mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: This PR propagates where we use first-class modules objects into the compiler. This creates a transitionary state where: * compiler.cpp creates Graphs where `self` is a Module class and attributes/parameters/buffers/submodules are looked up with `prim::GetAttr` * GraphExecutor still runs "lowered graphs" where the self object has been removed by a compiler pass `lower_first_class_method`. * Tracing still creates "lowered graphs", and a pass "lift_lowered_method" creates a first-class method graph for things. * This PR separates out Method and Function. A script::Function is a pure Graph with no `self` bound. Similar to Python, a script::Method is just a bound `self` and its underlying `script::Function`. * This PR also separates CompilationUnit from Module. A CompilationUnit is just a list of named script::Functions. Class's have a CompilationUnit holding the class methods, and Modules also have a CompilationUnit holding their Methods. This avoids the weird circular case Module --has a-> Class -> has a -> Module ... Details: * In this transitionary state, we maintain two copies of a Graph, first-class module and lowered. Th first-class one has a self argument that is the module's class type. The lowered one is the lowered graph that uses the initial_ivalues inputs. * When defining lowered methods using `_defined_lowered` we immediately create the first-class equivalent. The reverse is done lazily, creating lowered_methods on demand from the class. * The two way conversions will be deleted in a future PR when the executor itself runs first-class objects. However this requires more changes to (1) the traces, (2) the python bindings, and (3) the onnx export pass and would make this PR way to large. Pull Request resolved: https://github.com/pytorch/pytorch/pull/19167 Differential Revision: D14891966 Pulled By: zdevito fbshipit-source-id: 0b5f03118aa65448a15c7a7818e64089ec93d7ea
703 lines
23 KiB
C++
703 lines
23 KiB
C++
#include <torch/csrc/jit/python_ir.h>
|
|
|
|
#include <torch/csrc/jit/argument_spec.h>
|
|
#include <torch/csrc/jit/export.h>
|
|
#include <torch/csrc/jit/ir.h>
|
|
#include <torch/csrc/jit/passes/alias_analysis.h>
|
|
#include <torch/csrc/jit/passes/python_print.h>
|
|
#include <torch/csrc/jit/passes/shape_analysis.h>
|
|
#include <torch/csrc/jit/pybind.h>
|
|
#include <torch/csrc/jit/python_tracer.h>
|
|
#include <torch/csrc/python_headers.h>
|
|
#include <torch/csrc/utils/auto_gil.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
|
|
#include <iostream>
|
|
#include <sstream>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
using c10::Type;
|
|
|
|
std::string getPythonName(const PyObject* obj_) {
|
|
AutoGIL gil;
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
|
PyObject* obj = const_cast<PyObject*>(obj_);
|
|
auto v = py::getattr(obj, "__name__", py::str("<python_value>"));
|
|
// if this was a autograd.Function recover the name of the class
|
|
return py::str(v);
|
|
}
|
|
|
|
std::ostream& printPyObject(std::ostream& out, const THPObjectPtr& obj) {
|
|
AutoGIL gil;
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
|
auto pyobj = py::handle(const_cast<PyObject*>(obj.get()));
|
|
if (py::isinstance<py::tuple>(pyobj)) {
|
|
// This special-case for printing tuples handles a problem where
|
|
// str((2L, 3L)) outputs "(2L, 3L)" in Python 2 but "(2, 3)"
|
|
// in Python 3. In order to suppress the L-suffix, we must
|
|
// manually print the string ourselves, calling str() on the
|
|
// sub-elements.
|
|
//
|
|
// This is a fairly fragile fix (What if you have nested tuples
|
|
// in tuples? What if you have dictionaries?) but it seems to hit
|
|
// the cases that are triggered in practice in onnx-pytorch. Revisit
|
|
// this code if this is not the case.
|
|
//
|
|
// By the way, one non-solution for this problem is to monkeypatch
|
|
// tuple.__str__; this doesn't work because Python doesn't allow
|
|
// monkeypatching methods of built-in types.
