mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
* fix unit test for sqrt op
From the error logging:
[idx, grad, grad_estimate] are:
[[ 146. 0.5 0.45776367]
[ 147. 0.5 0.45776367]
The gradient == 0.5 is correct, which means the SqrtOp and its gradient is doing right job. (Because y = sqrt(x), loss = y^2/2 = x/2, and then d(loss)/dx = 1/2 = 0.5; )
The test failed because of numerical problem of grad_estimate (in unit test). It can be because the step_size is small, and float precision is not high (when there are multiple elements in the tensor, we do sum(y^2) to compute loss)
This diff
- increase the step size, and also move the test cases to be further away from 0 (where sqrt(x) is not well defined) to be safe :)
- also clean up, and merge the test case for inplace Vs. non-inplace
Tested with:
`CAFFE2_HYPOTHESIS_PROFILE=debug ai_bt caffe2/caffe2/python/operator_test:elementwise_ops_test -- "test_sqrt"`
* CompositeReader & CompositeReaderBuilder
A new type of reader gluing multiple readers together.
* Back out "Revert D7394363: [GanH]: Log D Trick for Cross Entropy with Sigmoid"
Original commit changeset: 9325a4356dbe
* [dai][WIP] convert params to int8 on ps before sending to trainer
Add float->uint8 conversion in addition to float->fp16 conversion in model_saver.
* [easy] improve unit test for sparse length sum ops
as desc.
#accept2ship
* Update GitHub upstream to 771fcb3455
* move sparse hash unique ops to OOS and add unit tests
- move the SparseHash version to OOS, since 'sparsehash' is already deps of caffe2 OOS: https://fburl.com/arssw4n1
- The 'SparseHash' engine is also being used in OOS, so the SparseHash version shall be in OOS to reduce confusion: https://fburl.com/o5ea7ah2
- fix the CUDA UniqueOp for the case when batch is empty.
- add unit test
* group_norm_op for caffe2
This is the cuda op for Group Normalization (GN): https://arxiv.org/abs/1803.08494
This code implements GN in one op that computes Y=gamma * (X-mu) / sigma + beta and also its gradients. It is expected to have minimal memory consumption (similar to the BN op), without creating new blobs if GN were implemented as several ops (e.g., reshape, norm_mean/std, affine_channel).
* Resubmit D7405233: disappeared in D7464958
OOS publish causes the op missing -- however, test was still there
* [c2] add sparse hash engine for cuda unique op
The SparseHash version of UniqueOp copy input tensor to CPU, and make use of sparse hash map to get unique output, and then copy back to GPU.
* [dper][gpu] enable unit testing gpu trainer for sparse nn
to debug the GPU trainer using mock data in unit test.
make it easier to develop GPU trainer for new models.
* Reuse Gloo context for Synchronize() calls
Previously we were creating (and leaking) the Gloo context on each call to Synchronize(). Now only run the common world op and create the barrier net once, then run the barrier net on each Synchronize() call. Since timeout is associated with the Gloo context, assert that the timeout is fixed instead of trying to handle the complexity of multiple timeouts (and associated contexts).
* [GanH/WGAN][1/n]: add FC param clipping
as titled
* [mobile] minimizing changes between caffe2_benchmark and speed_benchmark
* [GanH]: enable diagnose within model
avoid finding blob names but to directly enable inside the model
* Add `net_transformer_fun` option to DPM
This callback allows for various transformations to be made to the
model after gradient operators have been added. The immediate motivation for
this is to allow transformations such has "checkpoint-and-recompute" which
allow trading off memory for additional compute.
Adding several callbacks like this has made DPM's API less than ideal at this
stage. However, I could not find any reasonable alternative.
* [DT] [33/n] Compile flow task groups
task groups need to compiled in order to pickle the object in fblearner. However I also changed the Job's compile function as creating new object is not necessary.
* Initial commit for sparse_normalize vectorization and benchmark
* [GanH]: LB Calibration for JSD
as titled
* Tracing event in async executor
Adding event tracing through TRACE_EVENT macro in async executor
* [Resubmit] D7409751 Reseting book-keeping blobs when the reservoir is reset
D7409751 got lost in D7464958
* Visualizing realtime weights values
we want to visualize the weights values as optimizer is iterating. This diff supports to visual the weights at an assigned index.
Currently, we assume the blob to be 2 dimensional.
* [GanH][Easy]: Fix Homotopy Weighting
apparantely, there was a bug in homotopy weight (alpha, beta) update
* [c2] move sparse hash unique op out of oss
so that oss do not need to depend on google hash map.
* Get rid of std::round as it's not supported on Android
* Revert changes on setup.py
* Skip shaky test on Dataio
* fix
1966 lines
71 KiB
Python
1966 lines
71 KiB
Python
## @package data_parallel_model
|
|
# Module caffe2.python.data_parallel_model
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from collections import OrderedDict
|
|
from future.utils import viewitems, viewkeys, viewvalues
|
|
import logging
|
|
import copy
|
|
|
|
from caffe2.python import \
|
|
model_helper, dyndep, scope, workspace, core, memonger, utils
|
|
from caffe2.proto import caffe2_pb2
|
|
|
|
import numpy as np
|
|
|
|
dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/nccl:nccl_ops")
|
|
dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/gloo:gloo_ops")
|
|
dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/gloo:gloo_ops_gpu")
|
|
|
|
log = logging.getLogger("data_parallel_model")
|
|
log.setLevel(logging.INFO)
|
|
|
|
_DEFAULT_TIMEOUT_SEC = 30
|
|
|
|
|
|
def Parallelize_GPU(*args, **kwargs):
|
|
kwargs['cpu_device'] = False
|
|
Parallelize(*args, **kwargs)
|
|
|
|
|
|
def Parallelize_CPU(*args, **kwargs):
|
|
kwargs['cpu_device'] = True
|
|
Parallelize(*args, **kwargs)
|
|
|
|
|
|
def Parallelize(
|
|
model_helper_obj,
|
|
input_builder_fun,
|
|
forward_pass_builder_fun,
|
|
param_update_builder_fun=None,
|
|
optimizer_builder_fun=None,
|
|
post_sync_builder_fun=None,
|
|
net_transformer_fun=None,
|
|
devices=None,
|
|
rendezvous=None,
|
|
net_type='dag',
|
|
broadcast_computed_params=True,
|
|
optimize_gradient_memory=False,
|
|
dynamic_memory_management=False,
|
|
blobs_to_keep=None,
|
|
use_nccl=False,
|
|
max_concurrent_distributed_ops=16,
|
|
cpu_device=False,
|
|
num_threads_per_device=4,
|
|
shared_model=False,
|
|
combine_spatial_bn=False,
|
|
):
|
|
'''
|
|
Function to create a model that can run on many GPUs or CPUs.
|
|
model_helper_obj: an object of ModelHelper
|
|
input_builder_fun:
|
|
Function that adds the input operators
|
|
Note: Remember to instantiate reader outside of this
|
|
function so all devices share same reader object.
|
|
Signature: input_builder_fun(model)
|
|
forward_pass_builder_fun:
|
|
Function to add the operators to the model.
|
|
Must return list of loss-blob references that
|
|
are used to build the gradient. Loss scale parameter
|
|
is passed, as you should scale the loss of your model
|
|
by 1.0 / the total number of devices.
|
|
Signature: forward_pass_builder_fun(model, loss_scale)
|
|
param_update_builder_fun:
|
|
Function that adds operators that are run after
|
|
gradient update, such as updating the weights and
|
|
weight decaying. This is called for each GPU separately.
|
|
Signature: param_update_builder_fun(model)
|
|
optimizer_builder_fun:
|
|
Alternative to param_update_builder_fun, allows one
|
|
to add an optimizer for the whole model. Called only
|
|
once, without name or devicescope.
|
|
net_transformer_fun:
|
|
Optional function to transform the network after the
|
|
network is built. It will be called once (NOT once per
|
|
GPU.)
|
|
Signature:
|
|
net_transformer_fun(
|
|
model, num_devices, device_prefix, device_type)
|
|
post_sync_builder_fun:
|
|
Function applied after initial parameter sync has been
|
|
completed, such as keeping multi-precision parameters
|
|
in sync.
|
|
Signature: post_sync_builder_fun(model)
|
|
devices: List of GPU ids, such as [0, 1, 2, 3],
|
|
rendezvous: used for rendezvous in distributed computation, if None
|
|
then only one node is used. To create rendezvous,
|
|
use <TBD>.
|
|
net_type: Network type
|
|
optimize_gradient_memory: whether to apply 'memonger' to share blobs
|
|
shared_model (only for CPU) use same parameters on each device
|
|
in gradient computation to reduce memory footprint.
|
|
dynamic_memory_management: Whether to apply dynamic memory optimization
|
|
by freeing unused blobs. The underlying (de)allocation
|
|
uses cached allocator. For GPU training PLEASE MAKE SURE
|
|
caffe2_cuda_memory_pool is set.
|
|
blobs_to_keep : A list of blob names to keep and don't free during
|
|
dynamic memory optimization (for example loss blob).
|
|
cpu_device Use CPU instead of GPU.
|
|
combine_spatial_bn:
|
|
When set to True, applies batch normalization across
|
|
all devices within the node. If False, batch
|
|
normalization will be done separately for each device.
|
|
This option is currently only supported on the CPU.
