pytorch/caffe2/python/layers_test.py
Yinghai Lu ef8f556212
[Caffe2] Changes done inside Facebook (#6378)
* fix unit test for sqrt op

From the error logging:

[idx, grad, grad_estimate] are:
[[ 146.            0.5           0.45776367]
 [ 147.            0.5           0.45776367]

The gradient == 0.5 is correct, which means the SqrtOp and its gradient is doing right job. (Because y = sqrt(x), loss = y^2/2 = x/2, and then d(loss)/dx = 1/2 = 0.5; )

The test failed because of numerical problem of grad_estimate (in unit test). It can be because the step_size is small, and float precision is not high (when there are multiple elements in the tensor, we do sum(y^2) to compute loss)

This diff
- increase the step size, and also move the test cases to be further away from 0 (where sqrt(x) is not well defined) to be safe :)
- also clean up, and merge the test case for inplace Vs. non-inplace

Tested with:

`CAFFE2_HYPOTHESIS_PROFILE=debug ai_bt caffe2/caffe2/python/operator_test:elementwise_ops_test -- "test_sqrt"`

* CompositeReader & CompositeReaderBuilder

A new type of reader gluing multiple readers together.

* Back out "Revert D7394363: [GanH]: Log D Trick for Cross Entropy with Sigmoid"

Original commit changeset: 9325a4356dbe

* [dai][WIP] convert params to int8 on ps before sending to trainer

Add float->uint8 conversion in addition to float->fp16 conversion in model_saver.

* [easy] improve unit test for sparse length sum ops

as desc.

#accept2ship

* Update GitHub upstream to 771fcb3455

* move sparse hash unique ops to OOS and add unit tests

- move the SparseHash version to OOS, since 'sparsehash' is already deps of caffe2 OOS: https://fburl.com/arssw4n1
- The 'SparseHash' engine is also being used in OOS, so the SparseHash version shall be in OOS to reduce confusion: https://fburl.com/o5ea7ah2

- fix the CUDA UniqueOp for the case when batch is empty.
- add unit test

* group_norm_op for caffe2

This is the cuda op for Group Normalization (GN): https://arxiv.org/abs/1803.08494

This code implements GN in one op that computes Y=gamma * (X-mu) / sigma + beta and also its gradients. It is expected to have minimal memory consumption (similar to the BN op), without creating new blobs if GN were implemented as several ops (e.g., reshape, norm_mean/std, affine_channel).

* Resubmit D7405233: disappeared in D7464958

OOS publish causes the op missing -- however, test was still there

* [c2] add sparse hash engine for cuda unique op

The SparseHash version of UniqueOp copy input tensor to CPU, and make use of sparse hash map to get unique output, and then copy back to GPU.

* [dper][gpu] enable unit testing gpu trainer for sparse nn

to debug the GPU trainer using mock data in unit test.

make it easier to develop GPU trainer for new models.

* Reuse Gloo context for Synchronize() calls

Previously we were creating (and leaking) the Gloo context on each call to Synchronize(). Now only run the common world op and create the barrier net once, then run the barrier net on each Synchronize() call. Since timeout is associated with the Gloo context, assert that the timeout is fixed instead of trying to handle the complexity of multiple timeouts (and associated contexts).

* [GanH/WGAN][1/n]: add FC param clipping

as titled

* [mobile] minimizing changes between caffe2_benchmark and speed_benchmark

* [GanH]: enable diagnose within model

avoid finding blob names but to directly enable inside the model

* Add `net_transformer_fun` option to DPM

This callback allows for various transformations to be made to the
model after gradient operators have been added. The immediate motivation for
this is to allow transformations such has "checkpoint-and-recompute" which
allow trading off memory for additional compute.

Adding several callbacks like this has made DPM's API less than ideal at this
stage. However, I could not find any reasonable alternative.

* [DT] [33/n] Compile flow task groups

task groups need to compiled in order to pickle the object in fblearner. However I also changed the Job's compile function as creating new object is not necessary.

* Initial commit for sparse_normalize vectorization and benchmark

* [GanH]: LB Calibration for JSD

as titled

* Tracing event in async executor

Adding event tracing through TRACE_EVENT macro in async executor

* [Resubmit] D7409751 Reseting book-keeping blobs when the reservoir is reset

D7409751 got lost in D7464958

* Visualizing realtime weights values

we want to visualize the weights values as optimizer is iterating. This diff supports to visual the weights at an assigned index.
Currently, we assume the blob to be 2 dimensional.

* [GanH][Easy]: Fix Homotopy Weighting

apparantely, there was a bug in homotopy weight (alpha, beta) update

* [c2] move sparse hash unique op out of oss

so that oss do not need to depend on google hash map.