|
|
auto pytuple = pyobj.cast<py::tuple>();
|
|
out << "(";
|
|
size_t i = 0;
|
|
for (const auto& o : pytuple) {
|
|
if (i > 0) {
|
|
out << ", ";
|
|
}
|
|
THPObjectPtr str(py::str(o).release().ptr());
|
|
out << THPUtils_unpackString(str.get());
|
|
i++;
|
|
}
|
|
if (i == 1) {
|
|
out << ",";
|
|
}
|
|
out << ")";
|
|
return out;
|
|
} else {
|
|
return out << THPUtils_unpackString(py::str(pyobj).ptr());
|
|
}
|
|
}
|
|
|
|
std::vector<Node*> findAllNodes(
|
|
c10::ArrayRef<torch::jit::Block*> blocks,
|
|
Symbol kind,
|
|
bool recurse = true) {
|
|
std::vector<Node*> ret;
|
|
for (Block* block : blocks) {
|
|
for (Node* n : block->nodes()) {
|
|
if (n->kind() == kind) {
|
|
ret.push_back(n);
|
|
}
|
|
if (recurse) {
|
|
auto nodes = findAllNodes(n->blocks(), kind, recurse);
|
|
ret.insert(ret.end(), nodes.begin(), nodes.end());
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
std::vector<Node*> findAllNodes(
|
|
Block* block,
|
|
Symbol kind,
|
|
bool recurse = true) {
|
|
std::vector<Block*> blocks = {block};
|
|
return findAllNodes(blocks, kind, recurse);
|
|
}
|
|
|
|
Node* findNode(
|
|
c10::ArrayRef<torch::jit::Block*> blocks,
|
|
Symbol kind,
|
|
bool recurse = true) {
|
|
for (Block* block : blocks) {
|
|
for (Node* n : block->nodes()) {
|
|
if (n->kind() == kind) {
|
|
return n;
|
|
}
|
|
if (recurse) {
|
|
auto node = findNode(n->blocks(), kind, recurse);
|
|
if (node != nullptr) {
|
|
return node;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Node* findNode(Block* block, Symbol kind, bool recurse = true) {
|
|
std::vector<Block*> blocks = {block};
|
|
return findNode(blocks, kind, recurse);
|
|
}
|
|
|
|
std::string ConcretePythonOp::name() const {
|
|
AutoGIL gil;
|
|
if (auto autograd = autogradFunction()) {
|
|
return getPythonName(autograd->get());
|
|
} else {
|
|
return getPythonName(pyobj.get());
|
|
}
|
|
}
|
|
|
|
void ConcretePythonOp::cloneFrom(Node* other_) {
|
|
Node::cloneFrom(other_);
|
|
auto other = other_->cast<ConcretePythonOp>();
|
|
this->cconv = other->cconv;
|
|
Py_INCREF(other->pyobj.get());
|
|
this->pyobj = THPObjectPtr(other->pyobj.get());
|
|
this->ignore_on_export = other->ignore_on_export;
|
|
for (auto& sa : other->scalar_args) {
|
|
Py_INCREF(sa.get());
|
|
this->scalar_args.emplace_back(sa.get());
|
|
}
|
|
}
|
|
|
|
// recover the autograd.Function instance, if this PythonOp's function
|
|
// was originally SomeFunction.apply
|
|
// used in ONNX for discovering symbolics
|
|
c10::optional<THPObjectPtr> ConcretePythonOp::autogradFunction() const {
|
|
AutoGIL gil;
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
|
py::handle obj = const_cast<PyObject*>(pyobj.get());
|
|
|
|
auto r = py::getattr(obj, "__self__", py::none());
|
|
if (r.is_none())
|
|
return c10::nullopt;
|
|
|
|
auto apply = py::getattr(r, "apply", py::none());
|
|
if (apply.is_none())
|
|
return c10::nullopt;
|
|
|
|
auto c = PyObject_RichCompareBool(apply.ptr(), obj.ptr(), Py_NE);
|
|
if (PyErr_Occurred())
|
|
throw py::error_already_set();
|
|
if (c)
|
|
return c10::nullopt;
|
|
|
|
return THPObjectPtr(r.release().ptr());
|
|
}
|
|
|
|
void ConcretePythonOp::writeScalars(std::ostream& out) const {
|
|
out << "(";
|
|
int i = 0;
|
|
for (auto& scalar : scalar_args) {
|
|
if (i++ > 0)