|
|
'''
|
|
assert scope.CurrentDeviceScope() is None \
|
|
or scope.CurrentDeviceScope().device_type == caffe2_pb2.CPU, \
|
|
"Parallelize must be called without device-scope, \
|
|
device scope was: {}".format(scope.CurrentDeviceScope())
|
|
|
|
if devices is None:
|
|
devices = list(range(0, workspace.NumCudaDevices())),
|
|
|
|
if not cpu_device:
|
|
for gpu in devices:
|
|
if gpu >= workspace.NumCudaDevices():
|
|
log.warning("** Only {} GPUs available, GPUs {} requested".format(
|
|
workspace.NumCudaDevices(), devices))
|
|
break
|
|
model_helper_obj._device_type = caffe2_pb2.CUDA
|
|
model_helper_obj._device_prefix = "gpu"
|
|
model_helper_obj._shared_model = False
|
|
device_name = "GPU"
|
|
assert shared_model is False, "Shared model only supported on CPU"
|
|
else:
|
|
model_helper_obj._device_type = caffe2_pb2.CPU
|
|
model_helper_obj._device_prefix = "cpu"
|
|
device_name = "CPU"
|
|
model_helper_obj._shared_model = shared_model
|
|
if shared_model and rendezvous is not None:
|
|
assert "Shared model only supported on single-node currently"
|
|
|
|
log.info("Parallelizing model for devices: {}".format(devices))
|
|
extra_workers = 8 if rendezvous is not None else 0 # best-guess
|
|
num_workers = len(devices) * num_threads_per_device + extra_workers
|
|
max_concurrent_distributed_ops =\
|
|
min(max_concurrent_distributed_ops, num_workers - 1)
|
|
model_helper_obj.net.Proto().num_workers = num_workers
|
|
model_helper_obj.net.Proto().type = net_type
|
|
|
|
# Store some information in the model -- a bit ugly
|
|
model_helper_obj._devices = devices
|
|
model_helper_obj._rendezvous = rendezvous
|
|
model_helper_obj._barrier_net = None
|
|
model_helper_obj._broadcast_context = None
|
|
model_helper_obj._grad_names = []
|
|
|
|
assert isinstance(model_helper_obj, model_helper.ModelHelper)
|
|
|
|
# Keep track of params that were in the model before: they are not
|
|
# data parallel, so we need to handle them separately
|
|
non_datapar_params = copy.copy(model_helper_obj.params)
|
|
|
|
# Add input and model
|
|
log.info("Create input and model training operators")
|
|
|
|
losses_by_gpu = {}
|
|
num_shards = 1 if rendezvous is None else rendezvous['num_shards']
|
|
loss_scale = 1.0 / (len(devices) * num_shards)
|
|
|
|
has_parameter_updates = param_update_builder_fun is not None or \
|
|
optimizer_builder_fun is not None
|
|
assert not (
|
|
param_update_builder_fun is not None and
|
|
optimizer_builder_fun is not None
|
|
), 'Can only specify one of param_update_builder_fun, optimizer_builder_fun'
|
|
|
|
# Check that a model that is used for validation/testing has
|
|
# init_params False, otherwise running the param init net will overwrite
|
|
# synchronized values by the training net
|
|
if not has_parameter_updates and model_helper_obj.init_params:
|
|
log.warning('')
|
|
log.warning("############# WARNING #############")
|
|
log.warning("Model {}/{} is used for testing/validation but".format(
|
|
model_helper_obj.name, model_helper_obj))
|
|
log.warning("has init_params=True!")
|
|
log.warning("This can conflict with model training.")
|
|
log.warning("Please ensure model = ModelHelper(init_params=False)")
|
|
log.warning('####################################')
|
|
log.warning('')
|
|
# TODO: make into assert
|
|
|
|
for device in devices:
|
|
device_opt = core.DeviceOption(model_helper_obj._device_type, device)
|
|
with core.DeviceScope(device_opt):
|
|
with core.NameScope("{}_{}".format(model_helper_obj._device_prefix,
|
|
device)):
|
|
log.info("Model for {} : {}".format(device_name, device))
|
|
input_builder_fun(model_helper_obj)
|
|
losses = forward_pass_builder_fun(model_helper_obj, loss_scale)
|
|
# Losses are not needed for test net
|
|
if has_parameter_updates:
|
|
assert isinstance(losses, list), \
|
|
'Model builder function must return list of loss blobs'
|
|
for loss in losses:
|
|
assert isinstance(loss, core.BlobReference), \
|
|
'Model builder func must return list of loss blobs'
|
|
|
|
losses_by_gpu[device] = losses
|
|
_ValidateParams(model_helper_obj.params)
|
|
|
|
# Create parameter map
|
|
model_helper_obj._device_grouped_blobs =\
|
|
_GroupByDevice(model_helper_obj, devices,
|
|
model_helper_obj.params, non_datapar_params)
|
|
|
|
# computed params
|
|
computed_params_grouped =\
|
|
_GroupByDevice(model_helper_obj, devices,
|
|
model_helper_obj.GetComputedParams(''), [])
|
|
model_helper_obj._device_grouped_blobs.update(computed_params_grouped)
|
|
|
|
model_helper_obj._param_names =\
|
|
list(viewkeys(model_helper_obj._device_grouped_blobs))
|
|
model_helper_obj._computed_param_names =\
|
|
list(viewkeys(computed_params_grouped))
|
|
|
|
if has_parameter_updates:
|
|
log.info("Adding gradient operators")
|
|
_AddGradientOperators(devices, model_helper_obj, losses_by_gpu)
|
|
|
|
if net_transformer_fun:
|
|
net_transformer_fun(
|
|
model_helper_obj,
|
|
len(devices),
|
|
model_helper_obj._device_prefix,
|
|
model_helper_obj._device_type)
|
|
|
|
if not has_parameter_updates:
|
|
log.info("Parameter update function not defined --> only forward")
|
|
_InferBlobDevice(model_helper_obj)
|
|
return
|
|
|
|
if combine_spatial_bn:
|
|
assert(cpu_device), \
|
|
'combine_spatial_bn is currently only supported on the CPU'
|
|
assert(has_parameter_updates), \
|
|
'combine_spatial_bn should only be used for train model'
|
|
_InterleaveOps(model_helper_obj)
|
|
_InterDeviceBatchNormalization(model_helper_obj)
|
|
|
|
_ValidateParams(model_helper_obj.params)
|
|
|
|
# Group gradients by device and register to blob lookup
|
|
param_to_grad = model_helper_obj.param_to_grad
|
|
grads_ordered = [param_to_grad[p] for p in
|
|
model_helper_obj.params if p in param_to_grad]
|
|
non_datapar_grads = [param_to_grad[p] for p in non_datapar_params]
|
|
|
|
gradients_grouped = _GroupByDevice(
|
|
model_helper_obj,
|
|
devices,
|
|
grads_ordered,
|
|
non_datapar_grads
|
|
)
|
|
model_helper_obj._device_grouped_blobs.update(gradients_grouped)
|
|
model_helper_obj._grad_names = list(viewkeys(gradients_grouped))
|
|
model_helper_obj._losses_by_gpu = losses_by_gpu
|
|
|
|
_InferBlobDevice(model_helper_obj)
|
|
|
|
log.info("Add gradient all-reduces for SyncSGD")
|
|
if broadcast_computed_params:
|
|
_BroadcastComputedParams(devices, model_helper_obj, rendezvous, use_nccl)
|
|
|
|
if len(model_helper_obj._grad_names) > 0:
|
|
# Gradients in reverse order
|
|
reverse_ordered_grads = _GetReverseOrderedGrads(model_helper_obj)
|
|
assert(len(reverse_ordered_grads) > 0)
|
|
_AllReduceBlobs(
|
|
reverse_ordered_grads,
|
|
devices,
|
|
model_helper_obj,
|
|
model_helper_obj.net,
|
|
rendezvous,
|
|
use_nccl,
|
|
max_concurrent_distributed_ops,
|
|
)
|
|
else:
|
|
log.info("NOTE: Param builder function did not create any parameters.")
|
|
|
|
log.info("Post-iteration operators for updating params")
|
|
num_shards = 1 if rendezvous is None else rendezvous['num_shards']
|
|
|
|
all_params = set(model_helper_obj.GetParams(''))
|
|
if shared_model:
|
|
_PruneParametersForSharing(model_helper_obj)
|
|
|
|
if param_update_builder_fun is not None:
|
|
for device in devices:
|
|
device_opt = core.DeviceOption(model_helper_obj._device_type, device)
|
|
with core.DeviceScope(device_opt):
|
|
with core.NameScope(
|
|
"{}_{}".format(model_helper_obj._device_prefix, device)
|
|
):
|
|
param_update_builder_fun(model_helper_obj)
|
|
else:
|
|
log.info("Calling optimizer builder function")
|
|
optimizer = optimizer_builder_fun(model_helper_obj)
|
|
model_helper_obj._optimizer = optimizer
|
|
|
|
(sync_blobs, sync_names) = _ComputeBlobsToSync(model_helper_obj)
|
|
sync_blobs_grouped = _GroupByDevice(
|
|
model_helper_obj,
|
|
devices,
|
|
sync_blobs,
|
|
[],
|
|
)
|
|
model_helper_obj._device_grouped_blobs.update(sync_blobs_grouped)
|
|
|
|
_InferBlobDevice(model_helper_obj)
|
|
_AnalyzeOperators(model_helper_obj)
|
|
|
|
# Configure dagnet to run with only one worker on the first iteration,
|
|
# to prevent concurrency problems with allocs and nccl.
|
|
arg = model_helper_obj.Proto().arg.add()
|
|
arg.name = "first_iter_only_one_worker"
|
|
arg.i = 1
|
|
|
|
# Add initial parameter syncs
|
|
log.info("Add initial parameter sync")
|
|
_SyncAllParams(
|
|
devices,
|
|
model_helper_obj,
|
|
model_helper_obj.param_init_net,
|
|
model_helper_obj.param_init_net,
|
|
rendezvous,
|
|
sync_names,
|
|
max_concurrent_distributed_ops=1
|
|
)
|
|
|
|
# Handle any operations that need to be done after parameter sync
|
|
# i.e. making sure multi-precision copies of parameters are up-to-date
|
|
if post_sync_builder_fun is not None:
|
|
for device in devices:
|
|
device_opt = core.DeviceOption(model_helper_obj._device_type, device)
|
|
with core.DeviceScope(device_opt):
|
|
with core.NameScope(
|
|
"{}_{}".format(model_helper_obj._device_prefix, device)
|
|
):
|
|
post_sync_builder_fun(model_helper_obj)
|
|
|
|
assert not (optimize_gradient_memory and dynamic_memory_management), \
|
|
"""It is not advised to use gradient optimization ('memonger')
|
|
with dynamic memory management."""
|
|
|
|
if optimize_gradient_memory:
|
|
_OptimizeGradientMemorySimple(model_helper_obj, losses_by_gpu, devices)
|
|
|
|
if dynamic_memory_management:
|
|
_AddDynamicMemoryOptimization(model_helper_obj, blobs_to_keep, devices)
|
|
|
|
model_helper_obj._data_parallel_model_init_nets = [
|
|
model_helper_obj.param_init_net,
|
|
]
|
|
model_helper_obj._data_parallel_model_nets = [model_helper_obj.net]
|
|
|
|
if shared_model:
|
|
_RemapParameterBlobsForSharedModel(model_helper_obj, all_params)
|
|
|
|
|
|
def Parallelize_GPU_BMUF(*args, **kwargs):
|
|
kwargs['cpu_device'] = False
|
|
Parallelize_BMUF(*args, **kwargs)
|
|
|
|
|
|
def Parallelize_CPU_BMUF(*args, **kwargs):
|
|
kwargs['cpu_device'] = True
|
|
Parallelize_BMUF(*args, **kwargs)
|
|
|
|
|
|
def Parallelize_BMUF(
|
|
model_helper_obj,
|
|
input_builder_fun,
|
|
forward_pass_builder_fun,
|
|
param_update_builder_fun,
|
|
block_learning_rate=1.0,
|
|
block_momentum=None,
|
|
devices=None,
|
|
rendezvous=None,
|
|
net_type='dag',
|
|
master_device=None,
|
|
use_nccl=False,
|
|
nesterov=False,
|
|
optimize_gradient_memory=False,
|
|
reset_momentum_sgd=False,
|
|
warmup_iterations=None,
|
|
max_concurrent_distributed_ops=4,
|
|
add_blobs_to_sync=None,
|
|
num_threads_per_device=4,
|
|
cpu_device=False
|
|
):
|
|
'''
|
|
Function to create model that run on many GPUs and creates a net for
|
|
parameter_updates that can be run independently for number of iterations
|
|
then followed by another net that runs once to compute the final parameter
|
|
updates according to block wise model update filtering rule described
|
|
in : Scalable Training of Deep Learning Machines by Incremental Block
|
|
Training with Intra-block Parallel Optimization and Blockwise Model-Update
|
|
Filtering (ICASSP 2016).
