pytorch/caffe2/python/data_parallel_model_test.py
Yinghai Lu ef8f556212
[Caffe2] Changes done inside Facebook (#6378)
* fix unit test for sqrt op

From the error logging:

[idx, grad, grad_estimate] are:
[[ 146.            0.5           0.45776367]
 [ 147.            0.5           0.45776367]

The gradient == 0.5 is correct, which means the SqrtOp and its gradient is doing right job. (Because y = sqrt(x), loss = y^2/2 = x/2, and then d(loss)/dx = 1/2 = 0.5; )

The test failed because of numerical problem of grad_estimate (in unit test). It can be because the step_size is small, and float precision is not high (when there are multiple elements in the tensor, we do sum(y^2) to compute loss)

This diff
- increase the step size, and also move the test cases to be further away from 0 (where sqrt(x) is not well defined) to be safe :)
- also clean up, and merge the test case for inplace Vs. non-inplace

Tested with:

`CAFFE2_HYPOTHESIS_PROFILE=debug ai_bt caffe2/caffe2/python/operator_test:elementwise_ops_test -- "test_sqrt"`

* CompositeReader & CompositeReaderBuilder

A new type of reader gluing multiple readers together.

* Back out "Revert D7394363: [GanH]: Log D Trick for Cross Entropy with Sigmoid"

Original commit changeset: 9325a4356dbe

* [dai][WIP] convert params to int8 on ps before sending to trainer

Add float->uint8 conversion in addition to float->fp16 conversion in model_saver.

* [easy] improve unit test for sparse length sum ops

as desc.

#accept2ship

* Update GitHub upstream to 771fcb3455

* move sparse hash unique ops to OOS and add unit tests

- move the SparseHash version to OOS, since 'sparsehash' is already deps of caffe2 OOS: https://fburl.com/arssw4n1
- The 'SparseHash' engine is also being used in OOS, so the SparseHash version shall be in OOS to reduce confusion: https://fburl.com/o5ea7ah2

- fix the CUDA UniqueOp for the case when batch is empty.
- add unit test

* group_norm_op for caffe2

This is the cuda op for Group Normalization (GN): https://arxiv.org/abs/1803.08494

This code implements GN in one op that computes Y=gamma * (X-mu) / sigma + beta and also its gradients. It is expected to have minimal memory consumption (similar to the BN op), without creating new blobs if GN were implemented as several ops (e.g., reshape, norm_mean/std, affine_channel).

* Resubmit D7405233: disappeared in D7464958

OOS publish causes the op missing -- however, test was still there

* [c2] add sparse hash engine for cuda unique op

The SparseHash version of UniqueOp copy input tensor to CPU, and make use of sparse hash map to get unique output, and then copy back to GPU.

* [dper][gpu] enable unit testing gpu trainer for sparse nn

to debug the GPU trainer using mock data in unit test.

make it easier to develop GPU trainer for new models.

* Reuse Gloo context for Synchronize() calls

Previously we were creating (and leaking) the Gloo context on each call to Synchronize(). Now only run the common world op and create the barrier net once, then run the barrier net on each Synchronize() call. Since timeout is associated with the Gloo context, assert that the timeout is fixed instead of trying to handle the complexity of multiple timeouts (and associated contexts).

* [GanH/WGAN][1/n]: add FC param clipping

as titled

* [mobile] minimizing changes between caffe2_benchmark and speed_benchmark

* [GanH]: enable diagnose within model

avoid finding blob names but to directly enable inside the model

* Add `net_transformer_fun` option to DPM

This callback allows for various transformations to be made to the
model after gradient operators have been added. The immediate motivation for
this is to allow transformations such has "checkpoint-and-recompute" which
allow trading off memory for additional compute.

Adding several callbacks like this has made DPM's API less than ideal at this
stage. However, I could not find any reasonable alternative.

* [DT] [33/n] Compile flow task groups

task groups need to compiled in order to pickle the object in fblearner. However I also changed the Job's compile function as creating new object is not necessary.

* Initial commit for sparse_normalize vectorization and benchmark

* [GanH]: LB Calibration for JSD

as titled

* Tracing event in async executor

Adding event tracing through TRACE_EVENT macro in async executor

* [Resubmit] D7409751 Reseting book-keeping blobs when the reservoir is reset

D7409751 got lost in D7464958

* Visualizing realtime weights values

we want to visualize the weights values as optimizer is iterating. This diff supports to visual the weights at an assigned index.
Currently, we assume the blob to be 2 dimensional.

* [GanH][Easy]: Fix Homotopy Weighting

apparantely, there was a bug in homotopy weight (alpha, beta) update

* [c2] move sparse hash unique op out of oss

so that oss do not need to depend on google hash map.