* Get rid of std::round as it's not supported on Android

* Revert changes on setup.py

* Skip shaky test on Dataio

* fix
2018-04-10 21:11:43 -07:00

1846 lines
66 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import hypothesis.strategies as st
import numpy as np
import numpy.testing as npt
import unittest
from hypothesis import given
import caffe2.python.hypothesis_test_util as hu
from caffe2.python import (
layer_model_instantiator,
core,
schema,
workspace,
)
from caffe2.python.layers.layers import (
InstantiationContext,
)
from caffe2.python.layers.tags import Tags
from caffe2.python.layer_test_util import (
LayersTestCase,
OpSpec,
)
from caffe2.python.layers.layers import (
IdList,
set_request_only,
is_request_only_scalar,
get_key,
)
import logging
logger = logging.getLogger(__name__)
class TestLayers(LayersTestCase):
def testAddLoss(self):
input_record_LR = self.new_record(
schema.Struct(
('label', schema.Scalar((np.float64, (1, )))),
('logit', schema.Scalar((np.float32, (2, )))),
('weight', schema.Scalar((np.float64, (1, ))))
)
)
loss_LR = self.model.BatchLRLoss(input_record_LR)
self.model.add_loss(loss_LR)
assert 'unnamed' in self.model.loss
self.assertEqual(
schema.Scalar((np.float32, tuple())), self.model.loss.unnamed
)
self.assertEqual(loss_LR, self.model.loss.unnamed)
self.model.add_loss(loss_LR, 'addLoss')
assert 'addLoss' in self.model.loss
self.assertEqual(
schema.Scalar((np.float32, tuple())), self.model.loss.addLoss
)
self.assertEqual(loss_LR, self.model.loss.addLoss)
self.model.add_loss(
schema.Scalar(
dtype=np.float32, blob=core.BlobReference('loss_blob_1')
), 'addLoss'
)
assert 'addLoss_auto_0' in self.model.loss
self.assertEqual(
schema.Scalar((np.float32, tuple())), self.model.loss.addLoss_auto_0
)
assert core.BlobReference('loss_blob_1') in self.model.loss.field_blobs()
self.model.add_loss(
schema.Struct(
(
'structName', schema.Scalar(
dtype=np.float32,
blob=core.BlobReference('loss_blob_2')
)
)
), 'addLoss'
)
assert 'addLoss_auto_1' in self.model.loss
self.assertEqual(
schema.Struct(('structName', schema.Scalar((np.float32, tuple())))),
self.model.loss.addLoss_auto_1
)
assert core.BlobReference('loss_blob_2') in self.model.loss.field_blobs()
loss_in_tuple_0 = schema.Scalar(
dtype=np.float32, blob=core.BlobReference('loss_blob_in_tuple_0')
)
loss_in_tuple_1 = schema.Scalar(
dtype=np.float32, blob=core.BlobReference('loss_blob_in_tuple_1')
)
loss_tuple = schema.NamedTuple(
'loss_in_tuple', * [loss_in_tuple_0, loss_in_tuple_1]
)
self.model.add_loss(loss_tuple, 'addLoss')
assert 'addLoss_auto_2' in self.model.loss
self.assertEqual(
schema.Struct(
('loss_in_tuple_0', schema.Scalar((np.float32, tuple()))),
('loss_in_tuple_1', schema.Scalar((np.float32, tuple())))
), self.model.loss.addLoss_auto_2
)
assert core.BlobReference('loss_blob_in_tuple_0')\
in self.model.loss.field_blobs()
assert core.BlobReference('loss_blob_in_tuple_1')\
in self.model.loss.field_blobs()
def testAddOutputSchema(self):
# add the first field
self.model.add_output_schema('struct', schema.Struct())
expected_output_schema = schema.Struct(('struct', schema.Struct()))
self.assertEqual(
self.model.output_schema,
expected_output_schema,
)
# add the second field
self.model.add_output_schema('scalar', schema.Scalar(np.float64))
expected_output_schema = schema.Struct(
('struct', schema.Struct()),
('scalar', schema.Scalar(np.float64)),
)
self.assertEqual(
self.model.output_schema,
expected_output_schema,
)
# overwrite a field should raise
with self.assertRaises(AssertionError):
self.model.add_output_schema('scalar', schema.Struct())
def _test_net(self, net, ops_list):
"""
Helper function to assert the net contains some set of operations and
then to run the net.
Inputs:
net -- the network to test and run
ops_list -- the list of operation specifications to check for
in the net
"""
ops_output = self.assertNetContainOps(net, ops_list)
workspace.RunNetOnce(net)
return ops_output
def testFCWithoutBias(self):
output_dims = 2
fc_without_bias = self.model.FCWithoutBias(
self.model.input_feature_schema.float_features, output_dims)
self.model.output_schema = fc_without_bias
self.assertEqual(
schema.Scalar((np.float32, (output_dims, ))),
fc_without_bias
)
train_init_net, train_net = self.get_training_nets()
init_ops = self.assertNetContainOps(
train_init_net,
[
OpSpec("UniformFill", None, None),
]
)
mat_mul_spec = OpSpec(
"MatMul",
[
self.model.input_feature_schema.float_features(),
init_ops[0].output[0],
],
fc_without_bias.field_blobs()
)
self.assertNetContainOps(train_net, [mat_mul_spec])
predict_net = self.get_predict_net()
self.assertNetContainOps(predict_net, [mat_mul_spec])
def testSparseLookupSumPooling(self):
record = schema.NewRecord(self.model.net, schema.Struct(
('sparse', schema.Struct(
('sparse_feature_0', schema.List(
schema.Scalar(np.int64,
metadata=schema.Metadata(categorical_limit=1000)))),
)),
))
embedding_dim = 64
embedding_after_pooling = self.model.SparseLookup(
record.sparse.sparse_feature_0, [embedding_dim], 'Sum')
self.model.output_schema = schema.Struct()
self.assertEqual(
schema.Scalar((np.float32, (embedding_dim, ))),
embedding_after_pooling
)
train_init_net, train_net = self.get_training_nets()
init_ops = self.assertNetContainOps(
train_init_net,
[
OpSpec("UniformFill", None, None),
OpSpec("ConstantFill", None, None),
]
)
sparse_lookup_op_spec = OpSpec(
'SparseLengthsSum',
[
init_ops[0].output[0],
record.sparse.sparse_feature_0.items(),
record.sparse.sparse_feature_0.lengths(),
],
[embedding_after_pooling()]
)
self.assertNetContainOps(train_net, [sparse_lookup_op_spec])
predict_net = self.get_predict_net()
self.assertNetContainOps(predict_net, [sparse_lookup_op_spec])
@given(
use_hashing=st.booleans(),
modulo=st.integers(min_value=100, max_value=200),
)
def testSparseFeatureHashIdList(self, use_hashing, modulo):
record = schema.NewRecord(
self.model.net,
schema.List(schema.Scalar(
np.int64,
metadata=schema.Metadata(categorical_limit=60000)
))
)
output_schema = self.model.SparseFeatureHash(
record,
modulo=modulo,
use_hashing=use_hashing)
self.model.output_schema = output_schema
self.assertEqual(len(self.model.layers), 1)
self.assertEqual(output_schema._items.metadata.categorical_limit,
modulo)
train_init_net, train_net = self.get_training_nets()
@given(
use_hashing=st.booleans(),
modulo=st.integers(min_value=100, max_value=200),
)
def testSparseFeatureHashIdScoreList(self, use_hashing, modulo):
record = schema.NewRecord(self.model.net,
schema.Map(schema.Scalar(np.int64,
metadata=schema.Metadata(
categorical_limit=60000)),
np.float32))
output_schema = self.model.SparseFeatureHash(
record,
modulo=modulo,
use_hashing=use_hashing)
self.model.output_schema = output_schema
self.assertEqual(len(self.model.layers), 1)
self.assertEqual(output_schema._items.keys.metadata.categorical_limit,
modulo)
train_init_net, train_net = self.get_training_nets()
def testSparseLookupIncorrectPositionWeightedOnIdList(self):
'''
Currently the implementation of SparseLookup assumed input is id_score_list
when use PositionWeighted.
'''
record = schema.NewRecord(self.model.net, schema.Struct(
('sparse', schema.Struct(
('sparse_feature_0', schema.List(
schema.Scalar(np.int64,
metadata=schema.Metadata(categorical_limit=1000)))),
)),
))
embedding_dim = 64
