_inputs: lcd0, lcd1, ...
auto typ = body_block->inputs()[i + 1]->type();
outer_frame->setVar(range, x, n->addOutput()->setType(typ));
}
}
}
void emitForRange(SourceRange range, const Ident& target, const List<Expr>& args, const List<Stmt>& body) {
// TODO: start, stop, step loop
if (args.size() != 1) {
throw ErrorReport(range)
<< "range() expects 1 argument but got " << args.size();
}
emitLoopCommon(range, {args[0]}, {}, body, target);
}
void emitFor(const For& stmt) {
// For now, we only support range loops. e.g. for i in range(3): ...
auto targets = stmt.targets();
auto itrs = stmt.itrs();
auto body = stmt.body();
if (stmt.itrs().size() != 1) {
throw ErrorReport(stmt)
<< "List of iterables is not supported currently.";
}
if (targets.size() != 1) {
throw ErrorReport(stmt) << "Iteration variable unpacking is not supported";
}
if (targets[0].kind() != TK_VAR) {
throw ErrorReport(targets[0]) << "Starred unpacking is currently not"
<< " supported for for loops.";
}
auto target = Var(targets[0]).name();
// match range(<expr>) style loops
// itrs must consist of a single Apply node
if (itrs[0].kind() == TK_APPLY) {
Apply range_iterator = Apply(itrs[0]);
if (range_iterator.callee().kind() == TK_VAR) {
Var var = Var(range_iterator.callee());
if (var.name().name() == "range") {
return emitForRange(stmt.range(), target, range_iterator.inputs(), body);
}
}
}
// it isn't a range(<expr>) loop, treat it as a sugared value that maybe can be
// unrolled
auto sv = emitSugaredExpr(itrs[0], 1);
auto instances = sv->asTuple(stmt.range(), method);
const std::string& target_name = target.name();
pushFrame(environment_stack->block());
for(auto inst : instances) {
environment_stack->setSugaredVar(itrs[0].range(), target_name, inst);
emitStatements(body);
}
for (const auto & n : environment_stack->definedVariables()) {
if (environment_stack->findInParentFrame(n)) {
environment_stack->next->setVar(stmt.range(), n, environment_stack->getVar(n, stmt.range()));
}
}
popFrame();
}
void emitWhile(const While& stmt) {
auto cond = stmt.cond();
emitLoopCommon(stmt.range(), {}, {cond}, stmt.body(), {});
}
// Validate that the `lhs` Expr's in an assignment statement are valid. That
// is:
//
// 1) All lhs Expr's are either Var or Starred nodes
// 2) There is at most one Starred node in the lhs Expr
// 3) A Starred node can only appear when there is another non-Starred lhs Expr
// Concretely this means that `*abc = func()` is illegal. Unpacking all
// outputs into a tuple is covered by `abc = func()`.
bool calcNumStarredUnpack(const List<Expr>& lhs, const SourceRange& r) {
size_t num_normal_assign = 0;
size_t num_starred = 0;
for (const auto& assignee : lhs) {
if (assignee.kind() == TK_VAR) {
num_normal_assign++;
} else if (assignee.kind() == TK_STARRED) {
num_starred++;
} else {
throw ErrorReport(assignee)
<< "lhs of assignment must be a variable or starred expression.";
}
}
if (num_starred > 1) {
throw ErrorReport(r)
<< "Only one starred expression is allowed on the lhs.";
}
if (num_starred > 0 && num_normal_assign == 0) {
throw ErrorReport(r) << "A Starred expression may only appear on the "
<< "lhs within the presence of another non-starred"
<< " expression.";
}
return num_starred;
}
void emitAssignment(const Assign& stmt) {
bool starred_unpack = calcNumStarredUnpack(stmt.lhs(), stmt.range());
if (stmt.reduction() != '=') {
if (stmt.lhs().size() != 1) {
throw ErrorReport(stmt)
<< "reductions are only allowed when there is a single variable "
<< "on the left-hand side.";
}
Ident lhs = Var(stmt.lhs()[0]).name();
Expr expr = BinOp::create(stmt.range(), stmt.reduction(),
Var::create(lhs.range(), lhs), stmt.rhs());
environment_stack->setVar(lhs.range(), lhs.name(), emitExpr(expr));
return;
}
// See [N_BINDERS]
size_t n_binders = stmt.lhs().size();
if(starred_unpack)
n_binders--;
auto output = emitSugaredExpr(stmt.rhs(), n_binders);
if(stmt.lhs().size() == 1) {
JIT_ASSERT(!starred_unpack);
