pytorch/test/test_complex.py
Nikita Shulga ef066f0832 Revert D34856571: [pytorch][PR] Replace get_all_ type macros with the ATen dispatch macros.
Test Plan: revert-hammer

Differential Revision:
D34856571 (3ded7b1da3)

Original commit changeset: 0dca038bcad5

Original Phabricator Diff: D34856571 (3ded7b1da3)

fbshipit-source-id: 594553fa0b710d78beba59d5d2b646f1f1270386
(cherry picked from commit 8090eb9b12dcf452a9e7dc01792a66fb91b563b6)
2022-03-15 22:07:11 +00:00

30 lines
1.2 KiB
Python

# Owner(s): ["module: complex"]
import torch
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing._internal.common_dtype import get_all_complex_dtypes
devices = (torch.device('cpu'), torch.device('cuda:0'))
class TestComplexTensor(TestCase):
@dtypes(*get_all_complex_dtypes())
def test_to_list(self, device, dtype):
# test that the complex float tensor has expected values and
# there's no garbage value in the resultant list
self.assertEqual(torch.zeros((2, 2), device=device, dtype=dtype).tolist(), [[0j, 0j], [0j, 0j]])
@dtypes(torch.float32, torch.float64)
def test_dtype_inference(self, device, dtype):
# issue: https://github.com/pytorch/pytorch/issues/36834
default_dtype = torch.get_default_dtype()
torch.set_default_dtype(dtype)
x = torch.tensor([3., 3. + 5.j], device=device)
torch.set_default_dtype(default_dtype)
self.assertEqual(x.dtype, torch.cdouble if dtype == torch.float64 else torch.cfloat)
instantiate_device_type_tests(TestComplexTensor, globals())
if __name__ == '__main__':
run_tests()