|
|
'''
|
|
assert scope.CurrentDeviceScope() is None \
|
|
or scope.CurrentDeviceScope().device_type == caffe2_pb2.CPU, \
|
|
"Parallelize must be called without device-scope, \
|
|
device scope was: {}".format(scope.CurrentDeviceScope())
|
|
|
|
assert isinstance(model_helper_obj, model_helper.ModelHelper)
|
|
|
|
if devices is None:
|
|
devices = list(range(0, workspace.NumCudaDevices()))
|
|
if master_device is None:
|
|
master_device = devices[0]
|
|
|
|
if not cpu_device:
|
|
for gpu in devices:
|
|
if gpu >= workspace.NumCudaDevices():
|
|
log.warning("** Only {} GPUs available, GPUs {} requested".format(
|
|
workspace.NumCudaDevices(), devices))
|
|
break
|
|
model_helper_obj._device_type = caffe2_pb2.CUDA
|
|
model_helper_obj._device_prefix = "gpu"
|
|
else:
|
|
model_helper_obj._device_type = caffe2_pb2.CPU
|
|
model_helper_obj._device_prefix = "cpu"
|
|
|
|
model_helper_obj._devices = devices
|
|
model_helper_obj._rendezvous = rendezvous
|
|
model_helper_obj._barrier_net = None
|
|
model_helper_obj._broadcast_context = None
|
|
model_helper_obj._shared_model = False
|
|
master_dev_opt = core.DeviceOption(model_helper_obj._device_type, master_device)
|
|
|
|
# question: rendezvous structure
|
|
num_shards = rendezvous['num_shards'] if rendezvous else 1
|
|
# num_devices is #devices across all machines
|
|
num_devices = len(devices) * num_shards
|
|
# num_workers is #threads to execute the DAG per shard
|
|
num_workers = num_threads_per_device * len(devices)
|
|
if rendezvous:
|
|
num_workers += 8
|
|
|
|
loss_scale = 1.0 / num_devices
|
|
if block_momentum is None:
|
|
block_momentum = 1.0 - 1.0 / num_devices
|
|
|
|
max_concurrent_distributed_ops = min(
|
|
max_concurrent_distributed_ops,
|
|
num_workers - 1
|
|
)
|
|
|
|
model_helper_obj.net.Proto().num_workers = num_workers
|
|
model_helper_obj.net.Proto().type = net_type
|
|
|
|
# A net for initializing global model parameters. Its called once in the
|
|
# same step as net parameters initialization.
|
|
model_helper_obj._global_model_init_net = core.Net('global_model_init')
|
|
model_helper_obj._global_model_init_net.Proto().type = net_type
|
|
model_helper_obj._global_model_init_net.Proto().num_workers = \
|
|
num_workers
|
|
|
|
# A net for computing final parameter updates. Its will run once after
|
|
# running net (local models updates) for `num_local_iterations` times.
|
|
model_helper_obj._global_model_param_updates_net = core.Net('global_model')
|
|
model_helper_obj._global_model_param_updates_net.Proto().type = net_type
|
|
model_helper_obj._global_model_param_updates_net.Proto().num_workers = \
|
|
num_workers
|
|
|
|
def _v(param):
|
|
return "{}_v".format(param)
|
|
|
|
def _g(param):
|
|
return "{}_g".format(param)
|
|
|
|
def _v_prev(param):
|
|
return "{}_prev".format(param)
|
|
|
|
# Keep track of params that were in the model before: they are not
|
|
# data parallel, so we need to handle them separately
|
|
non_datapar_params = copy.copy(model_helper_obj.params)
|
|
model_helper_obj._losses_by_gpu = {}
|
|
|
|
def _InitializeModels(gpu_id):
|
|
input_builder_fun(model_helper_obj)
|
|
loss = forward_pass_builder_fun(model_helper_obj, loss_scale)
|
|
model_helper_obj._losses_by_gpu[gpu_id] = loss
|
|
_ForEachDevice(
|
|
devices,
|
|
_InitializeModels,
|
|
device_type=model_helper_obj._device_type,
|
|
device_prefix=model_helper_obj._device_prefix,
|
|
scoped=True
|
|
)
|
|
_ValidateParams(model_helper_obj.params)
|
|
|
|
model_helper_obj._device_grouped_blobs =\
|
|
_GroupByDevice(model_helper_obj, devices,
|
|
model_helper_obj.params, non_datapar_params)
|
|
|
|
model_helper_obj._param_names =\
|
|
list(viewkeys(model_helper_obj._device_grouped_blobs))
|
|
|
|
_AddGradientOperators(
|
|
devices, model_helper_obj, model_helper_obj._losses_by_gpu
|
|
)
|
|
_ValidateParams(model_helper_obj.params)
|
|
|
|
_InferBlobDevice(model_helper_obj)
|
|
|
|
def _InitializeParamUpdate(gpu_id):
|
|
param_update_builder_fun(model_helper_obj)
|
|
_ForEachDevice(
|
|
devices,
|
|
_InitializeParamUpdate,
|
|
device_type=model_helper_obj._device_type,
|
|
device_prefix=model_helper_obj._device_prefix,
|
|
scoped=True
|
|
)
|
|
|
|
model_parameter_names = list(
|
|
viewkeys(model_helper_obj._device_grouped_blobs)
|
|
)
|
|
if warmup_iterations is not None:
|
|
model_helper_obj._warmup_iterations = warmup_iterations
|
|
# A net for broadcasting gpu-0 (master shard) parameters after
|
|
# running net for `warmup_iterartions`.
|
|
model_helper_obj._warmup_broadcast = core.Net('warmup-broadcast')
|
|
model_helper_obj._warmup_broadcast.Proto().type = net_type
|
|
model_helper_obj._warmup_broadcast.Proto().num_workers = \
|
|
num_workers
|
|
|
|
_SyncAllParams(
|
|
devices,
|
|
model_helper_obj,
|
|
model_helper_obj.param_init_net,
|
|
model_helper_obj._warmup_broadcast,
|
|
rendezvous,
|
|
model_parameter_names,
|
|
max_concurrent_distributed_ops
|
|
)
|
|
for param_name in viewkeys(model_helper_obj._device_grouped_blobs):
|
|
param = model_helper_obj._device_grouped_blobs[param_name][master_device]
|
|
with core.DeviceScope(master_dev_opt):
|
|
model_helper_obj._warmup_broadcast.Copy(param, _g(param))
|
|
|
|
# (Step-0) Initialize momentum parameters on master device.
|
|
for param_name in viewkeys(model_helper_obj._device_grouped_blobs):
|
|
param = model_helper_obj._device_grouped_blobs[param_name][master_device]
|
|
with core.DeviceScope(master_dev_opt):
|
|
model_helper_obj._global_model_init_net.ConstantFill(
|
|
param, _v(param), value=0.0
|
|
)
|
|
model_helper_obj._global_model_init_net.Copy(param, _g(param))
|
|
if nesterov:
|
|
model_helper_obj._global_model_init_net.ConstantFill(
|
|
param, _v_prev(param), value=0.0
|
|
)
|
|
|
|
# (Step-1) Update models for num_local_iterations.
|
|
|
|
# (Step-2) Compute post-local-updates average of the params.
|
|
# Sum model params across GPUs and store resutls in param_avg blob.
|
|
_AllReduceBlobs(
|
|
model_parameter_names,
|
|
devices,
|
|
model_helper_obj,
|
|
model_helper_obj._global_model_param_updates_net,
|
|
rendezvous,
|
|
use_nccl,
|
|
max_concurrent_distributed_ops
|
|
)
|
|
|
|
# (Step-3) Update momentum params :
|
|
# param_v = block_momentum * param_v
|
|
# + block_learning_Rate * (param_avg - param)
|
|
# if nesterov momentum:
|
|
# param = param + param_v
|
|
# - block_momentum * (param_v - param_v_prev)
|
|
# param_v_prev = param_v
|
|
# else:
|
|
# param = param + param_v
|
|
for param_name in model_parameter_names:
|
|
param = model_helper_obj._device_grouped_blobs[param_name][master_device]
|
|
with core.DeviceScope(master_dev_opt):