auto v = Var(stmt.lhs()[0]);
environment_stack->setSugaredVar(v.range(), v.name().name(), output);
return;
}
auto outputs = output->asTuple(stmt.rhs().range(), method);
if(outputs.size() < n_binders) {
throw ErrorReport(stmt)
<< "need " << (starred_unpack ? "at least " : "")
<< n_binders << " values to unpack but found only "
<< outputs.size();
}
if(outputs.size() > n_binders && !starred_unpack) {
throw ErrorReport(stmt)
<< "too many values to unpack, need " << n_binders << " but found "
<< outputs.size();
}
int i = 0;
for (auto assignee : stmt.lhs()) {
if (assignee.kind() == TK_VAR) {
environment_stack->setSugaredVar(assignee.range(), Var(assignee).name().name(), outputs.at(i));
i++;
} else if (assignee.kind() == TK_STARRED) {
auto var = Starred(assignee).expr();
if (var.kind() != TK_VAR) {
throw ErrorReport(var) << "Cannot pack a tuple into a non-variable.";
}
size_t n_matched = outputs.size() - n_binders;
ArrayRef<std::shared_ptr<SugaredValue>> outputs_ref = outputs;
auto values = fmap(outputs_ref.slice(i, n_matched), [&](const std::shared_ptr<SugaredValue>& v) {
return v->asValue(assignee.range(), method);
});
auto tup = graph->insertNode(graph->createTuple(values))->output();
environment_stack->setVar(
var.range(), Var(var).name().name(), tup);
i += n_matched;
}
}
}
NodeKind getNodeKind(int kind, int ninputs) {
switch (kind) {
case '+':
return aten::add;
case '-':
return aten::sub;
case TK_UNARY_MINUS:
return aten::neg;
case '*':
return aten::mul;
case TK_POW:
return aten::pow;
case '@':
return aten::matmul;
case TK_STARRED:
return prim::Starred;
case '/':
return aten::div;
case TK_NE:
return aten::ne;
case TK_EQ:
return aten::eq;
case '<':
return aten::lt;
case '>':
return aten::gt;
case TK_LE:
return aten::le;
case TK_GE:
return aten::ge;
case TK_AND:
return aten::__and__;
case TK_OR:
return aten::__or__;
case TK_NOT:
return aten::__not__;
default:
throw std::runtime_error("unknown kind " + std::to_string(kind));
}
}
std::vector<NamedValue> getNamedValues(
TreeList trees,
bool maybe_unpack=false,
std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) {
std::vector<NamedValue> values;
size_t next_arg = 0;
for (const auto& tree : trees) {
if(maybe_unpack && tree->kind() == TK_STARRED) {
auto starred = Starred(tree);
auto entries = emitSugaredExpr(starred.expr(), 1)->asTuple(starred.range(), method);
for(auto entry : entries) {
values.push_back(NamedValue(
tree->range(),
next_arg++,
post_process(
starred.range(), entry->asValue(starred.range(), method))));
}
} else {
values.push_back(NamedValue(
tree->range(), next_arg++, emitExpr(Expr(tree), post_process)));
}
}
return values;
}
std::vector<NamedValue> getNamedValues(
List<Expr> trees,
bool maybe_unpack=false,
std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) {
return getNamedValues(trees.tree()->trees(), maybe_unpack, post_process);
}
std::vector<Value*> getValues(
TreeList trees,
bool maybe_unpack=false,
std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) {
return toValues(getNamedValues(trees, maybe_unpack, post_process));
}
std::vector<Value*> getValues(
List<Expr> trees,
bool maybe_unpack=false,
std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) {
return getValues(trees.tree()->trees(), maybe_unpack, post_process);
}
// special rules apply when we directly call foo(a,b) when foo is an ident
std::shared_ptr<SugaredValue> emitApplyIdent(Ident ident, const std::vector<NamedValue>& inputs, at::ArrayRef<NamedValue> attributes, size_t n_binders) {
auto it = function_table.find(ident.name());
if (it != function_table.end()) {
return packOutputs(*graph, method.emit_call_to(ident.range(), it->second, inputs, attributes));
} else if (ident.name() == "print") {
if (!attributes.empty())
throw ErrorReport(ident) << "print doesn't accept any keyword arguments";
ensureTensors(ident.range(), toValues(inputs));
emitNode(prim::Print, ident.range(), toValues(inputs), 0);
return std::make_shared<NoneValue>();