with self.assertRaises(AssertionError):
self.model.SparseLookup(
record.sparse.sparse_feature_0, [embedding_dim], 'PositionWeighted')
def testSparseLookupPositionWeightedOnIdList(self):
record = schema.NewRecord(self.model.net, schema.Struct(
('sparse', schema.Struct(
('sparse_feature_0', schema.List(
schema.Scalar(np.int64,
metadata=schema.Metadata(categorical_limit=1000)))),
)),
))
# convert id_list to id_score_list with PositionWeighted layer
sparse_segment = record.sparse.sparse_feature_0
pos_w_layer = self.model.PositionWeighted(sparse_segment)
sparse_segment = schema.Map(
keys=get_key(sparse_segment),
values=pos_w_layer.position_weights,
lengths_blob=sparse_segment.lengths
)
embedding_dim = 64
embedding_after_pooling = self.model.SparseLookup(
sparse_segment, [embedding_dim], 'PositionWeighted')
self.model.output_schema = schema.Struct()
self.assertEqual(
schema.Scalar((np.float32, (embedding_dim, ))),
embedding_after_pooling
)
train_init_net, train_net = self.get_training_nets()
self.assertNetContainOps(
train_init_net,
[
OpSpec("ConstantFill", None, None), # position_weights/pos_w
OpSpec("UniformFill", None, None),
OpSpec("ConstantFill", None, None),
]
)
self.assertNetContainOps(train_net, [
OpSpec("LengthsRangeFill", None, None),
OpSpec("Gather", None, None),
OpSpec("SparseLengthsWeightedSum", None, None),
])
predict_net = self.get_predict_net()
self.assertNetContainOps(predict_net, [
OpSpec("LengthsRangeFill", None, None),
OpSpec("Gather", None, None),
OpSpec("SparseLengthsWeightedSum", None, None),
])
def testSparseLookupPositionWeightedOnIdScoreList(self):
record = schema.NewRecord(self.model.net, schema.Struct(
('sparse', schema.Struct(
('id_score_list_0', schema.Map(
schema.Scalar(
np.int64,
metadata=schema.Metadata(
categorical_limit=1000
),
),
np.float32
)),
)),
))
embedding_dim = 64
embedding_after_pooling = self.model.SparseLookup(
record.sparse.id_score_list_0, [embedding_dim], 'PositionWeighted')
self.model.output_schema = schema.Struct()
self.assertEqual(
schema.Scalar((np.float32, (embedding_dim, ))),
embedding_after_pooling
)
train_init_net, train_net = self.get_training_nets()
init_ops = self.assertNetContainOps(
train_init_net,
[
OpSpec("UniformFill", None, None),
OpSpec("ConstantFill", None, None),
]
)
sparse_lookup_op_spec = OpSpec(
'SparseLengthsWeightedSum',
[
init_ops[0].output[0],
record.sparse.id_score_list_0.values(),
record.sparse.id_score_list_0.keys(),
record.sparse.id_score_list_0.lengths(),
],
[embedding_after_pooling()]
)
self.assertNetContainOps(train_net, [sparse_lookup_op_spec])
predict_net = self.get_predict_net()
self.assertNetContainOps(predict_net, [sparse_lookup_op_spec])
def testPairwiseDotProductWithAllEmbeddings(self):
embedding_dim = 64
N = 5
record = schema.NewRecord(self.model.net, schema.Struct(
('all_embeddings', schema.Scalar(
((np.float32, (N, embedding_dim)))
)),
))
current = self.model.PairwiseDotProduct(
record, N * N)
self.assertEqual(
schema.Scalar((np.float32, (N * N, ))),
current
)
train_init_net, train_net = self.get_training_nets()
self.assertNetContainOps(train_init_net, [])
self.assertNetContainOps(train_net, [
OpSpec("BatchMatMul", None, None),
OpSpec("Flatten", None, None),
])
def testPairwiseDotProductWithXandYEmbeddings(self):
embedding_dim = 64
record = schema.NewRecord(self.model.net, schema.Struct(
('x_embeddings', schema.Scalar(
((np.float32, (5, embedding_dim)))
)),
('y_embeddings', schema.Scalar(
((np.float32, (6, embedding_dim)))
)),
))
current = self.model.PairwiseDotProduct(
record, 5 * 6)
self.assertEqual(
schema.Scalar((np.float32, (5 * 6, ))),
current
)
train_init_net, train_net = self.get_training_nets()
self.assertNetContainOps(train_init_net, [])
self.assertNetContainOps(train_net, [
OpSpec("BatchMatMul", None, None),
OpSpec("Flatten", None, None),
])
def testPairwiseDotProductWithXandYEmbeddingsAndGather(self):
embedding_dim = 64
output_idx = [1, 3, 5]
output_idx_blob = self.model.add_global_constant(
str(self.model.net.NextScopedBlob('pairwise_dot_product_gather')),
output_idx,
dtype=np.int32,
)
indices_to_gather = schema.Scalar(
(np.int32, len(output_idx)),
output_idx_blob,
)
record = schema.NewRecord(self.model.net, schema.Struct(
('x_embeddings', schema.Scalar(
((np.float32, (5, embedding_dim)))
)),
('y_embeddings', schema.Scalar(
((np.float32, (6, embedding_dim)))
)),
('indices_to_gather', indices_to_gather),
))
current = self.model.PairwiseDotProduct(
record, len(output_idx))
# This assert is not necessary,
# output size is passed into PairwiseDotProduct
self.assertEqual(
schema.Scalar((np.float32, (len(output_idx), ))),
current
)
train_init_net, train_net = self.get_training_nets()
self.assertNetContainOps(train_init_net, [])
self.assertNetContainOps(train_net, [
OpSpec("BatchMatMul", None, None),
OpSpec("Flatten", None, None),
OpSpec("BatchGather", None, None),
])
def testPairwiseDotProductIncorrectInput(self):
embedding_dim = 64
record = schema.NewRecord(self.model.net, schema.Struct(
('x_embeddings', schema.Scalar(
((np.float32, (5, embedding_dim)))
)),
))
with self.assertRaises(AssertionError):
self.model.PairwiseDotProduct(
record, 25)
record = schema.NewRecord(self.model.net, schema.Struct(
('all_embeddings', schema.List(np.float32))
))
with self.assertRaises(AssertionError):
self.model.PairwiseDotProduct(
record, 25)
def testConcat(self):
embedding_dim = 64
input_record = self.new_record(schema.Struct(
('input1', schema.Scalar((np.float32, (embedding_dim, )))),
('input2', schema.Scalar((np.float32, (embedding_dim, )))),
('input3', schema.Scalar((np.float32, (embedding_dim, )))),
))
output = self.model.Concat(input_record)
self.assertEqual(
schema.Scalar((np.float32, ((len(input_record.fields) * embedding_dim, )))),
output
)
# Note that in Concat layer we assume first dimension is batch.
# so input is B * embedding_dim
# add_axis=1 make it B * 1 * embedding_dim
# concat on axis=1 make it B * N * embedding_dim
output = self.model.Concat(input_record, axis=1, add_axis=1)
self.assertEqual(
schema.Scalar((np.float32, ((len(input_record.fields), embedding_dim)))),
output
)
def testSamplingTrain(self):
output_dims = 1000
indices = self.new_record(schema.Scalar((np.int32, (10,))))
sampling_prob = self.new_record(schema.Scalar((np.float32, (10, ))))
sampled_fc = self.model.SamplingTrain(
schema.Struct(
('input', self.model.input_feature_schema.float_features),
('indices', indices),
('sampling_prob', sampling_prob),
),
"FC",
output_dims,
)
self.model.output_schema = sampled_fc
# Check that we don't add prediction layer into the model
self.assertEqual(1, len(self.model.layers))
self.assertEqual(
schema.Scalar((np.float32, (output_dims, ))),
sampled_fc
)
train_init_net, train_net = self.get_training_nets()
init_ops = self.assertNetContainOps(
train_init_net,
[
OpSpec("UniformFill", None, None),
OpSpec("UniformFill", None, None),
]
)
sampled_fc_layer = self.model.layers[0]
gather_w_spec = OpSpec(
"Gather",
[
init_ops[0].output[0],
indices(),
],
[
sampled_fc_layer._prediction_layer.train_param_blobs[0]
]
)
gather_b_spec = OpSpec(
"Gather",
[
init_ops[1].output[0],
indices(),
],
[
sampled_fc_layer._prediction_layer.train_param_blobs[1]
]
)
train_fc_spec = OpSpec(
"FC",
[
self.model.input_feature_schema.float_features(),