|
|
out << ", ";
|
|
printPyObject(out, scalar);
|
|
}
|
|
out << ")";
|
|
}
|
|
|
|
void ConcretePythonOp::lint_python() const {
|
|
size_t n_scalars = 0, n_tensors = 0;
|
|
for (auto c : cconv) {
|
|
if (c == 'c') {
|
|
n_scalars++;
|
|
} else if (c == 'd') {
|
|
n_tensors++;
|
|
} else {
|
|
AT_ASSERT(0);
|
|
}
|
|
AT_ASSERT(static_cast<bool>(pyobj));
|
|
}
|
|
AT_ASSERT(n_scalars == scalar_args.size());
|
|
AT_ASSERT(n_tensors == inputs().size());
|
|
}
|
|
|
|
Node* Graph::createPythonOp(
|
|
THPObjectPtr&& pyobj,
|
|
const std::string& cconv,
|
|
pyobj_list&& scalar_args) {
|
|
ConcretePythonOp* op = new ConcretePythonOp(this);
|
|
return op->init(std::move(pyobj), cconv, std::move(scalar_args));
|
|
}
|
|
|
|
void initPythonIRBindings(PyObject* module_) {
|
|
auto m = py::handle(module_).cast<py::module>();
|
|
#define GS(name) def(#name, &Graph ::name)
|
|
py::class_<Graph, std::shared_ptr<Graph>>(m, "Graph")
|
|
.def(py::init<>())
|
|
.def(
|
|
"__repr__",
|
|
[](Graph& g) {
|
|
std::stringstream ss;
|
|
ss << g;
|
|
return ss.str();
|
|
})
|
|
.def(
|
|
"dump_alias_db",
|
|
[](std::shared_ptr<Graph> g) {
|
|
AliasDb db(g);
|
|
db.dump();
|
|
})
|
|
.def(
|
|
"_export_onnx",
|
|
[](const std::shared_ptr<Graph> g,
|
|
const std::map<std::string, at::Tensor>& initializers,
|
|
int64_t onnx_opset_version,
|
|
bool defer_weight_export,
|
|
::torch::onnx::OperatorExportTypes operator_export_type) {
|
|
std::string graph;
|
|
RawDataExportMap export_map;
|
|
std::tie(graph, export_map) = export_onnx(
|
|
g,
|
|
initializers,
|
|
onnx_opset_version,
|
|
defer_weight_export,
|
|
operator_export_type);
|
|
std::unordered_map<std::string, py::bytes>
|
|
python_serialized_export_map;
|
|
for (auto& kv : export_map) {
|
|
auto t = kv.second;
|
|
size_t copy_bytes = t.element_size() * t.numel();
|
|
// TODO: this is an unecessary copy. In theory we can directly
|
|
// return the map from identifier to Tensor, but we need some API
|
|
// in Python to get raw `bytes` containing the raw tensor data.
|
|
python_serialized_export_map[kv.first] =
|
|
py::bytes(static_cast<const char*>(t.data_ptr()), copy_bytes);
|
|
}
|
|
return std::make_tuple(
|
|
py::bytes(graph), python_serialized_export_map);
|
|
},
|
|
py::arg("initializers"),
|
|
py::arg("onnx_opset_version") = 0,
|
|
py::arg("defer_weight_export") = false,
|
|
py::arg("operator_export_type") =
|
|
::torch::onnx::OperatorExportTypes::ONNX)
|
|
.def(
|
|
"_pretty_print_onnx",
|
|
[](const std::shared_ptr<Graph> g,
|
|
const std::map<std::string, at::Tensor>& initializers,
|
|
int64_t onnx_opset_version,
|
|
bool defer_weight_export,
|
|
::torch::onnx::OperatorExportTypes operator_export_type,
|
|
bool google_printer) {
|
|
return pretty_print_onnx(
|
|
g,
|
|
initializers,
|
|
onnx_opset_version,
|
|
defer_weight_export,
|
|
operator_export_type,
|
|
google_printer);
|
|
},
|
|
py::arg("initializers"),
|
|
py::arg("onnx_opset_version") = 0,
|
|
py::arg("defer_weight_export") = false,
|
|
py::arg("operator_export_type") =
|
|
::torch::onnx::OperatorExportTypes::ONNX,
|
|
py::arg("google_printer") = false)
|
|
.def(
|
|
"inputs",
|
|
[](Graph& g) {
|
|
return py::make_iterator(g.inputs().begin(), g.inputs().end());
|
|
})
|
|
.def(
|
|
"outputs",
|
|
[](Graph& g) {