}
if(auto result = emitBuiltinCall(ident.range(), method, ident.name(), inputs, attributes, false)) {
return result;
}
// it wasn't known built in, so treat it like standard apply
return emitApplyExpr(Var::create(ident.range(), ident), inputs, attributes, n_binders);
}
std::shared_ptr<SugaredValue> emitApplyExpr(Expr callee, const std::vector<NamedValue>& inputs, at::ArrayRef<NamedValue> attributes, size_t n_binders) {
// otherwise we evaluate the callee and then desugar it
auto sv = emitSugaredExpr(callee, 1);
return sv->call(callee.range(), method, inputs, attributes, n_binders);
}
Value* emitExpr(Expr tree, std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) {
return post_process(tree.range(), emitSugaredExpr(tree, 1)->asValue(tree.range(), method));
}
NodeKind reverseComparision(NodeKind kind) {
if (kind == aten::lt) {
return aten::gt;
} else if (kind == aten::le) {
return aten::ge;
} else if (kind == aten::gt) {
return aten::lt;
} else if (kind == aten::ge) {
return aten::le;
}
throw std::runtime_error("reverseComparision: unsupported NodeKind. File a bug");
}
std::vector<NamedValue> toNamedValues(
const SourceRange& loc,
ArrayRef<Value*> inputs) {
return fmap(inputs, [&](Value* v) {
return NamedValue(loc, "", v);
});
}
Value* emitBasicMath(
const SourceRange& loc,
Method& method,
NodeKind kind,
at::ArrayRef<Value*> inputs) {
auto sugared_ptr = emitBuiltinCall(
loc,
method,
kind.toUnqualString(),
toNamedValues(loc, inputs),
/*attributes=*/{},
/*required=*/true);
auto simple_ptr = std::dynamic_pointer_cast<SimpleValue>(sugared_ptr);
JIT_ASSERT(simple_ptr);
return simple_ptr->getValue();
}
// Handles binary python math ops.
Value* emitPythonMath(
const SourceRange& loc,
Method& method,
NodeKind kind,
Value* lhs,
Value* rhs) {
// Assume lhs, rhs are either IntType or FloatType.
bool lhs_is_float = lhs->type()->kind() == TypeKind::FloatType;
bool rhs_is_float = rhs->type()->kind() == TypeKind::FloatType;
JIT_ASSERT(lhs_is_float || lhs->type()->kind() == TypeKind::IntType);
JIT_ASSERT(rhs_is_float || rhs->type()->kind() == TypeKind::IntType);
auto out_type = lhs->type();
if (kind == aten::ge || kind == aten::le || kind == aten::eq ||
kind == aten::gt || kind == aten::lt || kind == aten::ne) {
// Stand-in for bool type.
out_type = NumberType::get();
} else {
// If the types are different, one must be FloatType.
// We should promote the other value to FloatType.
if (lhs_is_float != rhs_is_float) {
out_type = FloatType::get();
}
}
// Strategy: cast inputs to tensor, perform op, recast to number
lhs = numToTensor(loc, *graph, lhs);
rhs = numToTensor(loc, *graph, rhs);
// FIXME: support (python) math between IntType and FloatType.
// Here, without loss of generality, let's say lhs is a float and rhs is an
// int. We should insert an aten::type_as(lhs, rhs) node into the graph.
// However, the graph fuser generally has problems working with scalar tensors
// (#8560), so we don't support this right now.
if (lhs_is_float != rhs_is_float) {
throw std::runtime_error("NYI: math between float and int. See #8560.");
}
auto* out = emitBasicMath(loc, method, kind, { lhs, rhs });
return tensorToNum(loc, *graph, out, out_type);
}
// math ops between a tensor and a number require that the number be the
// the same type (ScalarType and Backend) as the tensor, because numbers
// in the JIT are represented as scalar tensors.
// This function casts the number to the same type as the tensor.
Value* emitTensorNumberMath(
const SourceRange& loc,
Method& method,
NodeKind kind,
Value* lhs,
Value* rhs) {
auto rhs_kind = rhs->type()->kind();
JIT_ASSERT(rhs_kind == TypeKind::FloatType || rhs_kind == TypeKind::IntType);
JIT_ASSERT(isTensorSubtype(lhs));
rhs = numToTensor(loc, *graph, rhs);
auto args = { rhs, lhs };
rhs = graph->insertNode(graph->create(aten::type_as, args))
->output();
return emitBasicMath(loc, method, kind, { lhs, rhs });
}
// Handles binary math ops.