] + sampled_fc_layer._prediction_layer.train_param_blobs,
sampled_fc.field_blobs()
)
log_spec = OpSpec("Log", [sampling_prob()], [None])
sub_spec = OpSpec(
"Sub",
[sampled_fc.field_blobs()[0], None],
sampled_fc.field_blobs()
)
train_ops = self.assertNetContainOps(
train_net,
[gather_w_spec, gather_b_spec, train_fc_spec, log_spec, sub_spec])
self.assertEqual(train_ops[3].output[0], train_ops[4].input[1])
predict_net = self.get_predict_net()
self.assertNetContainOps(
predict_net,
[
OpSpec(
"FC",
[
self.model.input_feature_schema.float_features(),
init_ops[0].output[0],
init_ops[1].output[0],
],
sampled_fc.field_blobs()
)
]
)
def testBatchLRLoss(self):
input_record = self.new_record(schema.Struct(
('label', schema.Scalar((np.float64, (1,)))),
('logit', schema.Scalar((np.float32, (2,)))),
('weight', schema.Scalar((np.float64, (1,))))
))
loss = self.model.BatchLRLoss(input_record)
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
def testMarginRankLoss(self):
input_record = self.new_record(schema.Struct(
('pos_prediction', schema.Scalar((np.float32, (1,)))),
('neg_prediction', schema.List(np.float32)),
))
pos_items = np.array([0.1, 0.2, 0.3], dtype=np.float32)
neg_lengths = np.array([1, 2, 3], dtype=np.int32)
neg_items = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6], dtype=np.float32)
schema.FeedRecord(
input_record,
[pos_items, neg_lengths, neg_items]
)
loss = self.model.MarginRankLoss(input_record)
self.run_train_net_forward_only()
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
def testBatchMSELoss(self):
input_record = self.new_record(schema.Struct(
('label', schema.Scalar((np.float64, (1,)))),
('prediction', schema.Scalar((np.float32, (2,)))),
))
loss = self.model.BatchMSELoss(input_record)
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
def testBatchSigmoidCrossEntropyLoss(self):
input_record = self.new_record(schema.Struct(
('label', schema.Scalar((np.float32, (32,)))),
('prediction', schema.Scalar((np.float32, (32,))))
))
loss = self.model.BatchSigmoidCrossEntropyLoss(input_record)
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
def testBatchSoftmaxLoss(self):
input_record = self.new_record(schema.Struct(
('label', schema.Scalar((np.float32, tuple()))),
('prediction', schema.Scalar((np.float32, (32,))))
))
loss = self.model.BatchSoftmaxLoss(input_record)
self.assertEqual(schema.Struct(
('softmax', schema.Scalar((np.float32, (32,)))),
('loss', schema.Scalar(np.float32)),
), loss)
def testBatchSoftmaxLossWeight(self):
input_record = self.new_record(schema.Struct(
('label', schema.Scalar((np.float32, tuple()))),
('prediction', schema.Scalar((np.float32, (32,)))),
('weight', schema.Scalar((np.float64, (1,))))
))
loss = self.model.BatchSoftmaxLoss(input_record)
self.assertEqual(schema.Struct(
('softmax', schema.Scalar((np.float32, (32,)))),
('loss', schema.Scalar(np.float32)),
), loss)
@given(
X=hu.arrays(dims=[2, 5]),
)
def testBatchNormalization(self, X):
input_record = self.new_record(schema.Scalar((np.float32, (5,))))
schema.FeedRecord(input_record, [X])
bn_output = self.model.BatchNormalization(input_record)
self.assertEqual(schema.Scalar((np.float32, (5,))), bn_output)
self.model.output_schema = schema.Struct()
train_init_net, train_net = self.get_training_nets()
init_ops = self.assertNetContainOps(
train_init_net,
[
OpSpec("ConstantFill", None, None),
OpSpec("ConstantFill", None, None),
OpSpec("ConstantFill", None, None),
OpSpec("ConstantFill", None, None),
]
)
input_blob = input_record.field_blobs()[0]
output_blob = bn_output.field_blobs()[0]
expand_dims_spec = OpSpec(
"ExpandDims",
[input_blob],
None,
)
train_bn_spec = OpSpec(
"SpatialBN",
[None, init_ops[0].output[0], init_ops[1].output[0],
init_ops[2].output[0], init_ops[3].output[0]],
[output_blob, init_ops[2].output[0], init_ops[3].output[0], None, None],
{'is_test': 0, 'order': 'NCHW', 'momentum': 0.9},
)
test_bn_spec = OpSpec(
"SpatialBN",
[None, init_ops[0].output[0], init_ops[1].output[0],
init_ops[2].output[0], init_ops[3].output[0]],
[output_blob],
{'is_test': 1, 'order': 'NCHW', 'momentum': 0.9},
)
squeeze_spec = OpSpec(
"Squeeze",
[output_blob],
[output_blob],
)
self.assertNetContainOps(
train_net,
[expand_dims_spec, train_bn_spec, squeeze_spec]
)
eval_net = self.get_eval_net()
self.assertNetContainOps(
eval_net,
[expand_dims_spec, test_bn_spec, squeeze_spec]
)
predict_net = self.get_predict_net()
self.assertNetContainOps(
predict_net,
[expand_dims_spec, test_bn_spec, squeeze_spec]
)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
schema.FeedRecord(input_record, [X])
workspace.RunNetOnce(eval_net)
schema.FeedRecord(input_record, [X])
workspace.RunNetOnce(predict_net)
@given(
X=hu.arrays(dims=[5, 2]),
num_to_collect=st.integers(min_value=1, max_value=10),
)
def testLastNWindowCollector(self, X, num_to_collect):
input_record = self.new_record(schema.Scalar(np.float32))
schema.FeedRecord(input_record, [X])
last_n = self.model.LastNWindowCollector(input_record, num_to_collect)
self.run_train_net_forward_only()
output_record = schema.FetchRecord(last_n.last_n)
start = max(0, 5 - num_to_collect)
npt.assert_array_equal(X[start:], output_record())
num_visited = schema.FetchRecord(last_n.num_visited)
npt.assert_array_equal([5], num_visited())
@given(
X=hu.arrays(dims=[5, 2]),
num_to_collect=st.integers(min_value=3, max_value=3),
)
def testReservoirSamplingWithID(self, X, num_to_collect):
ID = np.array([1, 2, 3, 1, 2], dtype=np.int64)
input_record = self.new_record(
schema.Struct(
('record', schema.Struct(
('dense', schema.Scalar()),
)),
('object_id', schema.Scalar(np.int64)),
)
)
schema.FeedRecord(input_record, [X, ID])
packed_record = self.model.PackRecords(
input_record.record, 1, fields=input_record.record.field_names())
reservoir_input = schema.Struct(
('data', packed_record),
('object_id', input_record.object_id),
)
reservoir = self.model.ReservoirSampling(
reservoir_input, num_to_collect)
self.model.output_schema = schema.Struct()
train_init_net, train_net = \
layer_model_instantiator.generate_training_nets_forward_only(
self.model)
workspace.RunNetOnce(train_init_net)
workspace.CreateNet(train_net)
workspace.RunNet(train_net.Proto().name, num_iter=2)
num_visited = schema.FetchRecord(reservoir.num_visited)
npt.assert_array_equal([3], num_visited())
for param in self.model.params:
serialized = workspace.SerializeBlob(str(param))
workspace.DeserializeBlob(str(param), serialized)
ID = np.array([3, 5, 3, 3, 5], dtype=np.int64)
schema.FeedRecord(input_record.object_id, [ID])
workspace.RunNet(train_net.Proto().name, num_iter=2)
num_visited = schema.FetchRecord(reservoir.num_visited)
npt.assert_array_equal([2], num_visited())
def testUniformSampling(self):
input_record = self.new_record(schema.Scalar(np.int32))
input_array = np.array([3, 10, 11, 15, 20, 99], dtype=np.int32)
schema.FeedRecord(input_record, [input_array])
num_samples = 20
num_elements = 100
uniform_sampling_output = self.model.UniformSampling(
input_record, num_samples, num_elements)
self.model.loss = uniform_sampling_output
self.run_train_net()
samples = workspace.FetchBlob(uniform_sampling_output.samples())
sampling_prob = workspace.FetchBlob(
uniform_sampling_output.sampling_prob())
self.assertEqual(num_samples, len(samples))
np.testing.assert_array_equal(input_array, samples[:len(input_array)])