|
|
return py::make_iterator(g.outputs().begin(), g.outputs().end());
|
|
})
|
|
// TODO: Iterator invalidation might make this hazardous
|
|
.def(
|
|
"nodes",
|
|
[](Graph& g) {
|
|
return py::make_iterator(g.nodes().begin(), g.nodes().end());
|
|
})
|
|
.def(
|
|
"findNode",
|
|
[](Graph& g, const std::string& kind, bool recurse) {
|
|
return findNode(g.block(), Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find Node",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def(
|
|
"findAllNodes",
|
|
[](Graph& g, const std::string& kind, bool recurse) {
|
|
return findAllNodes(
|
|
g.block(), Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find all nodes",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def("addInput", [](Graph& g) { return g.addInput(); })
|
|
.def("copy", [](Graph& g) { return g.copy(); })
|
|
.GS(eraseInput)
|
|
.GS(registerOutput)
|
|
.def(
|
|
"create",
|
|
[](Graph& g, const char* str) {
|
|
return g.create(Symbol::fromQualString(str));
|
|
})
|
|
.def(
|
|
"create",
|
|
[](Graph& g, const char* str, size_t noutputs) {
|
|
return g.create(Symbol::fromQualString(str), noutputs);
|
|
})
|
|
.def(
|
|
"create",
|
|
[](Graph& g, const char* str, const std::vector<Value*>& inputs) {
|
|
return g.create(Symbol::fromQualString(str), inputs);
|
|
})
|
|
.def(
|
|
"create",
|
|
[](Graph& g,
|
|
const char* str,
|
|
const std::vector<Value*>& inputs,
|
|
size_t noutputs) {
|
|
return g.create(Symbol::fromQualString(str), inputs, noutputs);
|
|
})
|
|
.def("param_node", [](Graph& g) { return g.block()->param_node(); })
|
|
.def("return_node", [](Graph& g) { return g.block()->return_node(); })
|
|
.def(
|
|
"pretty_print",
|
|
[](Graph& g) {
|
|
std::ostringstream oss;
|
|
g.prettyPrint(oss);
|
|
return oss.str();
|
|
})
|
|
.GS(createFusionGroup)
|
|
.def(
|
|
"createClone",
|
|
[](Graph& g, Node* n, py::object fn) {
|
|
return g.createClone(
|
|
n, [&](Value* e) { return fn(e).cast<Value*>(); });
|
|
})
|
|
.GS(appendNode)
|
|
.GS(prependNode)
|
|
.GS(lint)
|
|
.GS(insertNode);
|
|
#undef GS
|
|
|
|
#define VS(name) def(#name, &Value ::name)
|
|
py::class_<Value, std::unique_ptr<Value, py::nodelete>>(m, "Value")
|
|
.def(
|
|
"__repr__",
|
|
[](Value& n) {
|
|
std::stringstream ss;
|
|
ss << n.uniqueName() << " defined in (" << *n.node() << ")";
|
|
return ss.str();
|
|
})
|
|
.VS(type)
|
|
.VS(setType)
|
|
.VS(inferTypeFrom)
|
|
// skip owningGraph because it returns a raw pointer to a otherwise
|
|
// std::shared_ptr stored graph object, and would cause a double free
|
|
.VS(unique)
|
|
.VS(uniqueName)
|
|
.VS(setUniqueName)
|
|
.VS(offset)
|
|
.VS(uses)
|
|
.VS(replaceAllUsesWith)
|
|
.def("node", [](Value& v) { return v.node(); })
|
|
.def(
|
|
"setTypeAs",
|
|
[](Value* node, Value* other) {
|
|
node->setType(other->type());
|
|
return node;
|
|
})
|
|
.VS(copyMetadata)
|
|
.VS(isCompleteTensor)
|
|
.VS(requires_grad)
|
|
.def("toIValue", [](Value& n) { return toIValue(&n); })
|
|
.def("type", [](Value& v) { return v.type(); });
|
|
#undef VS
|
|
|
|
py::class_<Block, std::unique_ptr<Block, py::nodelete>>(m, "Block")
|
|
.def(
|
|
"nodes",
|
|
[](Block& b) {
|
|
return py::make_iterator(b.nodes().begin(), b.nodes().end());
|
|
})
|
|
.def(
|
|
"findNode",
|
|