|
|
# TODO(ataei) : Stop building the graph here to get model average ?
|
|
model_helper_obj._global_model_param_updates_net.Scale(
|
|
param, param, scale=1.0 / num_devices
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Sub(
|
|
[param, _g(param)], param
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Scale(
|
|
param, param, scale=block_learning_rate
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Scale(
|
|
_v(param), _v(param), scale=block_momentum
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Add(
|
|
[_v(param), param], _v(param)
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Add(
|
|
[_g(param), _v(param)], _g(param)
|
|
)
|
|
if nesterov:
|
|
model_helper_obj._global_model_param_updates_net.Sub(
|
|
[_v(param), _v_prev(param)], _v_prev(param)
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Scale(
|
|
_v_prev(param), _v_prev(param), scale=block_momentum
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Sub(
|
|
[_g(param), _v_prev(param)], _g(param)
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Copy(
|
|
_v(param), _v_prev(param)
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Copy(
|
|
_g(param), param
|
|
)
|
|
|
|
|
|
_SyncAllParams(
|
|
devices,
|
|
model_helper_obj,
|
|
model_helper_obj.param_init_net,
|
|
model_helper_obj._global_model_param_updates_net,
|
|
rendezvous,
|
|
model_parameter_names,
|
|
max_concurrent_distributed_ops
|
|
)
|
|
|
|
# Add additional syncs
|
|
if add_blobs_to_sync is not None:
|
|
AddBlobSync(
|
|
model_helper_obj,
|
|
add_blobs_to_sync,
|
|
net=model_helper_obj._global_model_param_updates_net)
|
|
|
|
# Reset momentum-SGD parameters
|
|
if reset_momentum_sgd:
|
|
momentum_ops = [op for op in model_helper_obj.net.Proto().op
|
|
if op.type == 'MomentumSGDUpdate']
|
|
for op in momentum_ops:
|
|
momentum_blob = op.input[1]
|
|
with core.DeviceScope(op.device_option):
|
|
model_helper_obj._global_model_param_updates_net.ConstantFill(
|
|
[momentum_blob], momentum_blob, value=0.0
|
|
)
|
|
|
|
if optimize_gradient_memory:
|
|
_OptimizeGradientMemorySimple(
|
|
model_helper_obj, model_helper_obj._losses_by_gpu, devices
|
|
)
|
|
|
|
model_helper_obj._data_parallel_model_init_nets = [
|
|
model_helper_obj.param_init_net,
|
|
model_helper_obj._global_model_init_net
|
|
]
|
|
|
|
model_helper_obj._data_parallel_model_nets = [
|
|
model_helper_obj.net,
|
|
(model_helper_obj._global_model_param_updates_net, 1)
|
|
]
|
|
|
|
|
|
def RunInitNet(model):
|
|
for init_net in model._data_parallel_model_init_nets:
|
|
workspace.RunNetOnce(init_net)
|
|
for net_iters in model._data_parallel_model_nets:
|
|
if isinstance(net_iters, tuple):
|
|
workspace.CreateNet(net_iters[0])
|
|
else:
|
|
workspace.CreateNet(net_iters)
|
|
|
|
|
|
def RunWarmup(model):
|
|
workspace.RunNet(model.net, model._warmup_iterations)
|
|
workspace.RunNetOnce(model._warmup_broadcast)
|
|
|
|
|
|
def RunNet(model, num_iterations):
|
|
for net_iter in model._data_parallel_model_nets:
|
|
if isinstance(net_iter, tuple):
|
|
workspace.RunNet(net_iter[0].Proto().name, net_iter[1])
|
|
else:
|
|
workspace.RunNet(net_iter, num_iterations)
|
|
|
|
|
|
def Synchronize(model, timeout_sec=_DEFAULT_TIMEOUT_SEC):
|
|
if model._rendezvous is None or model._rendezvous['num_shards'] <= 1:
|
|
# Single host case
|
|
return
|
|
|
|
if model._barrier_net is None:
|
|
log.info("Creating synchronization barrier net")
|
|
assert model._rendezvous['engine'] == 'GLOO', "Engine does not support barrier"
|
|
barrier_init_net = core.Net("sync_barrier_init_net")
|
|
comm_world = _CreateOrCloneCommonWorld(
|
|
barrier_init_net,
|
|
"sync_barrier_cw",
|
|
rendezvous=model._rendezvous,
|
|
status_blob="sync_barrier_cw_status",
|
|
timeout_sec=timeout_sec,
|
|
)
|
|
workspace.RunNetOnce(barrier_init_net)
|
|
barrier_net = core.Net("sync_barrier_net")
|
|
barrier_net.Barrier(
|
|
inputs=[comm_world],
|
|
outputs=[],
|
|
engine=model._rendezvous['engine'],
|
|
status_blob="sync_barrier_status",
|
|
)
|
|
workspace.CreateNet(barrier_net)
|
|
model._barrier_net = barrier_net
|
|
model._barrier_net_timeout = timeout_sec
|
|
assert model._barrier_net_timeout == timeout_sec, \
|
|
"Must use fixed timeout, {} != {}".format(
|
|
model._barrier_net_timeout, timeout_sec
|
|
)
|
|
workspace.RunNet(model._barrier_net)
|
|
|
|
|
|
def ConvertNetForDevice(net, device=None):
|
|
'''
|
|
Converts all blobs in the net to have namescope gpu_X, and correct
|
|
device scope. You can use this to enable AppendNet with a
|
|
forward_pass_builder_fun:
|
|
|
|
def builder_fun(model):
|
|
...
|
|
model.net.AppendNet(
|
|
data_parallel_model.ConvertNetForDevice(othermodel.net))
|
|
model.param_init_net.AppendNet(
|
|
data_parallel_model.ConvertNetForDevice(othermodel.param_init_net))
|
|
'''
|
|
mnet = copy.deepcopy(net)
|
|
|
|
if device is None:
|
|
device = scope.CurrentDeviceScope()
|
|
|
|
device_prefix = "gpu" if device.device_type == caffe2_pb2.CUDA else "cpu"
|
|
|
|
namescope = "{}_{}/".format(device_prefix, device.cuda_gpu_id)
|
|
for op in mnet.Proto().op:
|
|
if "RecurrentNetwork" in op.type:
|
|
raise("RecurrentNetwork conversion not yet supported")
|
|
for i, inputb in enumerate(op.input):
|
|
op.input[i] = namescope + inputb
|
|
for i, outputb in enumerate(op.output):
|
|
op.output[i] = namescope + outputb
|
|
for i, blob in enumerate(op.control_input):
|
|
op.control_input[i] = namescope + blob
|
|
op.device_option.CopyFrom(device)
|
|
for i, einp in enumerate(mnet.Proto().external_input):
|
|
mnet.Proto().external_input[i] = namescope + einp
|
|
for i, eoutp in enumerate(mnet.Proto().external_output):
|
|
mnet.Proto().external_output[i] = namescope + eoutp
|
|
return mnet
|
|
|
|
|
|
def _ForEachDevice(devices, f, device_type, device_prefix, scoped=False,
|
|
*args, **kwargs):
|
|
for device in devices:
|
|
device_opt = core.DeviceOption(device_type, device)
|
|
with core.DeviceScope(device_opt):
|
|
if scoped:
|
|
with core.NameScope("{}_{}".format(device_prefix, device)):
|
|
f(device, *args, **kwargs)
|
|
else:
|
|
f(device, *args, **kwargs)
|
|
|
|
|
|
def _AddGradientOperators(devices, model, losses_by_gpu):
|
|
def create_grad(lossp):
|
|
return model.ConstantFill(lossp, str(lossp) + "_grad", value=1.0)
|
|
|
|
loss_grad = {}
|
|
# Explicitly need to create gradients on each GPU
|
|
for gpu_id in devices:
|
|
device = core.DeviceOption(model._device_type, gpu_id)
|
|
with core.DeviceScope(device):
|
|
for l in losses_by_gpu[gpu_id]:
|
|
lg = create_grad(l)
|
|
loss_grad[str(l)] = str(lg)
|
|
|
|
model.AddGradientOperators(loss_grad)
|
|
|
|
|
|
def ExtractPredictorNet(model, inputs, outputs, device):
|
|
'''
|
|
Returns (net, params) that can be exported to be used as a prediction
|
|
net.
|
|
'''
|
|
master_device = model._devices[0]
|
|
prefix = "{}_{}/".format(model._device_prefix, master_device)
|
|
prefix_inputs = [prefix + str(b) for b in inputs]
|
|
prefix_outputs = [prefix + str(b) for b in outputs]
|
|
(predictor_net, export_blobs) = model_helper.ExtractPredictorNet(
|
|
net_proto=model.net.Proto(),
|
|
input_blobs=prefix_inputs,
|
|
output_blobs=prefix_outputs,
|
|
device=device,
|
|
renames={
|
|
a: b
|
|
for (a, b) in zip(prefix_inputs + prefix_outputs, inputs + outputs)
|
|
},
|
|
)
|
|
|
|
return (predictor_net, export_blobs)
|
|
|
|
|
|
def GetCheckpointParams(model):
|
|
'''
|
|
Returns a set of blobs that are needed for a complete check point.
|
|
They are blobs for the first gpu and iteration blobs.
|
|
'''
|
|
(all_blobs, _) = _ComputeBlobsToSync(model)
|
|
first_gpu_blobs = {
|
|
b
|
|
for b in all_blobs
|
|
if str(b)
|
|
.startswith("{}_{}/".format(model._device_prefix, model._devices[0]))
|
|
}
|
|
|
|
# Add iteration blobs that do not have namescope separately, since
|
|
# it is important to checkpoint iteration counter
|
|
iteration_blobs = set()
|
|
for op in model.net.Proto().op:
|
|
if op.type == 'Iter' or op.type == 'AtomicIter':
|
|
if not op.output[0].startswith("{}_".format(model._device_prefix)):
|
|
iteration_blobs.add(op.output[0])
|
|
|
|
return first_gpu_blobs.union(iteration_blobs)
|
|
|
|
|
|
def FinalizeAfterCheckpoint(model, blobs=None):
|
|
'''
|
|
This function should be called after loading parameters from a
|
|
checkpoint / initial parameters file.
|
|
'''
|
|
|
|
if not hasattr(model, "_checkpoint_net"):
|
|
if blobs is None:
|
|
(_, uniq_blob_names) = _ComputeBlobsToSync(model)
|
|
else:
|
|
uniq_blob_names = [stripBlobName(p) for p in blobs]
|
|
|
|
# Synchronize to the blob lookup map, as the provided
|
|
# blobs might have non-parameters, such as momemtum blobs.
|
|
log.info("Creating checkpoint synchronization net")
|
|
devices = model.GetDevices()
|
|
for name in uniq_blob_names:
|
|
if name not in model._device_grouped_blobs:
|
|
grouped = {
|
|
d:
|
|
core.BlobReference("{}_{}{}{}".format(
|
|
model._device_prefix,
|
|
d,
|
|
scope._NAMESCOPE_SEPARATOR,
|
|
name)
|
|
) for d in devices}
|
|
model._device_grouped_blobs[name] = grouped
|
|
|
|
model._checkpoint_net = core.Net("checkpoint_sync_net")
|
|
model._checkpoint_net.RunAllOnGPU()
|
|
|
|
checkpoint_init_net = None
|
|
if (model._rendezvous is not None and model._rendezvous['num_shards'] > 1):
|
|
checkpoint_init_net = core.Net("checkpoint_init_net")
|
|
checkpoint_init_net.RunAllOnGPU()
|
|
|
|
_SyncAllParams(
|
|
devices,
|
|
model,
|
|
checkpoint_init_net,
|
|
model._checkpoint_net,
|
|
model._rendezvous,
|
|
uniq_blob_names,
|
|
max_concurrent_distributed_ops=1
|
|
)
|
|
if (checkpoint_init_net):
|
|
workspace.RunNetOnce(checkpoint_init_net)
|
|
|
|
workspace.CreateNet(model._checkpoint_net)
|
|
|
|
# Run the sync
|
|
log.info("Run checkpoint net")
|
|
workspace.RunNet(model._checkpoint_net.Proto().name)
|
|
|
|
|
|
def GetLearningRateBlobNames(model):
|
|
'''
|
|
Returns a list of learning rates blob names used in the optimizer.