* Get rid of std::round as it's not supported on Android

* Revert changes on setup.py

* Skip shaky test on Dataio

* fix
2018-04-10 21:11:43 -07:00

1137 lines
43 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from future.utils import viewkeys
from multiprocessing import Process, Queue
import numpy as np
import os
import shutil
import tempfile
import unittest
from mock import Mock
from hypothesis import assume, given
import hypothesis.strategies as st
from caffe2.proto import caffe2_pb2
from caffe2.python import brew, core, cnn, data_parallel_model, dyndep, \
model_helper, optimizer, rnn_cell, workspace, data_parallel_model_utils
from caffe2.python.test_util import TestCase
dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:file_store_handler_ops")
class TemporaryDirectory:
def __enter__(self):
self.tmpdir = tempfile.mkdtemp()
return self.tmpdir
def __exit__(self, type, value, traceback):
shutil.rmtree(self.tmpdir)
# Note(jiayq): we are yet to find out why Travis gives out an error in gloo
# like:
# RuntimeError: [enforce fail at /home/travis/build/caffe2/caffe2/third_party/gloo/gloo/transport/tcp/device.cc:113] ifa != nullptr. Unable to find interface for: [127.0.1.1]
# See for example https://travis-ci.org/caffe2/caffe2/jobs/262433866
# As a result, we will check if this is travis, and if yes, disable it.
@unittest.skipIf(os.environ.get("TRAVIS"), "DPMTest has a known issue with Travis.")
class DataParallelModelTest(TestCase):
def run_model(self, devices, gpu):
'''
Helper function for test_equiv
'''
def input_builder_fun(model):
return None
def model_build_fun(model, loss_scale):
fc = model.FC("data", "fc", 16, 1,
("ConstantFill", {}), ("ConstantFill", {}))
fc_fl = model.FlattenToVec(fc, "fc_fl")
sigm = model.Sigmoid(fc_fl, "sigm")
sq = model.SquaredL2Distance([sigm, "label"], "sq")
loss = model.AveragedLoss(sq, "loss")
loss = model.Scale(loss, scale=loss_scale)
# For testing explicit sync
model.param_init_net.UniformFill([], ["sync_num"], shape=[1])
return [loss]
def add_optimizer(model):
return optimizer.build_sgd(
model,
0.1,
policy="fixed",
max_gradient_norm=5.0,
allow_lr_injection=True,
)
workspace.ResetWorkspace()
model = cnn.CNNModelHelper(
order="NHWC",
name="test{}".format(devices),
)
data_parallel_model.Parallelize(
model,
input_builder_fun=input_builder_fun,
forward_pass_builder_fun=model_build_fun,
optimizer_builder_fun=add_optimizer,
devices=devices,
cpu_device=not gpu,
shared_model=not gpu,
combine_spatial_bn=not gpu,
)
data_parallel_model.AddBlobSync(model, ["sync_num"])
# Light test for LR names
lr_names = data_parallel_model.GetLearningRateBlobNames(model)
self.assertGreater(len(lr_names), 0)
np.random.seed(2603)
# Each run has same input, independent of number of gpus
batch_size = 64
for i in range(0, 10):
full_data = np.random.rand(batch_size, 16)
full_labels = np.round(full_data[:, 0])
batch_per_device = batch_size // len(devices)
for (j, g) in enumerate(devices):
st = j * batch_per_device
en = st + batch_per_device
data = full_data[st:en, :].astype(np.float32)
labels = full_labels[st:en].astype(np.float32)
with core.DeviceScope(core.DeviceOption(model._device_type, g)):
workspace.FeedBlob(
"{}_{}/data".format(model._device_prefix, g), data
)
workspace.FeedBlob(
"{}_{}/label".format(model._device_prefix, g), labels
)
if i == 0:
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net)
workspace.FeedBlob(
model._device_prefix + "_0/sync_num",
np.array([i * 2]).astype(np.float32),
device_option=core.DeviceOption(model._device_type, 0))
workspace.RunNet(model.net.Proto().name)
# Test AddBlobSync
for j in model._devices:
sync = workspace.FetchBlob(
model._device_prefix + "_{}/sync_num".format(j))[0]
self.assertTrue(abs(sync - i * 2) < 0.01)
return workspace.FetchBlob("{}_0/fc_w".format(model._device_prefix))
def run_test_locally(self, fn, device_option=None, **kwargs):
# Queue for assertion errors on subprocesses
queue = Queue()
# Capture any exception thrown by the subprocess
def run_fn(*args, **kwargs):
try:
if device_option is None:
fn(*args, **kwargs)
workspace.ResetWorkspace()
else:
with core.DeviceScope(device_option):
fn(*args, **kwargs)
workspace.ResetWorkspace()
except Exception as ex:
queue.put(ex)
# Start N processes in the background
procs = []
for i in range(kwargs['comm_size']):
kwargs['comm_rank'] = i
proc = Process(
target=run_fn,
kwargs=kwargs)
proc.start()
procs.append(proc)
# Test complete, join background processes
while len(procs) > 0:
proc = procs.pop(0)
while proc.is_alive():
proc.join(1)
# Raise exception if we find any.
# Note that the following is executed ALSO after
# the last process was joined, so if ANY exception
# was raised, it will be re-raised here.
if not queue.empty():
raise queue.get()
def test_equiv(self):
'''
Test that the model produces exactly same results given
total batchsize, independent of number of GPUs.
'''
for gpu in [True, False]:
if gpu and (not workspace.has_gpu_support or
workspace.NumCudaDevices() < 2):
continue
result_2gpus = self.run_model([0, 1], gpu=gpu)
result_1gpus = self.run_model([0], gpu=gpu)
self.assertTrue(np.allclose(result_1gpus, result_2gpus))
if not gpu or workspace.NumCudaDevices() >= 4:
result_4gpus = self.run_model(list(range(4)), gpu=gpu)
self.assertTrue(np.allclose(result_1gpus, result_4gpus))
if not gpu or workspace.NumCudaDevices() >= 8:
result_8gpus = self.run_model(list(range(8)), gpu=gpu)
self.assertTrue(np.allclose(result_1gpus, result_8gpus))
if not gpu or workspace.NumCudaDevices() >= 16:
result_16gpus = self.run_model(list(range(16)), gpu=gpu)
self.assertTrue(np.allclose(result_1gpus, result_16gpus))
def test_checkpoint_params(self):
def add_input_ops(model):
pass
def add_model_ops(model, loss_scale):
model.NHWC2NCHW("data", "data_nchw")
model.Conv("data_nchw", 'conv1', 3, 64,
weight_init=("MSRAFill", {}), kernel=7,
stride=2, pad=3, no_bias=0)
model.SpatialBN('conv1', 'conv1_spatbn_relu', 64, epsilon=1e-3, is_test=False)
model.Relu('conv1_spatbn_relu', 'conv1_spatbn_relu')
model.MaxPool('conv1_spatbn_relu', 'pool1', kernel=3, stride=2)
model.FC('pool1', 'fc', dim_in=(64 * 56 * 56), dim_out=100)
model.Sigmoid('fc', 'fc_sigm')
model.Softmax('fc_sigm', 'softmax')
model.LabelCrossEntropy(['softmax', 'label'], 'xent')
loss = model.AveragedLoss('xent', 'loss')
# Add a duplicate param init to ensure it does not cause issues
model.param_init_net.ConstantFill(
[], ["fc_w"], shape=((64 * 56 * 56), 1000)
)
return [loss]
def add_optimizer(model):
optimizer.build_sgd(model, 0.1, policy="fixed", momentum=0.9)
model = cnn.CNNModelHelper(
order="NHWC",
name="test",
)
data_parallel_model.Parallelize_CPU(
model,
input_builder_fun=add_input_ops,
forward_pass_builder_fun=add_model_ops,
optimizer_builder_fun=add_optimizer,
devices=[1, 2, 3],
)
# Only gpu_1 params should be returned (gpu_1 is the first gpu)
checkpoint_params = data_parallel_model.GetCheckpointParams(model)
for p in model.GetParams("cpu_1/"):
self.assertTrue(p in checkpoint_params)
self.assertTrue(p + "_momentum" in checkpoint_params)
for p in model.GetParams("cpu_2/"):
self.assertFalse(p in checkpoint_params)
self.assertTrue(
core.BlobReference("cpu_1/fc_w_momentum") in checkpoint_params)
for c in model.GetComputedParams("cpu_1/"):
self.assertTrue(c in checkpoint_params)
for c in model.GetComputedParams("cpu_2/"):
self.assertFalse(c in checkpoint_params)
self.assertFalse(core.BlobReference("cpu_1/data") in checkpoint_params)
self.assertTrue(core.BlobReference("optimizer_iteration") in checkpoint_params)
def test_net_conversion_and_append_net(self):
other = model_helper.ModelHelper()
fc1 = brew.fc(other, "data", "other_fc1", dim_in=3*227*227, dim_out=10)
fc2 = brew.fc(other, fc1, "other_fc2", dim_in=10, dim_out=10)
brew.fc(other, fc2, "other_fc3", dim_in=10, dim_out=10)
def add_input_ops(model):
model.net.UniformFill([], ["data"], shape=[4, 227, 227, 3])
model.net.UniformFill([], ["label"], shape=[4])
def add_model_ops(model, loss_scale):
model.NHWC2NCHW("data", "data_nchw")
model.Conv("data_nchw", 'conv1', 3, 64,
weight_init=("MSRAFill", {}), kernel=7,
stride=2, pad=3, no_bias=0)
model.SpatialBN('conv1', 'conv1_spatbn_relu', 64, epsilon=1e-3, is_test=False)
model.Relu('conv1_spatbn_relu', 'conv1_spatbn_relu')
model.MaxPool('conv1_spatbn_relu', 'pool1', kernel=3, stride=2)
model.FC('pool1', 'fc', dim_in=(64 * 56 * 56), dim_out=10)
# Append the net and param_init_net of the other model
appendnet = data_parallel_model.ConvertNetForDevice(other.net)
model.net.AppendNet(appendnet)
model.param_init_net.AppendNet(
data_parallel_model.ConvertNetForDevice(other.param_init_net))
model.Sigmoid('fc', 'fc_sigm')
model.Softmax('fc_sigm', 'softmax')
loss = model.AveragedLoss('softmax', 'loss')
return [loss]
def add_optimizer(model):
optimizer.build_sgd(model, 0.1, policy="fixed", momentum=0.9)
model = cnn.CNNModelHelper(
order="NCHW",
name="test",
)
data_parallel_model.Parallelize_CPU(
model,
input_builder_fun=add_input_ops,