[](Block& b, const std::string& kind, bool recurse) {
|
|
return findNode(&b, Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find Node",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def(
|
|
"findAllNodes",
|
|
[](Block& b, const std::string& kind, bool recurse) {
|
|
return findAllNodes(&b, Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find all nodes",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def(
|
|
"inputs",
|
|
[](Block& b) {
|
|
return py::make_iterator(b.inputs().begin(), b.inputs().end());
|
|
})
|
|
.def(
|
|
"outputs",
|
|
[](Block& b) {
|
|
return py::make_iterator(b.outputs().begin(), b.outputs().end());
|
|
})
|
|
.def("returnNode", [](Block& b) { return b.return_node(); })
|
|
.def("paramNode", [](Block& b) { return b.param_node(); });
|
|
|
|
#define NS(name) def(#name, &Node ::name)
|
|
py::class_<Node, std::unique_ptr<Node, py::nodelete>>(m, "Node")
|
|
.def(
|
|
"__repr__",
|
|
[](Node& n) {
|
|
std::stringstream ss;
|
|
ss << n;
|
|
return ss.str();
|
|
})
|
|
.def(
|
|
"getSourceLocation",
|
|
[](Node& n) -> py::object {
|
|
std::stringstream ss;
|
|
if (auto sl = n.getSourceLocation()) {
|
|
sl->highlight(ss);
|
|
return py::str(ss.str());
|
|
} else {
|
|
return py::none();
|
|
}
|
|
})
|
|
.def("hasMultipleOutputs", [](Node& n) { return n.outputs().size() > 1; })
|
|
.def("outputsSize", [](Node& n) { return n.outputs().size(); })
|
|
.NS(kind)
|
|
.def("inputsAt", [](Node& n, size_t i) { return n.inputs().at(i); })
|
|
.def(
|
|
"inputs",
|
|
[](Node& n) {
|
|
return py::make_iterator(n.inputs().begin(), n.inputs().end());
|
|
})
|
|
.def(
|
|
"outputs",
|
|
[](Node& n) {
|
|
return py::make_iterator(n.outputs().begin(), n.outputs().end());
|
|
})
|
|
.def("outputsAt", [](Node& n, size_t i) { return n.outputs().at(i); })
|
|
.def(
|
|
"findNode",
|
|
[](Node& n, const std::string& kind, bool recurse) {
|
|
return findNode(n.blocks(), Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find Node",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def(
|
|
"findAllNodes",
|
|
[](Node& n, const std::string& kind, bool recurse) {
|
|
return findAllNodes(
|
|
n.blocks(), Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find all nodes",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def("input", [](Node& n) { return n.input(); })
|
|
.def("output", [](Node& n) { return n.output(); })
|
|
.NS(addInput)
|
|
.NS(replaceInput)
|
|
.NS(replaceInputWith)
|
|
.NS(replaceAllUsesWith)
|
|
.NS(insertBefore)
|
|
.NS(insertAfter)
|
|
.NS(moveAfter)
|
|
.NS(moveBefore)
|
|
.NS(removeInput)
|
|
.NS(removeAllInputs)
|
|
.NS(destroy)
|
|
.NS(hasUses)
|
|
.NS(eraseOutput)
|
|
.NS(addOutput)
|
|
.NS(scopeName)
|
|
.NS(isNondeterministic)
|
|
.def(
|
|
"blocks",
|
|
[](Node& n) {
|
|
return py::make_iterator(n.blocks().begin(), n.blocks().end());
|
|
})
|
|
.NS(addBlock)
|
|
.NS(mustBeNone)
|
|
|
|
#define AS(name) def(#name, &Node::name)
|
|
// methods from Attributes
|
|
.AS(copyAttributes)
|
|
.AS(hasAttributes)
|
|
#undef AS
|
|
#define AS(name) def(#name, &Node::name##S)
|
|
// The default method names take Symbol, but the string conversion for
|
|
// Symbol you to qualify with attr::. This is not very user friendly
|
|
// for attributes, so expose the string variants instead.