Value* emitMath(
const SourceRange& loc,
Method& method,
NodeKind kind,
ArrayRef<Value*> inputs) {
JIT_ASSERT(inputs.size() == 2);
auto& lhs = inputs[0];
auto& rhs = inputs[1];
bool lhs_is_number = isNumberSubtype(lhs);
bool lhs_is_tensor = isTensorSubtype(lhs);
bool rhs_is_number = isNumberSubtype(rhs);
bool rhs_is_tensor = isTensorSubtype(rhs);
JIT_ASSERT(lhs_is_tensor || lhs_is_number);
JIT_ASSERT(rhs_is_tensor || rhs_is_number);
if (lhs_is_number && rhs_is_number) {
return emitPythonMath(loc, method, kind, lhs, rhs);
}
if (lhs_is_number && rhs_is_tensor) {
// commutative operations: just swap the args
if (kind == aten::mul || kind == aten::add ||
kind == aten::ne || kind == aten::eq) {
return emitTensorNumberMath(loc, method, kind, rhs, lhs);
// rsub
} else if (kind == aten::sub) {
auto* node = emitNode(aten::neg, loc, { rhs }, 1);
return emitTensorNumberMath(loc, method, aten::add, node->output(), lhs);
// rdiv
} else if (kind == aten::div) {
auto* node = emitNode(aten::reciprocal, loc, { rhs }, 1);
return emitTensorNumberMath(loc, method, aten::mul, node->output(), lhs);
// Comparision ops: swap args and use reverse comparison
} else if (kind == aten::lt || kind == aten::le ||
kind == aten::gt || kind == aten::ge) {
return emitTensorNumberMath(loc, method,
reverseComparision(kind),
rhs, lhs);
} else {
throw std::runtime_error("Unknown node kind, please file a bug report");
}
}
if (lhs_is_tensor && rhs_is_number) {
return emitTensorNumberMath(loc, method, kind, lhs, rhs);
}
return emitBasicMath(loc, method, kind, inputs);
}
// Handles unary math ops.
Value* emitUnaryMath(
const SourceRange& loc,
Method& method,
NodeKind kind,
ArrayRef<Value*> inputs) {
JIT_ASSERT(inputs.size() == 1);
auto* in = inputs[0];
bool in_is_number = isNumberSubtype(in);
bool in_is_tensor = isTensorSubtype(in);
JIT_ASSERT(in_is_number || in_is_tensor);
if (in_is_tensor) {
return emitBasicMath(loc, method, kind, inputs);
}
// Cast to tensor, perform op, recast to number
auto out_type = in->type();
in = numToTensor(loc, *graph, in);
auto* out = emitBasicMath(loc, method, kind, { in });
return tensorToNum(loc, *graph, out, out_type);
}
// any expression that can produce a SugaredValue is handled here
// expressions that only return a single Value* are handled in emitSimpleExpr
std::shared_ptr<SugaredValue> emitSugaredExpr(Expr tree, size_t n_binders) {
switch(tree.kind()) {
case TK_VAR:
return environment_stack->getSugaredVar(Var(tree).name());
case '.': {
auto select = Select(tree);
auto sv = emitSugaredExpr(select.value(), 1);
return sv->attr(select.range(), method, select.selector().name());
}
case TK_APPLY: {
auto apply = Apply(tree);
auto inputs = getNamedValues(apply.inputs(), true, identity);
auto attributes = fmap(apply.attributes(), [&](const Attribute& attr) {
return NamedValue(attr.range(), attr.name().name(), emitExpr(attr.value(), identity));
});
// the apply is directly an identifier 'foo'
if(apply.callee().kind() == TK_VAR) {
return emitApplyIdent(Var(apply.callee()).name(), inputs, attributes, n_binders);
}
return emitApplyExpr(apply.callee(), inputs, attributes, n_binders);
} break;
default:
return std::make_shared<SimpleValue>(emitSimpleExpr(tree));
}
}
Value* emitSimpleExpr(
const TreeRef& tree) {
switch (tree->kind()) {
case '@':
case TK_POW:
case TK_AND:
case TK_OR:
case TK_NOT: {
const auto& inputs = tree->trees();
auto kind = getNodeKind(tree->kind(), inputs.size());
return emitNode(kind, tree->range(), getValues(inputs), 1)->output();
} break;
case TK_NE:
case TK_EQ:
case '<':
case '>':
case TK_LE:
case TK_GE:
case '*':
case '/':
case '+':
case '-': {
const auto& inputs = tree->trees();
auto kind = getNodeKind(tree->kind(), inputs.size());
auto input_vals = getValues(inputs, /*maybe_unpack*/false, ensureTensorOrNumber);
return emitMath(tree->range(), method, kind, input_vals);
}
case TK_UNARY_MINUS: {
const auto& inputs = tree->trees();
auto kind = getNodeKind(tree->kind(), inputs.size());
auto input_vals = getValues(inputs, /*maybe_unpack*/false, ensureTensorOrNumber);
return emitUnaryMath(tree->range(), method, kind, input_vals);
}
case TK_STARRED: {
throw ErrorReport(tree) << "Unexpected starred expansion. File a bug report.";
}
case TK_CAST: {
const auto cast = Cast(tree);
return emitCast(cast.input(), cast.type());
} break;
case TK_CONST: {
return emitConst(Const(tree));
} break;
case TK_TRUE: {
return emitBooleanConst(tree->range(), true);
} break;
case TK_FALSE: {
return emitBooleanConst(tree->range(), false);
} break;
case TK_SLICE: {
const auto slice = Slice(tree);
return emitSlice(
slice.range(),
{slice.value(), slice.startOr(0), slice.endOr(-1)});
} break;
case TK_GATHER: {
const auto gather = Gather(tree);
return emitGather(
gather.range(), {gather.value(), gather.indices()});
} break;
case TK_IF_EXPR: {
return emitTernaryIf(TernaryIf(tree));
} break;
case TK_LIST_LITERAL: {
auto ll = ListLiteral(tree);
auto values = getValues(ll.inputs(), /*maybe_unpack=*/true, identity);
return graph->insertNode(graph->createTuple(values))->output();
} break;
default:
throw ErrorReport(tree) << "NYI: " << tree;
break;
}
}
Value* emitCast(Expr input, const ScalarType& type) {
at::ScalarType t;
switch (type.kind()) {
case TK_INT:
t = at::kInt;
break;
case TK_FLOAT:
t = at::kFloat;
break;
case TK_LONG:
t = at::kLong;
break;
case TK_BOOL:
t = at::kByte;
break;
default:
throw ErrorReport(input) << "Unrecognized type: " << type;
}
return emitNode(
Symbol::aten("type_as"),
input.range(),
{emitExpr(input), createConstant(*graph, input.range(), at::ones({1}, t))},
1)
->output();
}
Value* emitBooleanConst(SourceRange range, bool val) {
return createConstant(*graph, range, at::CPU(at::kByte).scalarTensor(val));
}
Value* emitConst(const Const& c) {
if (c.isFloatingPoint()) {
return createNumber(
*graph,
c.range(),
at::CPU(at::kFloat).scalarTensor(c.asFloatingPoint()));
} else {
return createNumber(
*graph,
c.range(),
at::CPU(at::kLong).scalarTensor(c.asIntegral()));
}
}
Node* emitNode(
NodeKind kind,
const SourceRange& loc,
const std::vector<Value*> inputs,
size_t n_outputs) {
Node* n = graph->insertNode(create(kind, loc, n_outputs));
for (auto* input_value : inputs) {
n->addInput(input_value);
}
return n;
}
// Desugars slice syntactic sugar tensor[begin:end] -> tensor.slice(begin,
// end).
Value* emitSlice(
const SourceRange& loc,
TreeList&& inputs) {
const auto applyInputs =
Compound::create(TK_LIST, loc, std::move(inputs));
const auto input_values = getNamedValues(applyInputs->trees(),
/*maybe_unpack*/false,
ensureTensorOrNumber);
NamedValue tensor = input_values[0];
NamedValue begin = input_values[1];
NamedValue end = input_values[2];
NamedValue dim = NamedValue(loc, "dim",
createConstant(*graph, loc, at::CPU(at::kLong).scalarTensor(0)));
NamedValue step = NamedValue(loc, "step",
createConstant(*graph, loc, at::CPU(at::kLong).scalarTensor(1)));
return emitBuiltinCall(
loc, method, "slice", {tensor, dim, begin, end, step}, {}, true)
->asValue(loc, method);
}
// Desugars gather syntactic sugar tensor[idx] -> tensor.select(idx).