forward_pass_builder_fun=add_model_ops,
optimizer_builder_fun=add_optimizer,
devices=range(4)
)
# Just create and run net and confirm no exception is thrown
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net)
workspace.RunNet(model.net)
def test_synchronization_barrier(self):
def run(comm_rank, comm_size, tmpdir):
def add_input_ops(model):
pass
def add_model_ops(model, loss_scale):
return []
def add_optimizer(model):
pass
store_handler = "store_handler"
workspace.RunOperatorOnce(
core.CreateOperator(
"FileStoreHandlerCreate",
[],
[store_handler],
path=tmpdir))
rendezvous = dict(
kv_handler=store_handler,
shard_id=comm_rank,
num_shards=comm_size,
engine='GLOO',
)
model = cnn.CNNModelHelper(
order="NHWC",
name="test",
)
data_parallel_model.Parallelize_CPU(
model,
input_builder_fun=add_input_ops,
forward_pass_builder_fun=add_model_ops,
optimizer_builder_fun=add_optimizer,
devices=[1, 2, 3],
rendezvous=rendezvous
)
data_parallel_model.RunInitNet(model)
for _ in range(2):
data_parallel_model.Synchronize(model)
with TemporaryDirectory() as tmpdir:
self.run_test_locally(
run,
comm_size=2,
device_option=None,
tmpdir=tmpdir)
def test_device_scope_check(self):
with self.assertRaises(AssertionError):
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)):
data_parallel_model.Parallelize_GPU(None, None, None)
def test_net_transformer_function(self):
devices = [1, 2, 3]
def add_input_ops(model):
model.param_init_net.UniformFill([], ["data"], shape=[32, 8])
def add_optimizer(model):
optimizer.build_sgd(model, 0.1)
def add_model_ops(model, loss_scale):
fc1 = brew.fc(model, "data", "fc1", dim_in=8, dim_out=8)
return [fc1]
kwargs = {
'input_builder_fun': add_input_ops,
'forward_pass_builder_fun': add_model_ops,
'devices': devices,
}
# assert that the transformer is called for both train and test cases
transform = Mock()
kwargs['net_transformer_fun'] = transform
model = model_helper.ModelHelper(name="r", init_params=False)
data_parallel_model.Parallelize_CPU(model, **kwargs)
self.assertTrue(transform.called)
self.assertEqual(transform.call_count, 1)
transform = Mock()
kwargs['net_transformer_fun'] = transform
kwargs['optimizer_builder_fun'] = add_optimizer
model = model_helper.ModelHelper(name="r", init_params=True)
data_parallel_model.Parallelize_CPU(model, **kwargs)
self.assertTrue(transform.called)
self.assertEqual(transform.call_count, 1)
class RecurrentNetworkParallelTest(TestCase):
def run_model(self, devices, gpu):
'''
Helper function for test_equiv
'''
def input_builder_fun(model):
return None
def model_build_fun(model, loss_scale):
workspace.FeedBlob(
core.ScopedBlobReference("seq_lengths"),
np.array([self.T] * self.batch_per_device, dtype=np.int32)
)
model.param_init_net.ConstantFill(
[],
"hidden_init",
value=0.0,
shape=[1, self.batch_per_device, self.hidden_dim]
)
model.param_init_net.ConstantFill(
[],
"cell_init",
value=0.0,
shape=[1, self.batch_per_device, self.hidden_dim]
)
output, _last_hidden, _, _last_state, = rnn_cell.LSTM(
model=model,
input_blob="data",
seq_lengths="seq_lengths",
initial_states=("hidden_init", "cell_init"),
dim_in=self.input_dim,
dim_out=self.hidden_dim,
scope="partest",
)
# A silly loss function
loss = model.AveragedLoss(
model.Sub([output, "target"], "dist"),
"loss",
)
loss = model.Scale(loss, "loss_scaled", scale=loss_scale)
return [loss]
def param_update_fun(model):
ITER = model.Iter("ITER")
LR = model.net.LearningRate(
[ITER],
"LR",
base_lr=(-0.1),
policy="fixed",
)
ONE = model.param_init_net.ConstantFill(
[], "ONE", shape=[1], value=1.0,
)
for param in model.GetParams():
param_grad = model.param_to_grad[param]
model.WeightedSum([param, ONE, param_grad, LR], param)
assert len(model.GetParams()) == len(model.params) // len(model._devices)
workspace.ResetWorkspace()
model = cnn.CNNModelHelper(
name="recurrent_test{}".format(devices),
)
self.T = 8
self.batch_size = 64
self.input_dim = 8
self.hidden_dim = 31
self.batch_per_device = self.batch_size // len(devices)
data_parallel_model.Parallelize(
model,
input_builder_fun=input_builder_fun,
forward_pass_builder_fun=model_build_fun,
param_update_builder_fun=param_update_fun,
devices=devices,
optimize_gradient_memory=True,
cpu_device=not gpu,
)
# Change all initialization to be ConstantFills so that
# the everything is deterministic
for op in model.param_init_net.Proto().op:
if op.type.endswith('Fill'):
op.type = 'ConstantFill'
# Each run has same input, independent of number of gpus
np.random.seed(20150210)
for i in range(0, 10):