|
|
.AS(hasAttribute)
|
|
.AS(kindOf)
|
|
.AS(removeAttribute)
|
|
.AS(attributeNames)
|
|
#undef AS
|
|
#define CREATE_ACCESSOR(Kind, method) \
|
|
def(#method "_", \
|
|
[](Node& n, const char* name, Kind##Attr::ValueType v) { \
|
|
return n.method##_(Symbol::attr(name), std::move(v)); \
|
|
}) \
|
|
.def(#method, [](Node& n, const char* name) { \
|
|
return n.method(Symbol::attr(name)); \
|
|
})
|
|
.CREATE_ACCESSOR(Float, f)
|
|
.CREATE_ACCESSOR(Floats, fs)
|
|
.CREATE_ACCESSOR(String, s)
|
|
.CREATE_ACCESSOR(Strings, ss)
|
|
.CREATE_ACCESSOR(Int, i)
|
|
.CREATE_ACCESSOR(Ints, is)
|
|
.CREATE_ACCESSOR(Graph, g)
|
|
.CREATE_ACCESSOR(Graphs, gs)
|
|
#undef CREATE_ACCESSOR
|
|
// Tensor (t_) -- manually written to unwrap the variable into a tensor.
|
|
.def(
|
|
"t_",
|
|
[](Node& n, const char* name, torch::autograd::Variable v) {
|
|
AT_ASSERT(!v.requires_grad());
|
|
return n.t_(Symbol::attr(name), v);
|
|
})
|
|
.def(
|
|
"t",
|
|
[](Node& n, const char* name) { return n.t(Symbol::attr(name)); })
|
|
// Tensors (ts_) -- manually written to unwrap variables into tensors.
|
|
.def(
|
|
"ts_",
|
|
[](Node& n,
|
|
const char* name,
|
|
std::vector<torch::autograd::Variable> vs) {
|
|
std::vector<at::Tensor> tensors;
|
|
tensors.reserve(vs.size());
|
|
for (auto& variable : vs) {
|
|
AT_ASSERT(!variable.requires_grad());
|
|
tensors.push_back(variable);
|
|
}
|
|
return n.ts_(Symbol::attr(name), std::move(tensors));
|
|
})
|
|
.def(
|
|
"ts",
|
|
[](Node& n, const char* name) {
|
|
auto tensors = n.ts(Symbol::attr(name));
|
|
std::vector<torch::autograd::Variable> variables;
|
|
variables.reserve(tensors.size());
|
|
for (auto& tensor : tensors) {
|
|
variables.emplace_back(std::move(tensor));
|
|
}
|
|
return variables;
|
|
})
|
|
.def(
|
|
"z_",
|
|
[](Node& n, const char* name, at::Tensor v) {
|
|
return n.t_(
|
|
Symbol::attr(name),
|
|
autograd::Variable(v.view({})).set_requires_grad(false));
|
|
})
|
|
.def(
|
|
"z",
|
|
[](Node& n, const char* name) { return n.t(Symbol::attr(name)); })
|
|
.def(
|
|
"zs_",
|
|
[](Node& n, const char* name, TensorsAttr::ValueType v) {
|
|
for (auto& i : v) {
|
|
i = autograd::Variable(i.view({})).set_requires_grad(false);
|
|
}
|
|
return n.ts_(Symbol::attr(name), std::move(v));
|
|
})
|
|
.def(
|
|
"zs",
|
|
[](Node& n, const char* name) { return n.ts(Symbol::attr(name)); })
|
|
.def(
|
|
"pyobj",
|
|
[](Node& n) {
|
|
return py::handle(n.expect<ConcretePythonOp>()->pyobj.get())
|
|
.cast<py::object>();
|
|
})
|
|
.def("cconv", [](Node& n) { return n.expect<ConcretePythonOp>()->cconv; })
|
|
.def("pyname", [](Node& n) { return n.expect<ConcretePythonOp>()->name(); })
|
|
.def("scalar_args", [](Node& n) {
|
|
auto op = n.expect<ConcretePythonOp>();
|
|
auto scalars = py::list();
|
|
auto append = scalars.attr("append");
|
|
for (auto& arg : op->scalar_args) {
|
|
append(py::handle(arg.get()));
|
|
}
|
|
return scalars;
|
|
});
|
|
|
|
using ::c10::Type;
|
|
py::class_<Type, std::shared_ptr<Type>>(m, "Type")
|
|