np.testing.assert_almost_equal(
np.array([float(num_samples) / num_elements] * num_samples,
dtype=np.float32),
sampling_prob
)
def testUniformSamplingWithIncorrectSampleSize(self):
input_record = self.new_record(schema.Scalar(np.int32))
num_samples = 200
num_elements = 100
with self.assertRaises(AssertionError):
self.model.UniformSampling(input_record, num_samples, num_elements)
def testGatherRecord(self):
indices = np.array([1, 3, 4], dtype=np.int32)
dense = np.array(list(range(20)), dtype=np.float32).reshape(10, 2)
lengths = np.array(list(range(10)), dtype=np.int32)
items = np.array(list(range(lengths.sum())), dtype=np.int64)
items_lengths = np.array(list(range(lengths.sum())), dtype=np.int32)
items_items = np.array(list(range(items_lengths.sum())), dtype=np.int64)
record = self.new_record(schema.Struct(
('dense', schema.Scalar(np.float32)),
('sparse', schema.Struct(
('list', schema.List(np.int64)),
('list_of_list', schema.List(schema.List(np.int64))),
)),
('empty_struct', schema.Struct())
))
indices_record = self.new_record(schema.Scalar(np.int32))
input_record = schema.Struct(
('indices', indices_record),
('record', record),
)
schema.FeedRecord(
input_record,
[indices, dense, lengths, items, lengths, items_lengths,
items_items])
gathered_record = self.model.GatherRecord(input_record)
self.assertTrue(schema.equal_schemas(gathered_record, record))
self.run_train_net_forward_only()
gathered_dense = workspace.FetchBlob(gathered_record.dense())
np.testing.assert_array_equal(
np.concatenate([dense[i:i + 1] for i in indices]), gathered_dense)
gathered_lengths = workspace.FetchBlob(
gathered_record.sparse.list.lengths())
np.testing.assert_array_equal(
np.concatenate([lengths[i:i + 1] for i in indices]),
gathered_lengths)
gathered_items = workspace.FetchBlob(
gathered_record.sparse.list.items())
offsets = lengths.cumsum() - lengths
np.testing.assert_array_equal(
np.concatenate([
items[offsets[i]: offsets[i] + lengths[i]]
for i in indices
]), gathered_items)
gathered_items_lengths = workspace.FetchBlob(
gathered_record.sparse.list_of_list.items.lengths())
np.testing.assert_array_equal(
np.concatenate([
items_lengths[offsets[i]: offsets[i] + lengths[i]]
for i in indices
]),
gathered_items_lengths
)
nested_offsets = []
nested_lengths = []
nested_offset = 0
j = 0
for l in lengths:
nested_offsets.append(nested_offset)
nested_length = 0
for _i in range(l):
nested_offset += items_lengths[j]
nested_length += items_lengths[j]
j += 1
nested_lengths.append(nested_length)
gathered_items_items = workspace.FetchBlob(
gathered_record.sparse.list_of_list.items.items())
np.testing.assert_array_equal(
np.concatenate([
items_items[nested_offsets[i]:
nested_offsets[i] + nested_lengths[i]]
for i in indices
]),
gathered_items_items
)
def testMapToRange(self):
input_record = self.new_record(schema.Scalar(np.int32))
indices_blob = self.model.MapToRange(input_record,
max_index=100).indices
self.model.output_schema = schema.Struct()
train_init_net, train_net = self.get_training_nets()
schema.FeedRecord(
input_record,
[np.array([10, 3, 20, 99, 15, 11, 3, 11], dtype=np.int32)]
)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
indices = workspace.FetchBlob(indices_blob())
np.testing.assert_array_equal(
np.array([1, 2, 3, 4, 5, 6, 2, 6], dtype=np.int32),
indices
)
schema.FeedRecord(
input_record,
[np.array([10, 3, 23, 35, 60, 15, 10, 15], dtype=np.int32)]
)
workspace.RunNetOnce(train_net)
indices = workspace.FetchBlob(indices_blob())
np.testing.assert_array_equal(
np.array([1, 2, 7, 8, 9, 5, 1, 5], dtype=np.int32),
indices
)
eval_net = self.get_eval_net()
schema.FeedRecord(
input_record,
[np.array([10, 3, 23, 35, 60, 15, 200], dtype=np.int32)]
)
workspace.RunNetOnce(eval_net)
indices = workspace.FetchBlob(indices_blob())
np.testing.assert_array_equal(
np.array([1, 2, 7, 8, 9, 5, 0], dtype=np.int32),
indices
)
schema.FeedRecord(
input_record,
[np.array([10, 3, 23, 15, 101, 115], dtype=np.int32)]
)
workspace.RunNetOnce(eval_net)
indices = workspace.FetchBlob(indices_blob())
np.testing.assert_array_equal(
np.array([1, 2, 7, 5, 0, 0], dtype=np.int32),
indices
)
predict_net = self.get_predict_net()
schema.FeedRecord(
input_record,
[np.array([3, 3, 20, 23, 151, 35, 60, 15, 200], dtype=np.int32)]
)
workspace.RunNetOnce(predict_net)
indices = workspace.FetchBlob(indices_blob())
np.testing.assert_array_equal(
np.array([2, 2, 3, 7, 0, 8, 9, 5, 0], dtype=np.int32),
indices
)
def testSelectRecordByContext(self):
float_features = self.model.input_feature_schema.float_features
float_array = np.array([1.0, 2.0], dtype=np.float32)
schema.FeedRecord(float_features, [float_array])
with Tags(Tags.EXCLUDE_FROM_PREDICTION):
log_float_features = self.model.Log(float_features, 1)
joined = self.model.SelectRecordByContext(
schema.Struct(
(InstantiationContext.PREDICTION, float_features),
(InstantiationContext.TRAINING, log_float_features),
# TODO: TRAIN_ONLY layers are also generated in eval
(InstantiationContext.EVAL, log_float_features),
)
)
# model.output_schema has to a struct
self.model.output_schema = schema.Struct((
'joined', joined
))
predict_net = layer_model_instantiator.generate_predict_net(self.model)
workspace.RunNetOnce(predict_net)
predict_output = schema.FetchRecord(predict_net.output_record())
npt.assert_array_equal(float_array,
predict_output['joined']())
eval_net = layer_model_instantiator.generate_eval_net(self.model)
workspace.RunNetOnce(eval_net)
eval_output = schema.FetchRecord(eval_net.output_record())
npt.assert_array_equal(np.log(float_array),
eval_output['joined']())
_, train_net = (
layer_model_instantiator.generate_training_nets_forward_only(
self.model
)
)
workspace.RunNetOnce(train_net)
train_output = schema.FetchRecord(train_net.output_record())
npt.assert_array_equal(np.log(float_array),
train_output['joined']())
def testFunctionalLayer(self):
def normalize(net, in_record, out_record):
mean = net.ReduceFrontMean(in_record(), 1)
net.Sub(
[in_record(), mean],
out_record(),
broadcast=1)
normalized = self.model.Functional(
self.model.input_feature_schema.float_features, 1,
normalize, name="normalizer")
# Attach metadata to one of the outputs and use it in FC
normalized.set_type((np.float32, 32))
self.model.output_schema = self.model.FC(normalized, 2)
predict_net = layer_model_instantiator.generate_predict_net(
self.model)
ops = predict_net.Proto().op
assert len(ops) == 3
assert ops[0].type == "ReduceFrontMean"
assert ops[1].type == "Sub"
assert ops[2].type == "FC"
assert len(ops[0].input) == 1
assert ops[0].input[0] ==\
self.model.input_feature_schema.float_features()
assert len(ops[1].output) == 1
assert ops[1].output[0] in ops[2].input
def testFunctionalLayerHelper(self):
mean = self.model.ReduceFrontMean(
self.model.input_feature_schema.float_features, 1)
normalized = self.model.Sub(
schema.Tuple(
self.model.input_feature_schema.float_features, mean),
1, broadcast=1)
# Attach metadata to one of the outputs and use it in FC
normalized.set_type((np.float32, (32,)))
self.model.output_schema = self.model.FC(normalized, 2)
predict_net = layer_model_instantiator.generate_predict_net(
self.model)
ops = predict_net.Proto().op
assert len(ops) == 3
assert ops[0].type == "ReduceFrontMean"
assert ops[1].type == "Sub"
assert ops[2].type == "FC"