full_data = np.random.rand(self.T, self.batch_size, self.input_dim)
full_target = np.random.rand(
self.T, self.batch_size, self.hidden_dim
)
for (j, g) in enumerate(devices):
st = j * self.batch_per_device
en = st + self.batch_per_device
data = full_data[:, st:en, :].astype(np.float32)
targets = full_target[:, st:en, :].astype(np.float32)
with core.DeviceScope(core.DeviceOption(model._device_type, g)):
workspace.FeedBlob(
"{}_{}/data".format(model._device_prefix, g), data
)
workspace.FeedBlob(
"{}_{}/target".format(model._device_prefix, g), targets
)
if i == 0:
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net)
workspace.RunNet(model.net.Proto().name)
return workspace.FetchBlob("{}_0/partest/i2h_w".format(model._device_prefix))
def test_equiv_recurrent(self):
'''
Test that the model produces exactly same results given
total batchsize, independent of number of GPUs/CPUs.
'''
for gpu in [True, False]:
if gpu and not workspace.has_gpu_support:
continue
result_2gpus = self.run_model([0, 1], gpu)
result_1gpus = self.run_model([0], gpu)
self.assertTrue(np.allclose(result_1gpus, result_2gpus))
if not gpu or workspace.NumCudaDevices() >= 4:
result_4gpus = self.run_model(list(range(4)), gpu)
self.assertTrue(np.allclose(result_1gpus, result_4gpus))
if not gpu or workspace.NumCudaDevices() >= 8:
result_8gpus = self.run_model(list(range(8)), gpu)
self.assertTrue(np.allclose(result_1gpus, result_8gpus))
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support.")
@unittest.skipIf(workspace.NumCudaDevices() < 2, "Need at least 2 GPUs.")
class SparseDataParallelModelTest(TestCase):
'''
Create and run the model. We try with both storing indices for gather
on CPU and on GPU
'''
def run_model(self, V, gpu_devices, cpu_indices):
def input_builder_fun(model):
return None
def model_build_fun(model, loss_scale):
if cpu_indices:
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
gathered_cpu = model.net.Gather(
[self.vecs, 'indices'], 'gathered_cpu')
gathered = model.CopyCPUToGPU(gathered_cpu, "gathered")
else:
gpu_vecs = model.param_init_net.CopyCPUToGPU(
self.vecs, "gpuvecs",
)
model.params.append(gpu_vecs)
gathered = model.net.Gather([gpu_vecs, 'indices'], 'gathered')
flattened = model.Flatten(gathered, "flattened")
fc = model.FC(flattened, "fc", 16 * 16, 1,
("ConstantFill", {}), ("ConstantFill", {}))
fc_fl = model.FlattenToVec(fc, "fc_fl")
sigm = model.Sigmoid(fc_fl, "sigm")
sq = model.SquaredL2Distance([sigm, "label"], "sq")
loss = model.AveragedLoss(sq, "loss")
loss = model.Scale(loss, scale=loss_scale)
return [loss]
def param_update_fun(model):
ONE = model.param_init_net.ConstantFill(
[], "ONE", shape=[1], value=1.0,
)
LR = model.CopyCPUToGPU(self.LR, "LR")
for param in model.GetParams():
param_grad = model.param_to_grad[param]
if not isinstance(param_grad, core.GradientSlice):
model.WeightedSum([param, ONE, param_grad, LR], param)
else:
param_momentum = model.param_init_net.ConstantFill(
[param],
param + '_momentum',
value=0.0,
)
model.net.SparseMomentumSGDUpdate(
[
param_grad.values,
param_momentum,
LR,
param,
param_grad.indices,
],
[
param_grad.values, param_momentum, param
],
momentum=0.1,
nesterov=0,
)
workspace.ResetWorkspace()
model = cnn.CNNModelHelper(
order="NHWC",
name="sparse_test{}".format(gpu_devices),
)
with core.NameScope("cpu"):
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
self.ITER = model.Iter("ITER")
self.LR = model.net.LearningRate(
[self.ITER],
"LR",
base_lr=(-0.1),
policy="fixed",
)
self.vecs = model.param_init_net.UniformFill(
[], "vecs", shape=[V, 16])
if cpu_indices:
model.params.append(self.vecs)
self.ONE_CPU = model.param_init_net.ConstantFill(
[], "ONE_CPU", shape=[1], value=1.0,
)
data_parallel_model.Parallelize_GPU(
model,
input_builder_fun=input_builder_fun,
forward_pass_builder_fun=model_build_fun,
param_update_builder_fun=param_update_fun,
devices=gpu_devices,
)
# Update the vecs
if cpu_indices:
with core.NameScope("cpu"):
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
for param in model.GetParams():
param_grad = model.param_to_grad[param]
model.ScatterWeightedSum([param, self.ONE_CPU,
param_grad.indices,
param_grad.values,
self.LR],
self.vecs)
else:
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)):
model.CopyGPUToCPU("gpu_0/gpuvecs", self.vecs)
np.random.seed(2603)
# Each run has same input, independent of number of gpus
batch_size = 64
for i in range(0, 10):
full_indices = np.random.permutation(V)[:batch_size * 16].reshape(
batch_size, 16