Value* emitGather(
const SourceRange& loc,
TreeList&& inputs) {
const auto applyInputs =
Compound::create(TK_LIST, loc, std::move(inputs));
auto input_values = getNamedValues(applyInputs->trees(),
/*maybe_unpack*/false,
ensureTensorOrNumber);
NamedValue tensor = input_values[0];
NamedValue dim = NamedValue(
loc,
"dim",
createConstant(*graph, loc, at::CPU(at::kLong).scalarTensor(0)));
NamedValue idx = input_values[1];
return emitBuiltinCall(loc, method, "select", {tensor, dim, idx}, {}, true)
->asValue(loc, method);
}
};
// support syntax sugar for x.foo(y, z) by allowing x.foo to return a
// callable value that will resolve to foo(x, y, z) when called.
std::shared_ptr<SugaredValue> SimpleValue::attr(SourceRange loc, Method & m, const std::string& field) {
return std::make_shared<BuiltinFunction>(field, NamedValue(loc, "self", value));
}
std::vector<Value*> inlineCallTo(Graph& g, Graph& callee, ArrayRef<Value*> inputs) {
std::unordered_map<Value*, Value*> value_map;
auto value_map_func = [&](Value* v) { return value_map.at(v); };
JIT_ASSERT(callee.inputs().size() == inputs.size());
for (size_t i = 0; i < inputs.size(); ++i) {
value_map[callee.inputs()[i]] = inputs[i];
}
for (auto* node : callee.nodes()) {
auto* new_node =
g.insertNode(g.createClone(node, value_map_func));
for (size_t i = 0; i < node->outputs().size(); ++i) {
value_map[node->outputs()[i]] = new_node->outputs()[i];
}
}
std::vector<Value*> outputs;
for (auto* output : callee.outputs()) {
outputs.push_back(value_map_func(output));
}
return outputs;
}
void defineMethodsInModule(Module & m, const std::vector<Def>& definitions, const std::vector<Resolver>& resolvers, SugaredValuePtr self) {
FunctionTable table;
JIT_ASSERT(definitions.size() == resolvers.size());
auto resolver_it = resolvers.begin();
std::vector<Method*> methods;
for(Def def : definitions) {
const std::string& name = def.name().name();
Resolver resolver = *resolver_it++;
auto creator = [def, &table, resolver, self](Method& method) {
to_ir(def, table, resolver, self, method);
};
Method& method = m.create_method(name, creator);
// if self is defined, then these are methods and do not go into the global namespace
// otherwise, they get defined together so we add them to the function table
// so the methods can see each other
if(!self) {
auto result = table.emplace(name, method);
JIT_ASSERT(result.second);
}
methods.push_back(&method);
}
for(Method* method : methods) {
method->ensure_defined();
}
}
void defineMethodsInModule(Module & m, const std::string& source, const Resolver& resolver, SugaredValuePtr self) {
Parser p(source);
std::vector<Def> definitions;
std::vector<Resolver> resolvers;
while (p.lexer().cur().kind != TK_EOF) {
definitions.push_back(Def(p.parseFunction()));
resolvers.push_back(resolver);
}
defineMethodsInModule(m, definitions, resolvers, self);
}
std::shared_ptr<Graph> compileFunction(Def def, const Resolver& resolver) {
Module m; //note: we don't use 'm' to execute so this setting is unused
defineMethodsInModule(m, {def}, {resolver}, nullptr);
return m.get_method(def.name().name()).graph();
}
std::vector<std::shared_ptr<SugaredValue>> SimpleValue::asTuple(SourceRange loc, Method& m) {
if(value->type()->kind() == TypeKind::TupleType) {
auto outputs = createTupleUnpack(value);
return fmap(outputs, [](Value* v) -> std::shared_ptr<SugaredValue> {
return std::make_shared<SimpleValue>(v);
});
}
throw ErrorReport(loc) << value->type()->str() << " cannot be used as a tuple";
}
void ensureSizeMatches(SourceRange loc, size_t expected, size_t actual, const std::string& what) {
if(expected != actual) {
throw ErrorReport(loc) << "expected " << expected << " " << what << " but found " << actual;
}
}
} // namespace script
} // namespace jit
} // namespace torch