assert len(ops[0].input) == 1
assert ops[0].input[0] ==\
self.model.input_feature_schema.float_features()
assert len(ops[1].output) == 1
assert ops[1].output[0] in ops[2].input
def testFunctionalLayerHelperAutoInference(self):
softsign = self.model.Softsign(
schema.Tuple(self.model.input_feature_schema.float_features),
1)
assert softsign.field_type().base == np.float32
assert softsign.field_type().shape == (32,)
self.model.output_schema = self.model.FC(softsign, 2)
predict_net = layer_model_instantiator.generate_predict_net(
self.model)
ops = predict_net.Proto().op
assert len(ops) == 2
assert ops[0].type == "Softsign"
assert ops[1].type == "FC"
assert len(ops[0].input) == 1
assert ops[0].input[0] ==\
self.model.input_feature_schema.float_features()
assert len(ops[0].output) == 1
assert ops[0].output[0] in ops[1].input
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support.")
def testHalfToFloatTypeInference(self):
input = self.new_record(schema.Scalar((np.float32, (32,))))
output = self.model.FloatToHalf(input, 1)
assert output.field_type().base == np.float16
assert output.field_type().shape == (32, )
output = self.model.HalfToFloat(output, 1)
assert output.field_type().base == np.float32
assert output.field_type().shape == (32, )
def testFunctionalLayerHelperAutoInferenceScalar(self):
loss = self.model.AveragedLoss(self.model.input_feature_schema, 1)
self.assertEqual(1, len(loss.field_types()))
self.assertEqual(np.float32, loss.field_types()[0].base)
self.assertEqual(tuple(), loss.field_types()[0].shape)
def testFunctionalLayerInputCoercion(self):
one = self.model.global_constants['ONE']
two = self.model.Add([one, one], 1)
self.model.loss = two
self.run_train_net()
data = workspace.FetchBlob(two.field_blobs()[0])
np.testing.assert_array_equal([2.0], data)
def testFunctionalLayerWithOutputNames(self):
k = 3
topk = self.model.TopK(
self.model.input_feature_schema,
output_names_or_num=['values', 'indices'],
k=k,
)
self.assertEqual(2, len(topk.field_types()))
self.assertEqual(np.float32, topk.field_types()[0].base)
self.assertEqual((k,), topk.field_types()[0].shape)
self.assertEqual(np.int32, topk.field_types()[1].base)
self.assertEqual((k,), topk.field_types()[1].shape)
self.assertEqual(['TopK/values', 'TopK/indices'], topk.field_blobs())
def testFunctionalLayerSameOperatorOutputNames(self):
Con1 = self.model.ConstantFill([], 1, value=1)
Con2 = self.model.ConstantFill([], 1, value=2)
self.assertNotEqual(str(Con1), str(Con2))
def testFunctionalLayerWithOutputDtypes(self):
loss = self.model.AveragedLoss(
self.model.input_feature_schema,
1,
output_dtypes=(np.float32, (1,)),
)
self.assertEqual(1, len(loss.field_types()))
self.assertEqual(np.float32, loss.field_types()[0].base)
self.assertEqual((1,), loss.field_types()[0].shape)
def testPropagateRequestOnly(self):
# test case when output is request only
input_record = self.new_record(schema.Struct(
('input1', schema.Scalar((np.float32, (32, )))),
('input2', schema.Scalar((np.float32, (64, )))),
('input3', schema.Scalar((np.float32, (16, )))),
))
set_request_only(input_record)
concat_output = self.model.Concat(input_record)
self.assertEqual(is_request_only_scalar(concat_output), True)
# test case when output is not request only
input_record2 = self.new_record(schema.Struct(
('input4', schema.Scalar((np.float32, (100, ))))
)) + input_record
concat_output2 = self.model.Concat(input_record2)
self.assertEqual(is_request_only_scalar(concat_output2), False)
def testSetRequestOnly(self):
input_record = schema.Scalar(np.int64)
schema.attach_metadata_to_scalars(
input_record,
schema.Metadata(
categorical_limit=100000000,
expected_value=99,
feature_specs=schema.FeatureSpec(
feature_ids=[1, 100, 1001]
)
)
)
set_request_only(input_record)
self.assertEqual(input_record.metadata.categorical_limit, 100000000)
self.assertEqual(input_record.metadata.expected_value, 99)
self.assertEqual(
input_record.metadata.feature_specs.feature_ids,
[1, 100, 1001]
)
@given(
X=hu.arrays(dims=[5, 5]), # Shape of X is irrelevant
)
def testDropout(self, X):
input_record = self.new_record(schema.Scalar((np.float32, (1,))))
schema.FeedRecord(input_record, [X])
d_output = self.model.Dropout(input_record)
self.assertEqual(schema.Scalar((np.float32, (1,))), d_output)
self.model.output_schema = schema.Struct()
train_init_net, train_net = self.get_training_nets()
input_blob = input_record.field_blobs()[0]
output_blob = d_output.field_blobs()[0]
train_d_spec = OpSpec(
"Dropout",
[input_blob],
[output_blob, None],
{'is_test': 0, 'ratio': 0.5}
)
test_d_spec = OpSpec(
"Dropout",
[input_blob],
[output_blob, None],
{'is_test': 1, 'ratio': 0.5}
)
self.assertNetContainOps(
train_net,
[train_d_spec]
)
eval_net = self.get_eval_net()
self.assertNetContainOps(
eval_net,
[test_d_spec]
)
predict_net = self.get_predict_net()
self.assertNetContainOps(
predict_net,
[test_d_spec]
)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
schema.FeedRecord(input_record, [X])
workspace.RunNetOnce(eval_net)
schema.FeedRecord(input_record, [X])
workspace.RunNetOnce(predict_net)
@given(
num_inputs=st.integers(1, 3),
batch_size=st.integers(5, 10)
)
def testMergeIdListsLayer(self, num_inputs, batch_size):
inputs = []
for _ in range(num_inputs):
lengths = np.random.randint(5, size=batch_size).astype(np.int32)
size = lengths.sum()
values = np.random.randint(1, 10, size=size).astype(np.int64)
inputs.append(lengths)
inputs.append(values)
input_schema = schema.Tuple(
*[schema.List(
schema.Scalar(dtype=np.int64, metadata=schema.Metadata(
categorical_limit=20
))) for _ in range(num_inputs)]
)
input_record = schema.NewRecord(self.model.net, input_schema)
schema.FeedRecord(input_record, inputs)
output_schema = self.model.MergeIdLists(input_record)
assert schema.equal_schemas(
output_schema, IdList,
check_field_names=False)
@given(
batch_size=st.integers(min_value=2, max_value=10),
input_dims=st.integers(min_value=5, max_value=10),
output_dims=st.integers(min_value=5, max_value=10),
bandwidth=st.floats(min_value=0.1, max_value=5),
)
def testRandomFourierFeatures(self, batch_size, input_dims, output_dims, bandwidth):
def _rff_hypothesis_test(rff_output, X, W, b, scale):
"""
Runs hypothesis test for Semi Random Features layer.
Inputs:
rff_output -- output of net after running random fourier features layer
X -- input data
W -- weight parameter from train_init_net
b -- bias parameter from train_init_net
scale -- value by which to scale the output vector
"""
output = workspace.FetchBlob(rff_output)
output_ref = scale * np.cos(np.dot(X, np.transpose(W)) + b)
npt.assert_allclose(output, output_ref, rtol=1e-3, atol=1e-3)
X = np.random.random((batch_size, input_dims)).astype(np.float32)
scale = np.sqrt(2.0 / output_dims)
input_record = self.new_record(schema.Scalar((np.float32, (input_dims,))))
schema.FeedRecord(input_record, [X])
input_blob = input_record.field_blobs()[0]
rff_output = self.model.RandomFourierFeatures(input_record,
output_dims,
bandwidth)
self.model.output_schema = schema.Struct()
self.assertEqual(
schema.Scalar((np.float32, (output_dims, ))),
rff_output
)
train_init_net, train_net = self.get_training_nets()
# Init net assertions
init_ops_list = [
OpSpec("GaussianFill", None, None),
OpSpec("UniformFill", None, None),
]