)
full_labels = full_indices[:, 0] % 2
batch_per_device = batch_size // len(gpu_devices)
for (j, g) in enumerate(gpu_devices):
st = j * batch_per_device
en = st + batch_per_device
indices = full_indices[st:en, :].astype(np.int32)
labels = full_labels[st:en].astype(np.float32)
device_for_indices = core.DeviceOption(caffe2_pb2.CPU)
if not cpu_indices:
device_for_indices = core.DeviceOption(caffe2_pb2.CUDA, g)
with core.DeviceScope(device_for_indices):
workspace.FeedBlob("gpu_{}/indices".format(g), indices)
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, g)):
workspace.FeedBlob("gpu_{}/label".format(g), labels)
if i == 0:
workspace.RunNetOnce(model.param_init_net)
# Force vecs to be same on all runs
orig_vecs = np.random.rand(V, 16).astype(np.float32)
workspace.FeedBlob(
self.vecs,
orig_vecs
)
if not cpu_indices:
for g in gpu_devices:
workspace.FeedBlob(
"gpu_{}/gpuvecs".format(g),
orig_vecs,
device_option=core.DeviceOption(caffe2_pb2.CUDA, g),
)
workspace.CreateNet(model.net)
workspace.RunNet(model.net.Proto().name)
if len(gpu_devices) == 2:
if not cpu_indices:
idx = workspace.FetchBlob("gpu_0/indices")
idx = list(idx.flatten())
n = len(idx)
nu = len(set(idx))
assert n == nu, "We cannot have duplicate indices"
# Sanity check to see the vecs were updated
self.assertFalse(
np.allclose(workspace.FetchBlob(self.vecs), orig_vecs))
return [workspace.FetchBlob(self.vecs if cpu_indices else "gpu_0/gpuvecs"),
workspace.FetchBlob("gpu_0/fc_w")]
def _test_equiv_sparse(self, cpu_indices):
'''
Test that the model produces exactly same results given
total batchsize, independent of number of GPUs.
'''
V = 10000
result_2gpus = self.run_model(V, [0, 1], cpu_indices)
result_1gpus = self.run_model(V, [0], cpu_indices)
self.assertTrue(np.allclose(result_1gpus[0], result_2gpus[0]))
self.assertTrue(np.allclose(result_1gpus[1], result_2gpus[1]))
if workspace.NumCudaDevices() >= 4:
result_4gpus = self.run_model(V, list(range(4)), cpu_indices)
self.assertTrue(np.allclose(result_1gpus[0], result_4gpus[0]))
self.assertTrue(np.allclose(result_1gpus[1], result_4gpus[1]))
if workspace.NumCudaDevices() >= 8:
result_8gpus = self.run_model(V, list(range(8)), cpu_indices)
self.assertTrue(np.allclose(result_1gpus[0], result_8gpus[0]))
self.assertTrue(np.allclose(result_1gpus[1], result_8gpus[1]))
def test_equiv_sparse(self):
self._test_equiv_sparse(True)
self._test_equiv_sparse(False)
@unittest.skipIf(workspace.NumCudaDevices() < 2, "Need at least 2 GPUs.")
class ParallelizeBMUFTest(TestCase):
def _run_model(self, gpu_devices):
'''
Helper function for test_equiv
'''
def input_builder_fun(model):
return None
def _model_build_fun(self, model, loss_scale):
fc = model.FC(
"data", "fc", 16, 1, ("ConstantFill", {}), ("ConstantFill", {})
)
fc_fl = model.FlattenToVec(fc, "fc_fl")
sigm = model.Sigmoid(fc_fl, "sigm")
sq = model.SquaredL2Distance([sigm, "label"], "sq")
loss = model.AveragedLoss(sq, "loss")
loss = model.Scale(loss, scale=loss_scale)
return [loss]
def _param_update_fun(self, model):
ITER = model.Iter("ITER")
LR = model.net.LearningRate(
[ITER],
"LR",
base_lr=(-0.1),
policy="fixed",
)
ONE = model.param_init_net.ConstantFill(
[], "ONE", shape=[1], value=1.0,
)
for param in model.GetParams():
grad = model.param_to_grad[param]
model.WeightedSum([param, ONE, grad, LR], param)
def _generate_data(self, devices, device_type, device_prefix):
np.random.seed(26)
# Each run has same input, independent of number of gpus
batch_size = 64
for _ in range(0, 10):
full_data = np.random.rand(batch_size, 16)
full_labels = np.round(full_data[:, 0])
batch_per_device = batch_size // len(devices)
for (j, g) in enumerate(devices):
st = j * batch_per_device
en = st + batch_per_device
data = full_data[st:en, :].astype(np.float32)
labels = full_labels[st:en].astype(np.float32)
with core.DeviceScope(core.DeviceOption(device_type, g)):
workspace.FeedBlob("{}_{}/data".format(device_prefix, g), data)
workspace.FeedBlob("{}_{}/label".format(device_prefix, g), labels)
@given(
cpu_device=st.booleans()
)
def test_parallelize_bmuf(self, cpu_device):
assume(cpu_device or workspace.has_gpu_support)
workspace.ResetWorkspace()
model = cnn.CNNModelHelper(
order="NHWC",
name="test"
)
devices = [0, 1]
def input_builder_fun(model):
return None
if not cpu_device:
device_type = caffe2_pb2.CUDA
device_prefix = "gpu"
else:
device_type = caffe2_pb2.CPU
device_prefix = "cpu"
self._generate_data(devices, device_type, device_prefix)
data_parallel_model.Parallelize_BMUF(