|
|
'''
|
|
if model._optimizer is not None:
|
|
if model._device_type == caffe2_pb2.CPU:
|
|
return [model._optimizer.get_cpu_blob_name('lr')]
|
|
elif model._device_type == caffe2_pb2.CUDA:
|
|
return [model._optimizer.get_gpu_blob_name('lr', gpu, '')
|
|
for gpu in model._devices]
|
|
else:
|
|
raise Exception(
|
|
"Unsupported device type : {}".format(model._device_type)
|
|
)
|
|
else:
|
|
lr_blob_names = []
|
|
for op in model.net.Proto().op:
|
|
if op.type == "LearningRate":
|
|
lr_blob_names.append(op.output(0))
|
|
return lr_blob_names
|
|
|
|
|
|
def _Broadcast(devices, model, net, param, use_nccl=False):
|
|
# Copy params from gpu_0 to other
|
|
master_dev = devices[0]
|
|
|
|
if use_nccl:
|
|
if _IsGPUBlob(model, param):
|
|
master_device_opt = core.DeviceOption(model._device_type, master_dev)
|
|
with core.DeviceScope(master_device_opt):
|
|
# Note that the root is the root _rank_ and not the root
|
|
# _device_. Thus we always use root=0, regardless of the
|
|
# devices used.
|
|
net.NCCLBroadcast(
|
|
list(viewvalues(model._device_grouped_blobs[param])),
|
|
list(viewvalues(model._device_grouped_blobs[param])),
|
|
root=0,
|
|
)
|
|
return
|
|
|
|
for dev_idx in devices[1:]:
|
|
if _IsGPUBlob(model, param):
|
|
device_opt = core.DeviceOption(caffe2_pb2.CUDA, dev_idx)
|
|
else:
|
|
device_opt = core.DeviceOption(caffe2_pb2.CPU, 0)
|
|
with core.DeviceScope(device_opt):
|
|
net.Copy(
|
|
model._device_grouped_blobs[param][master_dev],
|
|
model._device_grouped_blobs[param][dev_idx]
|
|
)
|
|
|
|
|
|
def _AllReduce(devices, model, net, param, use_nccl=False, control_input=None):
|
|
blobs_group = list(viewvalues(model._device_grouped_blobs[param]))
|
|
if model._device_type == caffe2_pb2.CUDA and use_nccl:
|
|
# TODO: for _shared_model, do only NCCLReduce
|
|
model.NCCLAllreduce(
|
|
blobs_group, blobs_group, control_input=control_input
|
|
)
|
|
return
|
|
|
|
if model._device_type == caffe2_pb2.CUDA:
|
|
p2p_access_pattern = workspace.GetCudaPeerAccessPattern()
|
|
else:
|
|
p2p_access_pattern = None
|
|
|
|
def sumN(*dev_indices):
|
|
"""Create a Sum op for 2 or more blobs on different devices.
|
|
Saves the result on the first device.
|
|
|
|
Arguments:
|
|
dev_indices -- a list of device indices, which can be translated into
|
|
CUDA identifiers with model._devices
|
|
"""
|
|
devices = [model._devices[idx] for idx in dev_indices]
|
|
blobs = [blobs_group[idx] for idx in dev_indices]
|
|
for i, peer in enumerate(devices):
|
|
if i == 0:
|
|
continue # Skip the first device
|
|
if p2p_access_pattern is not None and not p2p_access_pattern[
|
|
devices[0], peer
|
|
]:
|
|
# Copy from peer to d0
|
|
blobs[i] = model.Copy(
|
|
blobs[i],
|
|
'gpu_{}/{}_gpu{}_copy'.format(devices[0], param, peer)
|
|
)
|
|
device_opt = core.DeviceOption(model._device_type, devices[0])
|
|
with core.DeviceScope(device_opt):
|
|
net.Sum(blobs, [blobs[0]], name='dpm')
|
|
|
|
if len(devices) == 16:
|
|
# Special tree reduction for 16 gpus, TODO generalize like in muji.py
|
|
for j in range(8):
|
|
sumN(j * 2, j * 2 + 1)
|
|
for j in range(4):
|
|
sumN(j * 4, j * 4 + 2)
|
|
for j in range(2):
|
|
sumN(j * 8, j * 8 + 4)
|
|
sumN(0, 8)
|
|
elif len(devices) == 8:
|
|
for j in range(4):
|
|
sumN(j * 2, j * 2 + 1)
|
|
for j in range(2):
|
|
sumN(j * 4, j * 4 + 2)
|
|
sumN(0, 4)
|
|
elif len(devices) == 4:
|
|
sumN(0, 1)
|
|
sumN(2, 3)
|
|
sumN(0, 2)
|
|
else:
|
|
sumN(*range(len(devices)))
|
|
# TODO: for _shared_model, no need to broadcast
|
|
_Broadcast(devices, model, net, param)
|
|
|
|
|
|
def _SyncAllParams(
|
|
devices,
|
|
model,
|
|
init_net,
|
|
net,
|
|
rendezvous,
|
|
unique_param_names,
|
|
max_concurrent_distributed_ops=4
|
|
):
|
|
if rendezvous is None or rendezvous['num_shards'] <= 1:
|
|
_SyncAllParamsSingleHost(devices, model, net, unique_param_names)
|
|
else:
|
|
_SyncAllParamsDistributed(
|
|
devices,
|
|
model,
|
|
init_net,
|
|
net,
|
|
rendezvous,
|
|
unique_param_names,
|
|
max_concurrent_distributed_ops
|
|
)
|
|
|
|
|
|
def AddBlobSync(model, blobs, net=None):
|
|
'''
|
|
Sync a blob across devices and hosts
|
|
'''
|
|
if len(blobs) == 0:
|
|
return
|
|
net = model.net if net is None else net
|
|
for b in blobs:
|
|
assert not b.startswith(model._device_prefix), \
|
|
"Provide unprefixed blob name: {}".format(b)
|
|
model._device_grouped_blobs[b] = {
|
|
d: core.BlobReference("{}_{}/{}".format(model._device_prefix, d, b))
|
|
for d in model._devices
|
|
}
|
|
|
|
_SyncAllParams(
|
|
model._devices,
|
|
model,
|
|
model.param_init_net,
|
|
net,
|
|
model._rendezvous,
|
|
set(blobs))
|
|
|
|
|
|
def AddDistributedBlobSync(model, blobs):
|
|
'''
|
|
Sync blobs across machines (but not across devices)
|
|
'''
|
|
if model._rendezvous is None:
|
|
return
|
|
synth_name = "_".join([str(b) for b in blobs])
|
|
comm_world = _CreateOrCloneCommonWorld(
|
|
model.param_init_net,
|
|
"blob_sync_cw_" + synth_name,
|
|
rendezvous=model._rendezvous,
|
|
status_blob="create_blob_sync_cw_{}_cw_status".format(
|
|
synth_name,
|
|
),
|
|
)
|
|
|
|
model.net.Allreduce(
|
|
inputs=[comm_world] + blobs,
|
|
outputs=blobs,
|
|
engine=model._rendezvous['engine'],
|
|
status_blob="blob_sync_allred_{}_status".format(synth_name),
|
|
)
|
|
|
|
|
|
def _SyncAllParamsDistributed(
|
|
devices,
|
|
model,
|
|
init_net,
|
|
net,
|
|
rendezvous,
|
|
unique_param_names,
|
|
max_concurrent_distributed_ops
|
|
):
|
|
assert rendezvous['num_shards'] > 1
|
|
|
|
gpu_device_opt = core.DeviceOption(model._device_type, devices[0])
|
|
cpu_device_opt = core.DeviceOption(caffe2_pb2.CPU)
|
|
|
|
if model._broadcast_context is None:
|
|
model._broadcast_context = CollectivesConcurrencyControl(
|
|
"broadcast",
|
|
max_concurrent_distributed_ops,
|
|
init_net,
|
|
rendezvous
|
|
)
|
|
context = model._broadcast_context
|
|
|
|
for param_name in sorted(unique_param_names):
|
|
master_param = model._device_grouped_blobs[param_name][devices[0]]
|
|
params_group = list(viewvalues(model._device_grouped_blobs[param_name]))
|
|
|
|
def broadcast(params):
|
|
comm_world, control_input = context.get_control_and_context(params)
|
|
net.Broadcast(
|
|
inputs=[comm_world] + params,
|
|
outputs=params,
|
|
name=param_name,
|
|
engine=rendezvous['engine'],
|
|
status_blob="broadcast_{}_status".format(str(param_name)),
|
|
control_input=control_input
|
|
)
|
|
|
|
device_opt = gpu_device_opt if _IsGPUBlob(
|
|
model, param_name
|
|
) else cpu_device_opt
|
|
|
|
if rendezvous['engine'] == 'GLOO':
|
|
with core.DeviceScope(device_opt):
|
|
broadcast(params_group)
|
|
else:
|
|
# Copy between GPU and CPU
|
|
with core.DeviceScope(device_opt):
|
|
param_cpu = net.CopyGPUToCPU(
|
|
master_param,
|
|
str(master_param) + "cpu"
|
|
)
|
|
with core.DeviceScope(cpu_device_opt):
|
|
broadcast([param_cpu])
|
|
with core.DeviceScope(device_opt):
|
|
net.CopyCPUToGPU(param_cpu, master_param)
|
|
|
|
# Broadcast locally
|
|
_Broadcast(devices, model, net, param_name)
|
|
|
|
|
|
def _SyncAllParamsSingleHost(devices, model, net, unique_param_names):
|
|
for param in unique_param_names:
|
|
_Broadcast(devices, model, net, param)
|
|
|
|
|
|
def _AllReduceBlobs(blob_names, devices, model, net, rendezvous, use_nccl,
|
|
max_concurrent_distributed_ops):
|
|
if rendezvous is None or rendezvous['num_shards'] <= 1:
|
|
_AllReduceBlobsSingleHost(
|
|
blob_names,
|
|
devices,
|
|
model,
|
|
net,
|
|
use_nccl
|
|
)
|
|
else:
|
|
_AllReduceBlobsDistributed(
|
|
blob_names,
|
|
devices,
|
|
model,
|
|
net,
|
|
rendezvous,
|
|
max_concurrent_distributed_ops,
|
|
)
|
|
|
|
|
|
def _PruneParametersForSharing(model):
|
|
assert model._shared_model
|
|
master_prefix = "{}_{}/".format(model._device_prefix, model._devices[0])