init_ops = self._test_net(train_init_net, init_ops_list)
W = workspace.FetchBlob(self.model.layers[0].w)
b = workspace.FetchBlob(self.model.layers[0].b)
# Operation specifications
fc_spec = OpSpec("FC", [input_blob, init_ops[0].output[0],
init_ops[1].output[0]], None)
cosine_spec = OpSpec("Cos", None, None)
scale_spec = OpSpec("Scale", None, rff_output.field_blobs(),
{'scale': scale})
ops_list = [
fc_spec,
cosine_spec,
scale_spec
]
# Train net assertions
self._test_net(train_net, ops_list)
_rff_hypothesis_test(rff_output(), X, W, b, scale)
# Eval net assertions
eval_net = self.get_eval_net()
self._test_net(eval_net, ops_list)
_rff_hypothesis_test(rff_output(), X, W, b, scale)
# Predict net assertions
predict_net = self.get_predict_net()
self._test_net(predict_net, ops_list)
_rff_hypothesis_test(rff_output(), X, W, b, scale)
@given(
batch_size=st.integers(min_value=2, max_value=10),
input_dims=st.integers(min_value=5, max_value=10),
output_dims=st.integers(min_value=5, max_value=10),
s=st.integers(min_value=0, max_value=3),
scale=st.floats(min_value=0.1, max_value=5),
set_weight_as_global_constant=st.booleans()
)
def testArcCosineFeatureMap(self, batch_size, input_dims, output_dims, s, scale,
set_weight_as_global_constant):
def _arc_cosine_hypothesis_test(ac_output, X, W, b, s):
"""
Runs hypothesis test for Arc Cosine layer.
Inputs:
ac_output -- output of net after running arc cosine layer
X -- input data
W -- weight parameter from train_init_net
b -- bias parameter from train_init_net
s -- degree parameter
"""
# Get output from net
net_output = workspace.FetchBlob(ac_output)
# Computing output directly
x_rand = np.matmul(X, np.transpose(W)) + b
x_pow = np.power(x_rand, s)
if s > 0:
h_rand_features = np.piecewise(x_rand,
[x_rand <= 0, x_rand > 0],
[0, 1])
else:
h_rand_features = np.piecewise(x_rand,
[x_rand <= 0, x_rand > 0],
[0, lambda x: x / (1 + x)])
output_ref = np.multiply(x_pow, h_rand_features)
# Comparing net output and computed output
npt.assert_allclose(net_output, output_ref, rtol=1e-3, atol=1e-3)
X = np.random.normal(size=(batch_size, input_dims)).astype(np.float32)
input_record = self.new_record(schema.Scalar((np.float32, (input_dims,))))
schema.FeedRecord(input_record, [X])
input_blob = input_record.field_blobs()[0]
ac_output = self.model.ArcCosineFeatureMap(
input_record,
output_dims,
s=s,
scale=scale,
set_weight_as_global_constant=set_weight_as_global_constant
)
self.model.output_schema = schema.Struct()
self.assertEqual(
schema.Scalar((np.float32, (output_dims, ))),
ac_output
)
train_init_net, train_net = self.get_training_nets()
# Run create_init_net to initialize the global constants, and W and b
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(self.model.create_init_net(name='init_net'))
if set_weight_as_global_constant:
W = workspace.FetchBlob(
self.model.global_constants['arc_cosine_feature_map_fixed_rand_W']
)
b = workspace.FetchBlob(
self.model.global_constants['arc_cosine_feature_map_fixed_rand_b']
)
else:
W = workspace.FetchBlob(self.model.layers[0].random_w)
b = workspace.FetchBlob(self.model.layers[0].random_b)
# Operation specifications
fc_spec = OpSpec("FC", [input_blob, None, None], None)
softsign_spec = OpSpec("Softsign", None, None)
relu_spec = OpSpec("Relu", None, None)
relu_spec_output = OpSpec("Relu", None, ac_output.field_blobs())
pow_spec = OpSpec("Pow", None, None, {'exponent': float(s - 1)})
mul_spec = OpSpec("Mul", None, ac_output.field_blobs())
if s == 0:
ops_list = [
fc_spec,
softsign_spec,
relu_spec_output,
]
elif s == 1:
ops_list = [
fc_spec,
relu_spec_output,
]
else:
ops_list = [
fc_spec,
relu_spec,
pow_spec,
mul_spec,
]
# Train net assertions
self._test_net(train_net, ops_list)
_arc_cosine_hypothesis_test(ac_output(), X, W, b, s)
# Eval net assertions
eval_net = self.get_eval_net()
self._test_net(eval_net, ops_list)
_arc_cosine_hypothesis_test(ac_output(), X, W, b, s)
# Predict net assertions
predict_net = self.get_predict_net()
self._test_net(predict_net, ops_list)
_arc_cosine_hypothesis_test(ac_output(), X, W, b, s)
@given(
batch_size=st.integers(min_value=2, max_value=10),
input_dims=st.integers(min_value=5, max_value=10),
output_dims=st.integers(min_value=5, max_value=10),
s=st.integers(min_value=0, max_value=3),
scale=st.floats(min_value=0.1, max_value=5),
set_weight_as_global_constant=st.booleans(),
use_struct_input=st.booleans(),
)
def testSemiRandomFeatures(self, batch_size, input_dims, output_dims, s, scale,
set_weight_as_global_constant, use_struct_input):
def _semi_random_hypothesis_test(srf_output, X_full, X_random, rand_w,
rand_b, s):
"""
Runs hypothesis test for Semi Random Features layer.
Inputs:
srf_output -- output of net after running semi random features layer
X_full -- full input data
X_random -- random-output input data
rand_w -- random-initialized weight parameter from train_init_net
rand_b -- random-initialized bias parameter from train_init_net
s -- degree parameter
"""
# Get output from net
net_output = workspace.FetchBlob(srf_output)
# Fetch learned parameter blobs
learned_w = workspace.FetchBlob(self.model.layers[0].learned_w)
learned_b = workspace.FetchBlob(self.model.layers[0].learned_b)
# Computing output directly
x_rand = np.matmul(X_random, np.transpose(rand_w)) + rand_b
x_learn = np.matmul(X_full, np.transpose(learned_w)) + learned_b
x_pow = np.power(x_rand, s)
if s > 0:
h_rand_features = np.piecewise(x_rand,
[x_rand <= 0, x_rand > 0],
[0, 1])
else:
h_rand_features = np.piecewise(x_rand,
[x_rand <= 0, x_rand > 0],
[0, lambda x: x / (1 + x)])
output_ref = np.multiply(np.multiply(x_pow, h_rand_features), x_learn)
# Comparing net output and computed output
npt.assert_allclose(net_output, output_ref, rtol=1e-3, atol=1e-3)
X_full = np.random.normal(size=(batch_size, input_dims)).astype(np.float32)
if use_struct_input:
X_random = np.random.normal(size=(batch_size, input_dims)).\
astype(np.float32)
input_data = [X_full, X_random]
input_record = self.new_record(schema.Struct(
('full', schema.Scalar(
(np.float32, (input_dims,))
)),
('random', schema.Scalar(
(np.float32, (input_dims,))
))
))
else:
X_random = X_full
input_data = [X_full]
input_record = self.new_record(schema.Scalar(
(np.float32, (input_dims,))
))
schema.FeedRecord(input_record, input_data)
srf_output = self.model.SemiRandomFeatures(
input_record,
output_dims,
s=s,
scale_random=scale,
scale_learned=scale,
set_weight_as_global_constant=set_weight_as_global_constant
)
self.model.output_schema = schema.Struct()
self.assertEqual(
schema.Struct(
('full', schema.Scalar(
(np.float32, (output_dims,))
)),
('random', schema.Scalar(
(np.float32, (output_dims,))
))
),
srf_output
)
init_ops_list = [
OpSpec("GaussianFill", None, None),
OpSpec("UniformFill", None, None),
OpSpec("GaussianFill", None, None),
OpSpec("UniformFill", None, None),
]
train_init_net, train_net = self.get_training_nets()
# Need to run to initialize the global constants for layer
workspace.RunNetOnce(self.model.create_init_net(name='init_net'))
if set_weight_as_global_constant:
# If weight params are global constants, they won't be in train_init_net
init_ops = self._test_net(train_init_net, init_ops_list[:2])
rand_w = workspace.FetchBlob(
self.model.global_constants['semi_random_features_fixed_rand_W']
)
rand_b = workspace.FetchBlob(