model,
input_builder_fun,
self._model_build_fun,
self._param_update_fun,
devices=devices,
cpu_device=cpu_device
)
data_parallel_model.RunInitNet(model)
# Check initial momentum params are zeros
self.assertEqual(
list(viewkeys(model._device_grouped_blobs)), ['fc_w', 'fc_b']
)
self.assertEqual(workspace.FetchBlob('{}_0/fc_b_v'.format(device_prefix)), 0)
np.testing.assert_equal(
workspace.FetchBlob('{}_0/fc_w_v'.format(device_prefix)),
np.zeros(16).astype(np.float32).reshape(1, 16)
)
# Run the algorithm for one iteration to have non-zero params.
data_parallel_model.RunNet(model, 1)
# Save iteration momentum and post local update params
v_b_ = workspace.FetchBlob('{}_0/fc_b_v'.format(device_prefix))
v_w_ = workspace.FetchBlob('{}_0/fc_w_v'.format(device_prefix))
workspace.RunNetOnce(model.net)
b_0_ = workspace.FetchBlob('{}_0/fc_b'.format(device_prefix))
w_0_ = workspace.FetchBlob('{}_0/fc_w'.format(device_prefix))
b_1_ = workspace.FetchBlob('{}_1/fc_b'.format(device_prefix))
w_1_ = workspace.FetchBlob('{}_1/fc_w'.format(device_prefix))
# Compute block gradients.
b_g_ = workspace.FetchBlob('{}_0/fc_b_g'.format(device_prefix))
w_g_ = workspace.FetchBlob('{}_0/fc_w_g'.format(device_prefix))
workspace.RunNetOnce(model._global_model_param_updates_net)
g_b = (b_0_ + b_1_) / 2 - b_g_
g_w = (w_0_ + w_1_) / 2 - w_g_
v_b = workspace.FetchBlob('{}_0/fc_b_v'.format(device_prefix))
v_w = workspace.FetchBlob('{}_0/fc_w_v'.format(device_prefix))
w_g = workspace.FetchBlob('{}_0/fc_w_g'.format(device_prefix))
b_g = workspace.FetchBlob('{}_0/fc_b_g'.format(device_prefix))
w_0 = workspace.FetchBlob('{}_0/fc_w'.format(device_prefix))
b_0 = workspace.FetchBlob('{}_0/fc_b'.format(device_prefix))
w_1 = workspace.FetchBlob('{}_1/fc_w'.format(device_prefix))
b_1 = workspace.FetchBlob('{}_1/fc_b'.format(device_prefix))
# Check momentum update step
np.testing.assert_equal(v_b, 0.5 * v_b_ + g_b)
np.testing.assert_equal(v_w, 0.5 * v_w_ + g_w)
np.testing.assert_equal(w_g, w_0)
np.testing.assert_equal(w_g, w_1)
np.testing.assert_equal(b_g, b_0)
np.testing.assert_equal(b_g, b_1)
# Check params update step
np.testing.assert_equal(w_0, w_g_ + v_w)
np.testing.assert_equal(b_0, b_g_ + v_b)
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support.")
@unittest.skipIf(workspace.NumCudaDevices() < 2, "Need at least 2 GPUs.")
class SparseDataParallelModelTestWithSharedIndices(TestCase):
'''
Create and run the model. We try with both storing indices for gather
on CPU and on GPU
'''
def run_model(self, V, gpu_devices):
def input_builder_fun(model):
return None
def model_build_fun(model, loss_scale):
gpu_vecs_gathered = []
gpu_vecs = []
for num, vec in enumerate(self.vecs):
gpu_vec = model.param_init_net.CopyCPUToGPU(
vec, 'gpuvec_{}'.format(num),
)
if num != 2:
model.params.append(gpu_vec)
gpu_vecs.append(gpu_vec)
for num, gpu_vec in enumerate(gpu_vecs):
gpu_vec_gathered = model.net.Gather(
[gpu_vec, 'indices'],
['gpu_vec_gathered_{}'.format(num)]
)
gpu_vecs_gathered.append(gpu_vec_gathered)
assert len(gpu_vecs_gathered) == 3
fc = model.net.FC(
[
gpu_vecs_gathered[2],
gpu_vecs_gathered[0],
gpu_vecs_gathered[1],
],
['fc'],
)
_, loss = model.net.SoftmaxWithLoss(
[fc, 'label'],
['ce_loss', 'avg_loss'],
only_loss=True,
)
loss = model.Scale(loss, scale=loss_scale)
model.net.Print(loss, [], limit=10)
return [loss]
def param_update_fun(model):
ONE = model.param_init_net.ConstantFill(
[], "ONE", shape=[1], value=1.0,
)
LR = model.CopyCPUToGPU(self.LR, "LR")
for param in model.GetParams():
param_grad = model.param_to_grad[param]
if not isinstance(param_grad, core.GradientSlice):
model.WeightedSum([param, ONE, param_grad, LR], param)
else:
model.net.ScatterWeightedSum(
[
param,
ONE,
param_grad.indices,
param_grad.values,
ONE,
],
param,
)
workspace.ResetWorkspace()
model = cnn.CNNModelHelper(
order="NHWC",
name="sparse_test{}".format(gpu_devices),
)
batch_size = 32
batch_per_device = batch_size // len(gpu_devices)
with core.NameScope("cpu"):
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
self.ITER = model.Iter("ITER")
self.LR = model.net.LearningRate(
[self.ITER],
"LR",
base_lr=(-0.1),
policy="fixed",
)
'''
self.vecs consists of 3 big blobs on which we call Gather:
1) FC weights, shape=(V, 16)
2) FC bias, shape=(V)
3) FC input, shape=(batch_per_device, 16)
'''
self.vecs = [
model.param_init_net.UniformFill(
[], "vec_{}".format(num), shape=[V, 16])
for num in range(2)
]
self.vecs.append(
model.param_init_net.UniformFill(
[],
