mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28827 When we print the `DynamicLinear` module, we don't want to print the scale and zero points as they are not needed for the dynamic quantization. Let's take the output of RoBERTa model as an example: Before this PR: ``` (19): TransformerEncoderLayer( (dropout): Dropout(p=0.1, inplace=False) (attention): MultiheadAttention( (dropout): Dropout(p=0.1, inplace=False) (input_projection): DynamicQuantizedLinear(in_features=1024, out_features=3072, scale=1.0, zero_point=0) (output_projection): DynamicQuantizedLinear(in_features=1024, out_features=1024, scale=1.0, zero_point=0) ) (residual_mlp): ResidualMLP( (mlp): Sequential( (0): DynamicQuantizedLinear(in_features=1024, out_features=4096, scale=1.0, zero_point=0) (1): GeLU() (2): Dropout(p=0.1, inplace=False) (3): DynamicQuantizedLinear(in_features=4096, out_features=1024, scale=1.0, zero_point=0) (4): Dropout(p=0.1, inplace=False) ) ) (attention_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) ) (20): TransformerEncoderLayer( (dropout): Dropout(p=0.1, inplace=False) (attention): MultiheadAttention( (dropout): Dropout(p=0.1, inplace=False) (input_projection): DynamicQuantizedLinear(in_features=1024, out_features=3072, scale=1.0, zero_point=0) (output_projection): DynamicQuantizedLinear(in_features=1024, out_features=1024, scale=1.0, zero_point=0) ) (residual_mlp): ResidualMLP( (mlp): Sequential( (0): DynamicQuantizedLinear(in_features=1024, out_features=4096, scale=1.0, zero_point=0) (1): GeLU() (2): Dropout(p=0.1, inplace=False) (3): DynamicQuantizedLinear(in_features=4096, out_features=1024, scale=1.0, zero_point=0) (4): Dropout(p=0.1, inplace=False) ) ) (attention_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) ) ``` After this PR: ``` (19): TransformerEncoderLayer( (dropout): Dropout(p=0.1, inplace=False) (attention): MultiheadAttention( (dropout): Dropout(p=0.1, inplace=False) (input_projection): DynamicQuantizedLinear(in_features=1024, out_features=3072) (output_projection): DynamicQuantizedLinear(in_features=1024, out_features=1024) ) (residual_mlp): ResidualMLP( (mlp): Sequential( (0): DynamicQuantizedLinear(in_features=1024, out_features=4096) (1): GeLU() (2): Dropout(p=0.1, inplace=False) (3): DynamicQuantizedLinear(in_features=4096, out_features=1024) (4): Dropout(p=0.1, inplace=False) ) ) (attention_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) ) (20): TransformerEncoderLayer( (dropout): Dropout(p=0.1, inplace=False) (attention): MultiheadAttention( (dropout): Dropout(p=0.1, inplace=False) (input_projection): DynamicQuantizedLinear(in_features=1024, out_features=3072) (output_projection): DynamicQuantizedLinear(in_features=1024, out_features=1024) ) (residual_mlp): ResidualMLP( (mlp): Sequential( (0): DynamicQuantizedLinear(in_features=1024, out_features=4096) (1): GeLU() (2): Dropout(p=0.1, inplace=False) (3): DynamicQuantizedLinear(in_features=4096, out_features=1024) (4): Dropout(p=0.1, inplace=False) ) ) (attention_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) ) ``` ghstack-source-id: 92807317 Test Plan: CI Differential Revision: D18197022 fbshipit-source-id: e41635330cfdfb008a0468d6a8ff67a06f7e1c59
78 lines
3.5 KiB
Python
78 lines
3.5 KiB
Python
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
import torch
|
|
from ....modules.linear import Linear as NNLinear
|
|
import torch.nn.quantized as nnq
|
|
|
|
class Linear(nnq.Linear):
|
|
r"""
|
|
A dynamic quantized linear module with quantized tensor as inputs and outputs.
|
|
We adopt the same interface as `torch.nn.Linear`, please see
|
|
https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation.
|
|
|
|
Similar to :class:`torch.nn.Linear`, attributes will be randomly
|
|
initialized at module creation time and will be overwritten later
|
|
|
|
Attributes:
|
|
weight (Tensor): the non-learnable quantized weights of the module which are of
|
|
shape :math:`(\text{out\_features}, \text{in\_features})`.
|
|
bias (Tensor): the non-learnable bias of the module of shape :math:`(\text{out\_features})`.
|
|
If :attr:`bias` is ``True``, the values are initialized to zero.
|
|
scale: `scale` parameter of weight Quantized Tensor, type: double
|
|
zero_point: `zero_point` parameter for weight Quantized Tensor, type: long
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.quantized.dynamic.Linear(20, 30)
|
|
>>> input = torch.randn(128, 20)
|
|
>>> output = m(input)
|
|
>>> print(output.size())
|
|
torch.Size([128, 30])
|
|
"""
|
|
|
|
def __init__(self, in_features, out_features, bias_=True):
|
|
super(Linear, self).__init__(in_features, out_features, bias_)
|
|
# We don't muck around with buffers or attributes or anything here
|
|
# to keep the module simple. *everything* is simply a Python attribute.
|
|
# Serialization logic is explicitly handled in the below serialization and
|
|
# deserialization modules
|
|
|
|
def forward(self, x):
|
|
# Note that we can handle self.bias == None case.
|
|
Y = torch.ops.quantized.linear_dynamic(
|
|
x, self._packed_params)
|
|
return Y.to(x.dtype)
|
|
|
|
def _get_name(self):
|
|
return 'DynamicQuantizedLinear'
|
|
|
|
def extra_repr(self):
|
|
return 'in_features={}, out_features={}'.format(
|
|
self.in_features, self.out_features
|
|
)
|
|
|
|
@classmethod
|
|
def from_float(cls, mod):
|
|
r"""Create a dynamic quantized module from a float module or qparams_dict
|
|
|
|
Args:
|
|
mod (Module): a float module, either produced by torch.quantization
|
|
utilities or provided by the user
|
|
"""
|
|
assert type(mod) == NNLinear, 'nn.quantized.dynamic.Linear.from_float only works for nn.Linear'
|
|
assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
|
|
if mod.qconfig is not None and mod.qconfig.weight is not None:
|
|
weight_observer = mod.qconfig.weight()
|
|
else:
|
|
# We have the circular import issues if we import the qconfig in the beginning of this file:
|
|
# https://github.com/pytorch/pytorch/pull/24231. The current workaround is to postpone the
|
|
# import until we need it.
|
|
from torch.quantization.qconfig import default_dynamic_qconfig
|
|
weight_observer = default_dynamic_qconfig.weight()
|
|
assert weight_observer.dtype == torch.qint8, 'Weight observer must have dtype torch.qint8'
|
|
weight_observer(mod.weight)
|
|
wt_scale, wt_zp = weight_observer.calculate_qparams()
|
|
qweight = torch.quantize_per_tensor(mod.weight.float(), float(wt_scale), int(wt_zp), torch.qint8)
|
|
qlinear = Linear(mod.in_features, mod.out_features)
|
|
qlinear.set_weight_bias(qweight, mod.bias)
|
|
return qlinear
|