|
|
|
|
# Remove non-master parameters so that they will not receive parameter
|
|
# update operators.
|
|
model.params = model.GetParams(master_prefix)
|
|
paramset = set(model.params)
|
|
|
|
model.param_to_grad = {
|
|
p: model.param_to_grad[p]
|
|
for p in model.param_to_grad if p in paramset
|
|
}
|
|
model.weights = [w for w in model.weights if w in paramset]
|
|
model.biases = [w for w in model.biases if w in paramset]
|
|
|
|
|
|
def _RemapParameterBlobsForSharedModel(model, all_params):
|
|
assert model._shared_model
|
|
master_prefix = "{}_{}/".format(
|
|
model._device_prefix, model._devices[0])
|
|
log.info("Remapping param blobs to master -> {}".format(master_prefix))
|
|
master_params = set(model.GetParams())
|
|
|
|
# Remove all but master params
|
|
def modify_ops(net):
|
|
ops = []
|
|
for op in net.Proto().op:
|
|
delete_op = False
|
|
# Delete ops that output non-master version of parameter
|
|
for outp in op.output:
|
|
if outp in all_params and outp not in master_params:
|
|
delete_op = True
|
|
log.debug("Delete b/c {}: {}".format(outp, str(op)))
|
|
break
|
|
if delete_op:
|
|
continue
|
|
# Remap inputs to point to the master param
|
|
for j, inp in enumerate(op.input):
|
|
if inp in all_params and inp not in master_params:
|
|
op.input[j] = master_prefix + stripBlobName(inp)
|
|
ops.append(op)
|
|
del net.Proto().op[:]
|
|
net.Proto().op.extend(ops)
|
|
|
|
modify_ops(model.param_init_net)
|
|
modify_ops(model.net)
|
|
|
|
|
|
class CollectivesConcurrencyControl(object):
|
|
"""
|
|
Creates common worlds (up to max_concurrent_context) and manage the
|
|
sequential execution of collectives that shares the same context with
|
|
cyclic control inputs.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
name,
|
|
max_concurrent_context,
|
|
param_init_net,
|
|
rendezvous
|
|
):
|
|
self.name = name
|
|
self.param_init_net = param_init_net
|
|
self.max_concurrent_context = max_concurrent_context
|
|
self.counter = 0
|
|
self.common_worlds = []
|
|
self.control_inputs = []
|
|
self.rendezvous = rendezvous
|
|
|
|
def get_control_and_context(self, control_output_blob):
|
|
common_world, control_input = [None, None]
|
|
current_slot = self.counter % self.max_concurrent_context
|
|
if len(self.common_worlds) < self.max_concurrent_context:
|
|
common_world = _CreateOrCloneCommonWorld(
|
|
self.param_init_net,
|
|
"{}_{}_cw".format(self.name, current_slot),
|
|
rendezvous=self.rendezvous,
|
|
status_blob="create_{}_cw_{}_status".format(
|
|
self.name,
|
|
current_slot
|
|
),
|
|
)
|
|
self.common_worlds.append(common_world)
|
|
self.control_inputs.append(control_output_blob)
|
|
else:
|
|
common_world = self.common_worlds[current_slot]
|
|
control_input = self.control_inputs[current_slot]
|
|
self.control_inputs[current_slot] = control_output_blob
|
|
self.counter += 1
|
|
return common_world, control_input
|
|
|
|
|
|
def _AllReduceBlobsDistributed(
|
|
blob_names,
|
|
devices,
|
|
model,
|
|
net,
|
|
rendezvous,
|
|
max_concurrent_distributed_ops,
|
|
):
|
|
num_workers = model.net.Proto().num_workers
|
|
assert num_workers > 1, "Please specify more than 1 worker"
|
|
all_reduce_engine = rendezvous['engine']
|
|
|
|
master_device_opt = core.DeviceOption(model._device_type, devices[0])
|
|
|
|
reducing_device_opt = master_device_opt
|
|
|
|
context = CollectivesConcurrencyControl(
|
|
"allreduce",
|
|
max_concurrent_distributed_ops,
|
|
model.param_init_net,
|
|
rendezvous
|
|
)
|
|
|
|
nccl_control_blob = None
|
|
|
|
for blob_name in blob_names:
|
|
master_blob = model._device_grouped_blobs[blob_name][devices[0]]
|
|
blobs_group = list(viewvalues(model._device_grouped_blobs[blob_name]))
|
|
|
|
assert master_blob in blobs_group
|
|
|
|
# Remark: NCCLReduce does not support in-place modifications
|
|
# so we need a temporary blob
|
|
reduced_blob = str(master_blob) + "_red"
|
|
|
|
def allreduce(blobs, **kwargs):
|
|
with core.DeviceScope(reducing_device_opt):
|
|
comm_world, control_input = \
|
|
context.get_control_and_context(blobs[0])
|
|
net.Allreduce(
|
|
inputs=[comm_world] + blobs,
|
|
outputs=blobs,
|
|
name=blob_name,
|
|
engine=all_reduce_engine,
|
|
control_input=control_input,
|
|
status_blob="allreduce_{}_status".format(blob_name),
|
|
**kwargs
|
|
)
|
|
|
|
if rendezvous['engine'] == 'GLOO':
|
|
# With Gloo cross GPU and cross machine allreduce
|
|
# can be executed in a single operation.
|
|
# Try to use GPUDirect if transport == ibverbs.
|
|
allreduce(
|
|
blobs_group,
|
|
gpu_direct=(rendezvous.get("transport", None) == "ibverbs"),
|
|
)
|
|
else:
|
|
# Step 1: sum blobs from local GPUs to master GPU
|
|
with core.DeviceScope(master_device_opt):
|
|
model.ConstantFill(master_blob, reduced_blob, value=0.0)
|
|
|
|
# Temp fix since NCCLReduce does not work
|
|
net.NCCLAllreduce(
|
|
blobs_group,
|
|
blobs_group,
|
|
control_input=nccl_control_blob,
|
|
)
|
|
nccl_control_blob = blobs_group[0]
|
|
net.Copy(master_blob, reduced_blob)
|
|
|
|
# Step 2: allreduce between all hosts, between master GPUs
|
|
allreduce([reduced_blob])
|
|
|
|
with core.DeviceScope(master_device_opt):
|
|
net.Copy(reduced_blob, master_blob)
|
|
|
|
# Step 3: broadcast locally
|
|
_Broadcast(devices, model, net, blob_name)
|
|
|
|
|
|
def _AllReduceBlobsSingleHost(blob_names, devices, model, net, use_nccl):
|
|
"""Performs NCCL AllReduce to distribute blobs to all the GPUs."""
|
|
|
|
if len(devices) == 1:
|
|
return
|
|
|
|
# Now we need to Allreduce blobs on all the GPUs.
|
|
# Pick GPU #0 as a master GPU.
|
|
master_device_opt = core.DeviceOption(model._device_type, devices[0])
|
|
last_out = None
|
|
concatenated_idx = set()
|
|
|
|
for blob_name in blob_names:
|
|
# Group by blob_name for reduce.
|
|
blobs_group = list(viewvalues(model._device_grouped_blobs[blob_name]))
|
|
if len(blobs_group) == 1:
|
|
# Non-reducible
|
|
continue
|
|
assert len(blobs_group) == len(devices), \
|
|
"Each GPU from {}, should have a copy of {}.".format(
|
|
devices, blob_name)
|
|
|
|
if _IsGPUBlob(model, blob_name):
|
|
with core.DeviceScope(master_device_opt):
|
|
if not isinstance(blobs_group[0], core.GradientSlice):
|
|
_AllReduce(
|
|
devices, model, net, blob_name, use_nccl, last_out
|
|
)
|
|
# last_out is used to serialize the execution of nccls
|
|
last_out = blobs_group[0]
|
|
|
|
else:
|
|
# Sparse gradients: all-gather for indices and values
|
|
master_ns = "{}_{}".format(model._device_prefix, devices[0])
|
|
'''
|
|
Skip if we have already copied concatenated indices
|
|
to the indices of GradientSlice. This happens when two
|
|
or more grad blobs are gathered with the same indices
|
|
blob
|
|
'''
|
|
skip_idx_concat = False
|
|
for g in blobs_group:
|
|
if g.indices in concatenated_idx:
|
|
skip_idx_concat = True
|
|
|
|
if not skip_idx_concat:
|
|
grad_idx_concat, _ = net.Concat(
|
|
[g.indices for g in blobs_group],
|
|
["{}/{}_index_concat".format(master_ns, blob_name),
|
|
"{}/{}_index_splitinfo".format(master_ns, blob_name)],
|
|
axis=0,
|
|
name="note:data_parallel_model")
|
|
|
|
for gpu, g in viewitems(model._device_grouped_blobs[blob_name]):
|
|
device_opt = core.DeviceOption(model._device_type, gpu)
|
|
with core.DeviceScope(device_opt):
|
|
model.Copy(grad_idx_concat, g.indices)
|
|
concatenated_idx.add(g.indices)
|
|
|
|
grad_val_concat, _ = net.Concat(
|
|
[g.values for g in blobs_group],
|
|
["{}/{}_val_concat".format(master_ns, blob_name),
|
|
"{}/{}_val_splitinfo".format(master_ns, blob_name)],
|
|
axis=0, name="note:data_parallel_model")
|
|
|
|
for gpu, g in viewitems(model._device_grouped_blobs[blob_name]):
|
|
device_opt = core.DeviceOption(model._device_type, gpu)
|
|
with core.DeviceScope(device_opt):
|
|
model.Copy(grad_val_concat, g.values)
|
|
|
|
else:
|
|
assert not isinstance(blobs_group[0], core.GradientSlice), \
|
|
"Synchronizing gradient slices not supported"
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
|
|
# Poor man's allreduce
|
|
net.Sum(blobs_group, [blobs_group[0]])
|
|
if not model._shared_model:
|
|
_Broadcast(devices, model, net, blob_name)
|
|
|
|
|
|
def _BroadcastComputedParams(devices, model, rendezvous, use_nccl=False):
|
|
if rendezvous is None:
|
|
_BroadcastComputedParamsSingleHost(devices, model, use_nccl)
|
|
else:
|
|
_BroadcastComputedParamsDistributed(devices, model, rendezvous, use_nccl)
|
|
|
|
|
|
def _BroadcastComputedParamsDistributed(
|
|
devices,
|
|
model,
|
|
rendezvous,
|
|
use_nccl=False
|
|
):
|
|
_BroadcastComputedParamsSingleHost(devices, model, use_nccl)
|
|
log.warn("Distributed broadcast of computed params is not implemented yet")
|
|
|
|
|
|
def _BroadcastComputedParamsSingleHost(devices, model, use_nccl=False):
|
|
'''
|
|
Average computed params over all devices
|
|
'''
|
|
if len(devices) == 1:
|
|
return
|
|
|
|
for param_name in model._computed_param_names:
|
|
# Copy from master to others -- averaging would be perhaps better,
|
|
# but currently NCCLAllReduce is too prone to deadlock
|
|
_Broadcast(devices, model, model.net, param_name, use_nccl)
|
|
|
|
|
|
def _GetReverseOrderedGrads(model):
|
|
'''
|
|
Returns the gradients in reverse order (namespace stripped),
|
|
for the optimal synchronization order.