"vec_2", shape=[batch_per_device, 16]
)
)
self.ONE_CPU = model.param_init_net.ConstantFill(
[], "ONE_CPU", shape=[1], value=1.0,
)
data_parallel_model.Parallelize_GPU(
model,
input_builder_fun=input_builder_fun,
forward_pass_builder_fun=model_build_fun,
param_update_builder_fun=param_update_fun,
devices=gpu_devices,
)
# Update the vecs
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)):
for num, vec in enumerate(self.vecs[:-1]):
model.CopyGPUToCPU("gpu_0/gpuvec_{}".format(num), vec)
# Each run has same input, independent of number of gpus
for i in range(0, 10):
np.random.seed(2603)
full_indices = np.random.permutation(V)[:batch_size].reshape(
batch_size
)
full_labels = full_indices[:] % batch_per_device
for (j, g) in enumerate(gpu_devices):
st = j * batch_per_device
en = st + batch_per_device
indices = full_indices[st:en].astype(np.int32)
labels = full_labels[st:en].astype(np.int32)
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, g)):
workspace.FeedBlob("gpu_{}/indices".format(g), indices)
workspace.FeedBlob("gpu_{}/label".format(g), labels)
if i == 0:
workspace.RunNetOnce(model.param_init_net)
# Force vecs to be same on all runs
orig_vecs = [
np.random.rand(V, 16).astype(np.float32),
np.random.rand(V).astype(np.float32),
np.random.rand(V, 16).astype(np.float32),
]
for vec, orig_vec in zip(self.vecs, orig_vecs):
workspace.FeedBlob(
vec,
orig_vec
)
for g in gpu_devices:
for num, orig_vec in enumerate(orig_vecs):
workspace.FeedBlob(
"gpu_{}/gpuvec_{}".format(g, num),
orig_vec,
device_option=core.DeviceOption(
caffe2_pb2.CUDA, g),
)
workspace.CreateNet(model.net)
workspace.RunNet(model.net.Proto().name)
idx = workspace.FetchBlob('gpu_0/indices')
grad_slices = [
workspace.FetchBlob(
'gpu_{}/gpu_vec_gathered_{}_grad'.format(g, num))
for g in gpu_devices for num in range(2)
]
for grad_slice in grad_slices:
# print (len(idx), len(grad_slice))
assert len(idx) == len(grad_slice), (
'Number of indices {} is not same as number of gradient '
'slices {}. This might lead to illegal memory access'.format(
len(idx), len(grad_slice)
)
)
def test_sparse_shared_indices_gpu(self):
'''
Test that the model has same number of indices and gradient rows
given total batchsize, independent of number of GPUs.
'''
V = 10000
self.run_model(V, [0, 1])
self.run_model(V, [0])
if workspace.NumCudaDevices() >= 4:
self.run_model(V, list(range(4)))
if workspace.NumCudaDevices() >= 8:
self.run_model(V, list(range(8)))
@unittest.skipIf(workspace.has_gpu_support, "No GPU support")
@unittest.skipIf(workspace.NumCudaDevices() < 4, "Test requires at least 4 GPUs")
class DeviceShiftTest(TestCase):
def create_model(self):
def input_builder_fun(model):
model.param_init_net.UniformFill([], ["data"], shape=[32, 8])
def model_build_fun(model, loss_scale):
fc1 = brew.fc(model, "data", "fc1", dim_in=8, dim_out=8)
fc2 = brew.fc(model, fc1, "fc2", dim_in=8, dim_out=8)
fc3 = brew.fc(model, fc2, "fc3", dim_in=8, dim_out=8)
fc4 = brew.fc(model, fc3, "fc4", dim_in=8, dim_out=8)
fc5 = brew.fc(model, fc4, "fc5", dim_in=8, dim_out=8)
loss = model.net.SumElements([fc5], ["loss"])
return [loss]
def add_optimizer(model):
return optimizer.build_sgd(model, 0.1, policy="fixed")
model = model_helper.ModelHelper()
data_parallel_model.Parallelize(
model,
input_builder_fun=input_builder_fun,
forward_pass_builder_fun=model_build_fun,
optimizer_builder_fun=add_optimizer,
devices=[0, 1, 2, 3],
)
return model
def test_activation_blobs(self):
model = self.create_model()
activations = data_parallel_model_utils.GetActivationBlobs(model)
self.assertEqual(activations, ["fc1", "fc2", "fc3", "fc4", "fc5", "loss"])
def test_shift_gpu(self):
model = self.create_model()
data_parallel_model_utils.ShiftActivationDevices(
model,
activations=["fc4", "fc5"],
shifts={0: 4, 1: 4, 2: 5, 3: 5},
)
for op in model.param_init_net.Proto().op:
for outp in op.output:
prefix = outp.split("/")[0]
if outp.split("/")[-1] in set(['fc4_w', 'fc5_w', 'fc4_b', 'fc5_b']):
if prefix == 'gpu_0' or prefix == 'gpu_1':
self.assertEqual(op.device_option.cuda_gpu_id, 4)
else:
self.assertEqual(op.device_option.cuda_gpu_id, 5)
if outp.split("/")[-1] in set(['fc1_w', 'fc2_w', 'fc3_b', 'fc3_w']):
gpu_id = int(prefix.split("_")[-1])
self.assertEqual(gpu_id, op.device_option.cuda_gpu_id)
# Test that we can run the net
if workspace.NumCudaDevices() >= 6:
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net)
workspace.RunNet(model.net.Proto().name)
if __name__ == "__main__":
import unittest
unittest.main()