.def("__repr__", [](Type& t) { return t.python_str(); })
|
|
.def(
|
|
"str",
|
|
[](Type& t) {
|
|
std::ostringstream s;
|
|
s << t;
|
|
return s.str();
|
|
})
|
|
.def("kind", [](const Type& t) { return typeKindToString(t.kind()); })
|
|
.def(
|
|
"dim",
|
|
[](const Type& t) {
|
|
return t.expect<DimensionedTensorType>()->dim();
|
|
})
|
|
.def(
|
|
"sizes",
|
|
[](Type& t) { return t.expect<CompleteTensorType>()->sizes(); })
|
|
.def(
|
|
"strides",
|
|
[](Type& t) { return t.expect<CompleteTensorType>()->strides(); })
|
|
.def(
|
|
"contiguous",
|
|
[](Type& t) {
|
|
return std::static_pointer_cast<Type>(
|
|
t.expect<CompleteTensorType>()->contiguous());
|
|
})
|
|
.def(
|
|
"scalarType",
|
|
[](Type& t) {
|
|
return toString(t.expect<DimensionedTensorType>()->scalarType());
|
|
})
|
|
.def(
|
|
"__eq__",
|
|
[](std::shared_ptr<Type>& self, std::shared_ptr<Type>& other) {
|
|
return *self == *other;
|
|
})
|
|
.def(
|
|
"isSubtypeOf",
|
|
[](std::shared_ptr<Type>& self, std::shared_ptr<Type> other) {
|
|
return self->isSubtypeOf(other);
|
|
});
|
|
|
|
py::class_<NumberType, Type, std::shared_ptr<NumberType>>(m, "NumberType")
|
|
.def_static("get", &NumberType::get);
|
|
py::class_<IntType, Type, std::shared_ptr<IntType>>(m, "IntType")
|
|
.def_static("get", &IntType::get);
|
|
py::class_<FloatType, Type, std::shared_ptr<FloatType>>(m, "FloatType")
|
|
.def_static("get", &FloatType::get);
|
|
py::class_<TensorType, Type, std::shared_ptr<TensorType>>(m, "TensorType")
|
|
.def_static("get", &TensorType::get);
|
|
py::class_<BoolType, Type, std::shared_ptr<BoolType>>(m, "BoolType")
|
|
.def_static("get", &BoolType::get);
|
|
py::class_<StringType, Type, std::shared_ptr<StringType>>(m, "StringType")
|
|
.def_static("get", &StringType::get);
|
|
|
|
py::class_<TupleType, Type, std::shared_ptr<TupleType>>(m, "TupleType")
|
|
.def(
|
|
py::init([](std::vector<TypePtr> a) { return TupleType::create(a); }))
|
|
.def("elements", [](TupleType& self) {
|
|
std::vector<TypePtr> types;
|
|
for (const auto& type : self.elements()) {
|
|
types.push_back(type);
|
|
}
|
|
return types;
|
|
});
|
|
py::class_<ListType, Type, std::shared_ptr<ListType>>(m, "ListType")
|
|
.def(py::init([](TypePtr a) { return ListType::create(a); }))
|
|
.def_static("ofInts", &ListType::ofInts)
|
|
.def_static("ofTensors", &ListType::ofTensors)
|
|
.def("getElementType", &ListType::getElementType);
|
|
py::class_<DictType, Type, std::shared_ptr<DictType>>(m, "DictType")
|
|
.def(py::init([](TypePtr key, TypePtr value) {
|
|
return DictType::create(key, value);
|
|
}));
|
|
py::class_<OptionalType, Type, std::shared_ptr<OptionalType>>(
|
|
m, "OptionalType")
|
|
.def(py::init([](TypePtr a) { return OptionalType::create(a); }))
|
|
.def_static("ofTensor", &OptionalType::ofTensor)
|
|
.def("getElementType", &OptionalType::getElementType);
|
|
|
|
py::class_<Use>(m, "Use")
|
|
.def_readonly("user", &Use::user)
|
|
.def_readonly("offset", &Use::offset);
|
|
}
|
|
} // namespace jit
|
|
} // namespace torch
|