|
|
'''
|
|
return list(reversed(model._grad_names))
|
|
|
|
|
|
# A helper function to extract a parameter's name
|
|
def stripBlobName(param):
|
|
# Format is "a/b/c/d" -> "b/c/d"
|
|
if isinstance(param, core.GradientSlice):
|
|
return stripBlobName(param.indices) + ":" + stripBlobName(param.values)
|
|
else:
|
|
name = str(param)
|
|
return name[name.index(scope._NAMESCOPE_SEPARATOR) + 1:]
|
|
|
|
|
|
def _AnalyzeOperators(model):
|
|
'''
|
|
Look at all the operators and check that they do not cross device scopes
|
|
'''
|
|
for op in model.Proto().op:
|
|
if "NCCL" in op.type or "Copy" in op.type or "Concat" in op.type:
|
|
continue
|
|
if "Sum" == op.type and op.name == "dpm":
|
|
continue
|
|
if "Allreduce" in op.type and "GLOO" in op.engine:
|
|
continue
|
|
|
|
op_dev = op.device_option
|
|
op_gpu = op_dev.cuda_gpu_id
|
|
|
|
# This avoids failing on operators that are only for CPU
|
|
if op_dev.device_type != caffe2_pb2.CUDA:
|
|
continue
|
|
|
|
namescope = "{}_{}/".format(model._device_prefix, op_gpu)
|
|
for inp in list(op.input) + list(op.output):
|
|
if inp.startswith("{}_".format(model._device_prefix)
|
|
) and not inp.startswith(namescope):
|
|
raise Exception(
|
|
"Blob {} of op {}, should have namescope {}. Op: {}".format(
|
|
inp,
|
|
op.type,
|
|
"{}_{}/".format(model._device_prefix, op_gpu),
|
|
str(op),
|
|
)
|
|
)
|
|
|
|
|
|
def _InferBlobDevice(model):
|
|
'''
|
|
Assign blob to device option based on the operator outputing it
|
|
'''
|
|
mapping = {}
|
|
|
|
def map_ops(proto):
|
|
for op in proto.op:
|
|
device_option = op.device_option
|
|
if op.type == "Iter":
|
|
# Hack for Iters which have blob in CPU context
|
|
device_option = caffe2_pb2.DeviceOption()
|
|
device_option.device_type = caffe2_pb2.CPU
|
|
for b in list(op.input) + list(op.output):
|
|
if b not in mapping:
|
|
mapping[b] = device_option
|
|
if op.type.startswith('RecurrentNetwork'):
|
|
step_args = [a for a in op.arg if a.name.endswith("step_net")]
|
|
for step_arg in step_args:
|
|
map_ops(step_arg.n)
|
|
map_ops(model.param_init_net.Proto())
|
|
map_ops(model.net.Proto())
|
|
model._blob_to_device = mapping
|
|
|
|
def _IsGPUBlob(model, blob_name):
|
|
if blob_name in model._blob_to_device:
|
|
return model._blob_to_device[blob_name].device_type == caffe2_pb2.CUDA
|
|
else:
|
|
blob_name = "{}_{}/{}".format(
|
|
model._device_prefix, model._devices[0], blob_name
|
|
)
|
|
if blob_name not in model._blob_to_device:
|
|
return model._device_type == caffe2_pb2.CUDA
|
|
return model._blob_to_device[blob_name].device_type == caffe2_pb2.CUDA
|
|
|
|
|
|
def _GroupByDevice(model, devices, params, non_data_params):
|
|
'''
|
|
Groups blobs by device, returning a map of [blobname] = {0: BlobRef, 1: ..}.
|
|
Returns ordered dictionary, ensuring the original order.
|
|
'''
|
|
grouped = OrderedDict()
|
|
# Only consider params that were created to be "data parallel"
|
|
params = params[len(non_data_params):]
|
|
|
|
for _i, p in enumerate(params):
|
|
assert isinstance(p, core.BlobReference) or \
|
|
isinstance(p, core.GradientSlice), \
|
|
"Param {} is not BlobReference or GradientSlice".format(p)
|
|
|
|
name = stripBlobName(p)
|
|
gpuid = None
|
|
|
|
if isinstance(p, core.BlobReference):
|
|
gpuid = int(p.GetNameScope().split("_")[1].split("/")[0])
|
|
assert "{}_{}/".format(model._device_prefix, gpuid) in p.GetNameScope(),\
|
|
"Param {} expected to have namescope '{}_{}'".format(str(p), model._device_prefix, gpuid)
|
|
else:
|
|
gpuid = int(p.indices.GetNameScope().split("_")[1].split("/")[0])
|
|
assert "{}_{}/".format(model._device_prefix, gpuid) in p.indices.GetNameScope(),\
|
|
"Indices {} expected to have namescope '{}_{}'".format(str(p), model._device_prefix, gpuid)
|
|
assert "{}_{}/".format(model._device_prefix, gpuid) in p.values.GetNameScope(),\
|
|
"Values {} expected to have namescope '{}_{}'".format(str(p), model._device_prefix, gpuid)
|
|
|
|
if name not in grouped:
|
|
grouped[name] = {}
|
|
grouped[name][gpuid] = p
|
|
|
|
return grouped
|
|
|
|
|
|
def _ValidateParams(params):
|
|
set_params = set(params)
|
|
if len(params) > len(set_params):
|
|
dupes = []
|
|
sp = sorted(params)
|
|
for j, p in enumerate(sp):
|
|
if j > 0 and sp[j - 1] == p:
|
|
dupes.append(p)
|
|
|
|
assert len(params) == len(set_params), \
|
|
"Duplicate entries in params: {}".format(dupes)
|
|
|
|
|
|
def _ComputeBlobsToSync(model):
|
|
'''
|
|
We sync all blobs that are generated by param init net and
|
|
are 'data parallel', i.e assigned to a device
|
|
'''
|
|
sync_names = set()
|
|
|
|
# We don't sync params if the model is shared
|
|
if model._shared_model:
|
|
blobs_to_sync = [str(p) for p in model.GetComputedParams('')]
|
|
sync_names = [stripBlobName(p) for p in blobs_to_sync]
|
|
else:
|
|
blobs_to_sync = []
|
|
|
|
for op in model.param_init_net.Proto().op:
|
|
dp_outputs = [
|
|
o for o in op.output
|
|
if o.startswith("{}_".format(model._device_prefix))
|
|
]
|
|
sync_names.update([stripBlobName(o) for o in dp_outputs])
|
|
blobs_to_sync.extend(dp_outputs)
|
|
|
|
# Sanity check
|
|
diff = set(model._param_names) - sync_names
|
|
assert diff == set(), \
|
|
"Some params not instantiated in param init net: {}".format(diff)
|
|
|
|
# Remove duplicates and sort
|
|
prefixlen = len(model._device_prefix) + 1
|
|
|
|
def extract_sort_key(b):
|
|
# Sort first based on device id, and then by whole string
|
|
deviceid = int(b[prefixlen:b.index(scope._NAMESCOPE_SEPARATOR)])
|
|
return (deviceid, b)
|
|
|
|
blobs_to_sync = sorted(
|
|
list(set(blobs_to_sync)),
|
|
key=extract_sort_key)
|
|
|
|
blobs_to_sync = [core.BlobReference(b) for b in blobs_to_sync]
|
|
return (blobs_to_sync, sync_names)
|
|
|
|
|
|
def _OptimizeGradientMemorySimple(model, losses_by_gpu, devices):
|
|
log.warning("------- DEPRECATED API, please use " +
|
|
"data_parallel_model.OptimizeGradientMemory() ----- ")
|
|
for device in devices:
|
|
namescope = "{}_{}/".format(model._device_prefix, device)
|
|
model.net._net = memonger.share_grad_blobs(
|
|
model.net,
|
|
losses_by_gpu[device],
|
|
set(viewvalues(model.param_to_grad)),
|
|
namescope,
|
|
share_activations=False,
|
|
)
|
|
|
|
|
|
def _AddDynamicMemoryOptimization(model, blobs_to_keep, devices):
|
|
blobs_to_keep_all_devices = set()
|
|
if blobs_to_keep is not None:
|
|
for device in devices:
|
|
for blob_name in blobs_to_keep:
|
|
blobs_to_keep_all_devices.add(
|
|
"{}_{}/{}".format(model._device_prefix, device, blob_name)
|
|
)
|
|
|
|
if model._rendezvous is not None:
|
|
# GLOO operators expect the tensor addresses to remain same over
|
|
# iterations so we need to remove param grads from the dynamic memory
|
|
# management.
|
|
blobs_to_keep_all_devices.update(
|
|
[str(b) for b in viewvalues(model.param_to_grad)]
|
|
)
|
|
|
|
model.net._net = memonger.release_blobs_when_used(
|
|
model.net.Proto(),
|
|
blobs_to_keep_all_devices
|
|
)
|
|
|
|
|
|
def OptimizeGradientMemory(model,
|
|
input_shapes,
|
|
excluded_blobs,
|
|
recycle_activations):
|
|
"""
|
|
Optimize memory usage of the backward pass by recycling blobs for gradient
|
|
inputs that have been 'used'.
|
|
input_shapes: dict of blob name to shape for the inputs of the model.
|
|
Pass empty dictionary if not known.
|
|
excluded_blobs: list of blobs that cannot be recycled. These are blobs
|
|
that you will access externally.
|
|
recycle_activations: whether to also recycle forward pass activations
|
|
"""
|
|
if input_shapes is not None:
|
|
input_shapes_all_devices = {}
|
|
for b, shp in viewitems(input_shapes):
|
|
for d in model._devices:
|
|
input_shapes_all_devices["{}_{}/{}".
