mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Codemod generated with clangr shard mode, 25 files per diff Reviewed By: li-roy Differential Revision: D10866237 fbshipit-source-id: 020fcfdf52083430c5b674eda8e07ad3adfcc838
584 lines
19 KiB
C++
584 lines
19 KiB
C++
#include "caffe2/core/blob_serialization.h"
|
|
|
|
#include <sstream>
|
|
#include <mutex>
|
|
|
|
#include "caffe2/core/blob.h"
|
|
#include "caffe2/utils/proto_utils.h"
|
|
|
|
C10_DEFINE_int(
|
|
caffe2_tensor_chunk_size,
|
|
1000000,
|
|
"Chunk size to split tensor data into");
|
|
|
|
C10_DEFINE_int(
|
|
caffe2_max_tensor_serializer_threads,
|
|
16,
|
|
"Maximal number of threads that can be used for tensor serialization");
|
|
|
|
C10_DEFINE_bool(
|
|
caffe2_serialize_fp16_as_bytes,
|
|
false,
|
|
"Serialize FLOAT16 tensors using byte_data field");
|
|
|
|
namespace caffe2 {
|
|
/**
|
|
* @brief StringSerializer is the serializer for String.
|
|
*
|
|
* StringSerializer takes in a blob that contains a String, and serializes it
|
|
* into a BlobProto protocol buffer.
|
|
*/
|
|
class StringSerializer : public BlobSerializerBase {
|
|
public:
|
|
StringSerializer() {}
|
|
~StringSerializer() {}
|
|
/**
|
|
* Serializes a Blob. Note that this blob has to contain Tensor,
|
|
* otherwise this function produces a fatal error.
|
|
*/
|
|
void Serialize(
|
|
const void* pointer,
|
|
TypeMeta typeMeta,
|
|
const string& name,
|
|
SerializationAcceptor acceptor) override {
|
|
CAFFE_ENFORCE(typeMeta.Match<std::string>());
|
|
|
|
BlobProto blob_proto;
|
|
blob_proto.set_name(name);
|
|
blob_proto.set_type("std::string");
|
|
blob_proto.set_content(*static_cast<const std::string*>(pointer));
|
|
acceptor(name, SerializeBlobProtoAsString_EnforceCheck(blob_proto));
|
|
}
|
|
};
|
|
|
|
/**
|
|
* @brief StringDeserializer is the deserializer for Strings.
|
|
*
|
|
*/
|
|
class StringDeserializer : public BlobDeserializerBase {
|
|
public:
|
|
void Deserialize(const BlobProto& proto, Blob* blob) override {
|
|
*blob->GetMutable<std::string>() = proto.content();
|
|
}
|
|
};
|
|
|
|
namespace {
|
|
void SerializeBlob(
|
|
const void* pointer,
|
|
TypeMeta typeMeta,
|
|
const string& name,
|
|
BlobSerializerBase::SerializationAcceptor acceptor,
|
|
int chunk_size) {
|
|
std::unique_ptr<BlobSerializerBase> serializer(
|
|
CreateSerializer(typeMeta.id()));
|
|
CAFFE_ENFORCE(serializer, "No known serializer for ", typeMeta.name());
|
|
serializer->SerializeWithChunkSize(
|
|
pointer, typeMeta, name, acceptor, chunk_size);
|
|
}
|
|
|
|
std::string
|
|
SerializeBlob(const void* pointer, TypeMeta typeMeta, const string& name) {
|
|
std::string data;
|
|
BlobSerializerBase::SerializationAcceptor acceptor =
|
|
[&data](const std::string&, const std::string& blob_str) {
|
|
DCHECK(data.empty()); // should be called once with kNoChunking
|
|
data = blob_str;
|
|
};
|
|
SerializeBlob(pointer, typeMeta, name, acceptor, kNoChunking);
|
|
return data;
|
|
}
|
|
} // namespace
|
|
|
|
void SerializeBlob(
|
|
const Blob& blob,
|
|
const string& name,
|
|
BlobSerializerBase::SerializationAcceptor acceptor,
|
|
int chunk_size) {
|
|
SerializeBlob(blob.GetRaw(), blob.meta(), name, acceptor, chunk_size);
|
|
}
|
|
|
|
std::string SerializeBlob(const Blob& blob, const string& name) {
|
|
return SerializeBlob(blob.GetRaw(), blob.meta(), name);
|
|
}
|
|
|
|
void TensorSerializer::Serialize(
|
|
const void* pointer,
|
|
TypeMeta typeMeta,
|
|