self.model.global_constants['semi_random_features_fixed_rand_b']
)
# Operation specifications
fc_random_spec = OpSpec("FC", [None, None, None], None)
fc_learned_spec = OpSpec("FC", [None, init_ops[0].output[0],
init_ops[1].output[0]], None)
else:
init_ops = self._test_net(train_init_net, init_ops_list)
rand_w = workspace.FetchBlob(self.model.layers[0].random_w)
rand_b = workspace.FetchBlob(self.model.layers[0].random_b)
# Operation specifications
fc_random_spec = OpSpec("FC", [None, init_ops[0].output[0],
init_ops[1].output[0]], None)
fc_learned_spec = OpSpec("FC", [None, init_ops[2].output[0],
init_ops[3].output[0]], None)
softsign_spec = OpSpec("Softsign", None, None)
relu_spec = OpSpec("Relu", None, None)
relu_output_spec = OpSpec("Relu", None, srf_output.random.field_blobs())
pow_spec = OpSpec("Pow", None, None, {'exponent': float(s - 1)})
mul_interim_spec = OpSpec("Mul", None, srf_output.random.field_blobs())
mul_spec = OpSpec("Mul", None, srf_output.full.field_blobs())
if s == 0:
ops_list = [
fc_learned_spec,
fc_random_spec,
softsign_spec,
relu_output_spec,
mul_spec,
]
elif s == 1:
ops_list = [
fc_learned_spec,
fc_random_spec,
relu_output_spec,
mul_spec,
]
else:
ops_list = [
fc_learned_spec,
fc_random_spec,
relu_spec,
pow_spec,
mul_interim_spec,
mul_spec,
]
# Train net assertions
self._test_net(train_net, ops_list)
_semi_random_hypothesis_test(srf_output.full(), X_full, X_random,
rand_w, rand_b, s)
# Eval net assertions
eval_net = self.get_eval_net()
self._test_net(eval_net, ops_list)
_semi_random_hypothesis_test(srf_output.full(), X_full, X_random,
rand_w, rand_b, s)
# Predict net assertions
predict_net = self.get_predict_net()
self._test_net(predict_net, ops_list)
_semi_random_hypothesis_test(srf_output.full(), X_full, X_random,
rand_w, rand_b, s)
def testConv(self):
batch_size = 50
H = 1
W = 10
C = 50
output_dims = 32
kernel_h = 1
kernel_w = 3
stride_h = 1
stride_w = 1
pad_t = 0
pad_b = 0
pad_r = None
pad_l = None
input_record = self.new_record(schema.Scalar((np.float32, (H, W, C))))
X = np.random.random((batch_size, H, W, C)).astype(np.float32)
schema.FeedRecord(input_record, [X])
conv = self.model.Conv(
input_record,
output_dims,
kernel_h=kernel_h,
kernel_w=kernel_w,
stride_h=stride_h,
stride_w=stride_w,
pad_t=pad_t,
pad_b=pad_b,
pad_r=pad_r,
pad_l=pad_l,
order='NHWC'
)
self.assertEqual(
schema.Scalar((np.float32, (output_dims,))),
conv
)
self.run_train_net_forward_only()
output_record = schema.FetchRecord(conv)
# check the number of output channels is the same as input in this example
assert output_record.field_types()[0].shape == (H, W, output_dims)
assert output_record().shape == (batch_size, H, W, output_dims)
train_init_net, train_net = self.get_training_nets()
# Init net assertions
init_ops = self.assertNetContainOps(
train_init_net,
[
OpSpec("XavierFill", None, None),
OpSpec("ConstantFill", None, None),
]
)
conv_spec = OpSpec(
"Conv",
[
input_record.field_blobs()[0],
init_ops[0].output[0],
init_ops[1].output[0],
],
conv.field_blobs()
)
# Train net assertions
self.assertNetContainOps(train_net, [conv_spec])
# Predict net assertions
predict_net = self.get_predict_net()
self.assertNetContainOps(predict_net, [conv_spec])
# Eval net assertions
eval_net = self.get_eval_net()
self.assertNetContainOps(eval_net, [conv_spec])
@given(
num=st.integers(min_value=10, max_value=100),
feed_weight=st.booleans(),
**hu.gcs
)
def testAdaptiveWeight(self, num, feed_weight, gc, dc):
input_record = self.new_record(schema.RawTuple(num))
data = np.random.random(num)
schema.FeedRecord(
input_record,
[np.array(x).astype(np.float32) for x in data]
)
weights = np.random.random(num) if feed_weight else None
result = self.model.AdaptiveWeight(input_record, weights=weights)
train_init_net, train_net = self.get_training_nets(True)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
result = workspace.FetchBlob(result())
if not feed_weight:
weights = 1. / num
expected = np.sum(weights * data + np.log(1. / 2. / weights))
npt.assert_allclose(expected, result, atol=1e-4, rtol=1e-4)
@given(num=st.integers(min_value=10, max_value=100), **hu.gcs)
def testConstantWeight(self, num, gc, dc):
input_record = self.new_record(schema.RawTuple(num))
data = np.random.random(num)
schema.FeedRecord(
input_record, [np.array(x).astype(np.float32) for x in data]
)
weights = np.random.random(num)
result = self.model.ConstantWeight(input_record, weights=weights)
train_init_net, train_net = self.get_training_nets(True)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
result = workspace.FetchBlob(result())
expected = np.sum(weights * data)
npt.assert_allclose(expected, result, atol=1e-4, rtol=1e-4)
@given(**hu.gcs)
def testHomotopyWeight(self, gc, dc):
input_record = self.new_record(schema.RawTuple(2))
data = np.random.random(2)
schema.FeedRecord(
input_record, [np.array(x).astype(np.float32) for x in data]
)
# ensure: quad_life > 2 * half_life
half_life = int(np.random.random() * 1e2 + 1)
quad_life = int(np.random.random() * 1e3 + 2 * half_life + 1)
min_weight = np.random.random()
max_weight = np.random.random() + min_weight + 1e-5
result = self.model.HomotopyWeight(
input_record,
min_weight=min_weight,
max_weight=max_weight,
half_life=half_life,
quad_life=quad_life,
)
train_init_net, train_net = self.get_training_nets(True)
workspace.RunNetOnce(train_init_net)
workspace.CreateNet(train_net)
workspace.RunNet(train_net.Name(), num_iter=half_life)
half_life_result = workspace.FetchBlob(result())
workspace.RunNet(train_net.Name(), num_iter=quad_life - half_life)
quad_life_result = workspace.FetchBlob(result())
alpha = (min_weight + max_weight) / 2.
beta = (min_weight + max_weight) / 2.
expected_half_life_result = alpha * data[0] + beta * data[1]
alpha = (3 * min_weight + max_weight) / 4.
beta = (min_weight + 3 * max_weight) / 4.
expected_quad_life_result = alpha * data[0] + beta * data[1]
npt.assert_allclose(
expected_half_life_result, half_life_result, atol=1e-2, rtol=1e-2
)
npt.assert_allclose(
expected_quad_life_result, quad_life_result, atol=1e-2, rtol=1e-2
)
def _testLabelSmooth(self, categories, binary_prob_label, bsz):
label = self.new_record(schema.Scalar((np.float32, (1, ))))
label_np = np.random.randint(categories, size=bsz).astype(np.float32)
schema.FeedRecord(label, [label_np])
smooth_matrix_shape = (
2 if binary_prob_label else (categories, categories)
)
smooth_matrix = np.random.random(smooth_matrix_shape)
smoothed_label = self.model.LabelSmooth(label, smooth_matrix)
train_init_net, train_net = self.get_training_nets(True)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
smoothed_label_np = workspace.FetchBlob(smoothed_label())
if binary_prob_label:
expected = np.array(
[
smooth_matrix[0] if x == 0.0 else smooth_matrix[1]
for x in label_np
]
)
else:
expected = np.array([smooth_matrix[int(x)] for x in label_np])
npt.assert_allclose(expected, smoothed_label_np, atol=1e-4, rtol=1e-4)
@given(
categories=st.integers(min_value=2, max_value=10),
bsz=st.integers(min_value=10, max_value=100),
**hu.gcs
)
def testLabelSmoothForCategoricalLabel(self, categories, bsz, gc, dc):
self._testLabelSmooth(categories, False, bsz)
@given(
bsz=st.integers(min_value=10, max_value=100),
**hu.gcs
)
def testLabelSmoothForBinaryProbLabel(self, bsz, gc, dc):
self._testLabelSmooth(2, True, bsz)