|
|
format(model._device_prefix, d, b)] = shp
|
|
|
|
(shapes, types) = workspace.InferShapesAndTypes(
|
|
[model.param_init_net, model.net],
|
|
input_shapes_all_devices,
|
|
)
|
|
else:
|
|
shapes = None
|
|
|
|
for device in model._devices:
|
|
namescope = "{}_{}/".format(model._device_prefix, device)
|
|
excluded_blobs_by_device = set(namescope + b for b in excluded_blobs)
|
|
model.net._net = memonger.share_grad_blobs(
|
|
model.net,
|
|
model._losses_by_gpu[device],
|
|
set(viewvalues(model.param_to_grad)),
|
|
namescope,
|
|
dont_share_blobs=excluded_blobs_by_device,
|
|
share_activations=recycle_activations,
|
|
blob_shapes=shapes,
|
|
)
|
|
|
|
|
|
def _CreateOrCloneCommonWorld(
|
|
net,
|
|
common_world_blob,
|
|
rendezvous,
|
|
name=None,
|
|
status_blob=None,
|
|
timeout_sec=None):
|
|
|
|
if timeout_sec is None:
|
|
timeout_sec = _DEFAULT_TIMEOUT_SEC
|
|
|
|
timeout_ms = timeout_sec * 1000
|
|
|
|
# Check if there is an existing CreateCommonWorld
|
|
# with the same timeout we're looking for. If so,
|
|
# we can clone it instead of creating a new one.
|
|
existing = None
|
|
for op in net.Proto().op:
|
|
if op.type != "CreateCommonWorld":
|
|
continue
|
|
|
|
# Find common world timeout
|
|
op_timeout_ms = -1
|
|
for arg in op.arg:
|
|
if arg.name == 'timeout_ms':
|
|
op_timeout_ms = arg.i
|
|
break
|
|
if op_timeout_ms != timeout_ms:
|
|
continue
|
|
|
|
# This common world was created with the same timeout we're
|
|
# looking for, so we can clone it
|
|
existing = op.output[0]
|
|
break
|
|
|
|
if name is None:
|
|
name = "{}_op".format(common_world_blob)
|
|
|
|
if existing is not None:
|
|
comm_world = net.CloneCommonWorld(
|
|
[existing],
|
|
common_world_blob,
|
|
name=name,
|
|
engine=rendezvous['engine'],
|
|
status_blob=status_blob,
|
|
)
|
|
else:
|
|
kwargs=dict()
|
|
if 'transport' in rendezvous:
|
|
kwargs['transport'] = rendezvous['transport']
|
|
if 'interface' in rendezvous:
|
|
kwargs['interface'] = rendezvous['interface']
|
|
if 'mpi_rendezvous' in rendezvous:
|
|
kwargs['mpi_rendezvous'] = rendezvous['mpi_rendezvous']
|
|
comm_world = net.CreateCommonWorld(
|
|
rendezvous['kv_handler'] or [],
|
|
common_world_blob,
|
|
name=name,
|
|
size=rendezvous['num_shards'],
|
|
rank=rendezvous['shard_id'],
|
|
engine=rendezvous['engine'],
|
|
status_blob=status_blob,
|
|
timeout_ms=timeout_ms,
|
|
**kwargs
|
|
)
|
|
|
|
return comm_world
|
|
|
|
|
|
def _RunComparison(model, blob_name, device=None):
|
|
if device is None:
|
|
device = model._blob_to_device[blob_name]
|
|
with core.DeviceScope(device):
|
|
rendezvous = model._rendezvous
|
|
if rendezvous is None or rendezvous['num_shards'] == 1:
|
|
return True
|
|
|
|
test_data_arr = np.zeros(rendezvous['num_shards']).astype(np.float32)
|
|
test_data_arr[rendezvous['shard_id']] = 1
|
|
workspace.FeedBlob("compare_arr", test_data_arr)
|
|
|
|
comparison_net = core.Net("allcompare_net")
|
|
|
|
kwargs=dict()
|
|
if 'mpi_rendezvous' in rendezvous:
|
|
kwargs['mpi_rendezvous'] = rendezvous['mpi_rendezvous']
|
|
comm_world = comparison_net.CreateCommonWorld(
|
|
rendezvous['kv_handler'] or [],
|
|
"initial_sync",
|
|
name=model.net.Proto().name + ".cw_master_select",
|
|
size=rendezvous['num_shards'],
|
|
rank=rendezvous['shard_id'],
|
|
engine=rendezvous['engine'],
|
|
status_blob="cw_master_select",
|
|
**kwargs
|
|
)
|
|
|
|
blob_name_checksum = blob_name + "_checksum"
|
|
comparison_net.SumSqrElements(
|
|
[blob_name], [blob_name_checksum], average=False
|
|
)
|
|
|
|
blob_name_gather = blob_name + "_gather"
|
|
comparison_net.Mul(
|
|
inputs=["compare_arr", blob_name_checksum],
|
|
outputs=blob_name_gather,
|
|
broadcast=1
|
|
)
|
|
|
|
comparison_net.Allreduce(
|
|
inputs=[comm_world, blob_name_gather],
|
|
outputs=[blob_name_gather],
|
|
engine=rendezvous['engine'],
|
|
status_blob="all_reduce_master_select_status",
|
|
)
|
|
|
|
workspace.RunNetOnce(comparison_net)
|
|
gather_arr = workspace.FetchBlob(blob_name_gather)
|
|
|
|
baseline = gather_arr[0]
|
|
for i in range(rendezvous['num_shards']):
|
|
assert gather_arr[i] == baseline, \
|
|
"allcompare failed on shard {}.".format(rendezvous['shard_id'])
|
|
|
|
return True
|
|
|
|
|
|
def _InterleaveOps(model):
|
|
'''
|
|
Data Parallel Model creates a net with ops in one device grouped together.
|
|
This will interleave the ops so that each op for each device is next
|
|
to each other in the net. Kind of like combining decks of cards. This
|
|
ensures that progress is made along the critical path roughly concurrently
|
|
for each device, which is important due to the extra intra-node
|
|
synchronization required for multi-device batch normalization.
|
|
'''
|
|
orig_ops = list(model.net.Proto().op)
|
|
num_devices = len(model._devices)
|
|
num_ops_per_dev = len(orig_ops) // num_devices
|
|
assert num_devices * num_ops_per_dev == len(orig_ops), \
|
|
'Number of ops per device in original net is not uniform'
|
|
new_ops = []
|
|
ops = {d: [] for d in range(num_devices)}
|
|
for op in orig_ops:
|
|
ops[op.device_option.cuda_gpu_id].append(op)
|
|
|
|
for j in range(num_ops_per_dev):
|
|
tp = None
|
|
for d in model._devices:
|
|
if tp is None:
|
|
tp = ops[d][j].type
|
|
new_ops.append(ops[d][j])
|
|
# Sanity
|
|
assert ops[d][j].type == tp, \
|
|
"Type mismatch {} / {}".format(tp, ops[d][j].type)
|
|
|
|
del model.net.Proto().op[:]
|
|
model.net.Proto().op.extend(new_ops)
|
|
|
|
|
|
def _InterDeviceBatchNormalization(model):
|
|
orig_ops = list(model.net.Proto().op)
|
|
new_ops = []
|
|
num_devices = len(model._devices)
|
|
batch_norm_ops = []
|
|
injected_ops = []
|
|
|
|
spatial_bn_phase = False
|
|
sums_blobs = []
|
|
sumsq_blobs = []
|
|
name = []
|
|
input_blob_name = None
|
|
|
|
spatial_bn_gradient_phase = False
|
|
scale_grad_blobs = []
|
|
bias_grad_blobs = []
|
|
|
|
for op in orig_ops:
|
|
if op.type != 'SpatialBN' and op.type != 'SpatialBNGradient':
|
|
if spatial_bn_phase:
|
|
new_ops.extend(injected_ops)
|
|
new_ops.append(
|
|
core.CreateOperator("Sum",
|
|
sums_blobs,
|
|
input_blob_name + "_sums_combined"))
|
|
new_ops.append(
|
|
core.CreateOperator("Sum",
|
|
sumsq_blobs,
|
|
input_blob_name + "_sumsq_combined"))
|
|
new_ops.extend(batch_norm_ops)
|
|
injected_ops = []
|
|
batch_norm_ops = []
|
|
sums_blobs = []
|
|
sumsq_blobs = []
|
|
spatial_bn_phase = False
|
|
input_blob_name = None
|
|
elif spatial_bn_gradient_phase:
|
|
new_ops.extend(injected_ops)
|
|
scale_blob = \
|
|
"cpu_0/" + stripBlobName(scale_grad_blobs[0]) + "_combined"
|
|
bias_blob = \
|
|
"cpu_0/" + stripBlobName(bias_grad_blobs[0]) + "_combined"
|
|
new_ops.append(
|
|
core.CreateOperator("Sum", scale_grad_blobs, scale_blob))
|
|
new_ops.append(
|
|
core.CreateOperator("Sum", bias_grad_blobs, bias_blob))
|
|
for blob in scale_grad_blobs:
|
|
new_ops.append(
|
|
core.CreateOperator("Copy", scale_blob, blob))
|
|
for blob in bias_grad_blobs:
|
|
new_ops.append(core.CreateOperator("Copy", bias_blob, blob))
|
|
new_ops.extend(batch_norm_ops)
|
|
injected_ops = []
|
|
batch_norm_ops = []
|
|
scale_grad_blobs = []
|
|
bias_grad_blobs = []
|
|
spatial_bn_gradient_phase = False
|
|
new_ops.append(op)
|
|
elif op.type == 'SpatialBN':
|
|
spatial_bn_phase = True
|
|
if input_blob_name is None:
|
|
input_blob_name = op.input[0]
|
|
name = op.input[0]
|
|
injected_ops.append(
|
|
core.CreateOperator(
|
|
"ChannelStats",
|
|
name,
|
|
[name + "_sums", name + "_sumsq"]))
|
|
sums_blobs.append(name + "_sums")
|
|
sumsq_blobs.append(name + "_sumsq")
|
|
op.input.append(input_blob_name + "_sums_combined")
|
|
op.input.append(input_blob_name + "_sumsq_combined")
|
|
op.arg.extend([utils.MakeArgument("num_batches", num_devices)])
|
|
batch_norm_ops.append(op)
|
|
elif op.type == 'SpatialBNGradient':
|
|
spatial_bn_gradient_phase = True
|
|
injected_ops.append(
|
|
core.CreateOperator("ChannelBackpropStats",
|
|
[op.input[0], op.input[3], op.input[4],
|
|
op.input[2]],
|
|
[op.output[1], op.output[2]]))
|
|
scale_grad_blobs.append(op.output[1])
|
|
bias_grad_blobs.append(op.output[2])
|
|
op.arg.extend([utils.MakeArgument("num_batches", num_devices)])
|
|
op.input.extend([op.output[1], op.output[2]])
|
|
batch_norm_ops.append(op)
|
|
|
|
assert not spatial_bn_phase, \
|
|
"Net modification for inter-device batch normalization failed"
|
|
del model.net.Proto().op[:]
|
|
model.net.Proto().op.extend(new_ops)
|