const string& name,
|
|
BlobSerializerBase::SerializationAcceptor acceptor) {
|
|
this->SerializeWithChunkSize(
|
|
pointer, typeMeta, name, acceptor, kDefaultChunkSize);
|
|
}
|
|
|
|
void TensorSerializer::SerializeWithChunkSize(
|
|
const void* pointer,
|
|
TypeMeta typeMeta,
|
|
const string& name,
|
|
BlobSerializerBase::SerializationAcceptor acceptor,
|
|
int chunk_size) {
|
|
CAFFE_ENFORCE(typeMeta.Match<Tensor>());
|
|
const auto& tensor = *static_cast<const Tensor*>(pointer);
|
|
if (chunk_size == kNoChunking) {
|
|
chunk_size = tensor.numel() + 1; // to account for empty tensors
|
|
} else if (chunk_size == kDefaultChunkSize) {
|
|
chunk_size = FLAGS_caffe2_tensor_chunk_size;
|
|
}
|
|
|
|
auto processChunk = [&](int64_t chunkStart) {
|
|
BlobProto blob_proto;
|
|
blob_proto.set_name(name);
|
|
blob_proto.set_type(kTensorBlobType);
|
|
TensorProto& proto = *blob_proto.mutable_tensor();
|
|
proto.set_name(name);
|
|
this->Serialize(
|
|
tensor, name, blob_proto.mutable_tensor(), chunkStart, chunk_size);
|
|
acceptor(
|
|
c10::str(name, kChunkIdSeparator, chunkStart / chunk_size),
|
|
SerializeBlobProtoAsString_EnforceCheck(blob_proto));
|
|
};
|
|
|
|
#ifndef __ANDROID__
|
|
std::vector<std::future<void>> futures;
|
|
// Poorman's IOBound ThreadPool
|
|
SimpleQueue<size_t> chunkQueue;
|
|
auto task = [&]() {
|
|
size_t chunkStart;
|
|
while (chunkQueue.Pop(&chunkStart)) {
|
|
processChunk(chunkStart);
|
|
}
|
|
};
|
|
if (tensor.numel() > chunk_size) {
|
|
for (int i = 0; i < FLAGS_caffe2_max_tensor_serializer_threads; ++i) {
|
|
futures.emplace_back(std::async(std::launch::async, task));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
VLOG(1) << "Serializing blob " << name;
|
|
// Serialize whole vector. If vector is empty, it's shape still needs to be
|
|
// serialized in empty proto
|
|
for (size_t chunkBegin = 0;
|
|
chunkBegin < std::max(tensor.numel(), static_cast<int64_t>(1));
|
|
chunkBegin += chunk_size) {
|
|
VLOG(2) << "Starting a chunk at " << chunkBegin;
|
|
#ifndef __ANDROID__
|
|
if (tensor.numel() > chunk_size) {
|
|
chunkQueue.Push(chunkBegin);
|
|
} else {
|
|
// Sync mode for small tensors
|
|
processChunk(chunkBegin);
|
|
}
|
|
#else
|
|
// Since Android does not have std::future, we will always do sync mode
|
|
processChunk(chunkBegin);
|
|
#endif
|
|
}
|
|
|
|
#ifndef __ANDROID__
|
|
chunkQueue.NoMoreJobs();
|
|
for (auto& fut : futures) {
|
|
fut.get();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void TensorSerializer::Serialize(
|
|
const Tensor& input,
|
|
const string& name,
|
|
TensorProto* proto_ptr,
|
|
size_t chunkBegin,
|
|
int32_t chunkSize) {
|
|
CAFFE_ENFORCE(
|
|
chunkBegin <= input.numel(),
|
|
"Chunk begin is out of tensor: ",
|
|
chunkBegin,
|
|
' ',
|
|
input.numel());
|
|
if (chunkBegin + chunkSize > input.numel()) {
|
|
chunkSize = input.numel() - chunkBegin;
|
|
}
|
|
|
|
if (chunkSize != 0) {
|
|
CAFFE_ENFORCE(
|
|
input.raw_data(),
|
|
"The input does not have data input yet. This is probably because you "
|
|
"created a tensor of non-zero shape but never filled its data via "
|
|
"mutable_data() calls. This means that it makes no sense to serialize "
|
|
"the tensor content.");
|
|
} else {
|
|
// Uncomment this when we try to remove this behavior entirely, see T35723601
|
|
//LOG(ERROR)
|
|
// << "You're trying to serialize tensor with zero numel and no dtype. "
|
|
// << "This is a legacy behavior and it WILL BREAK. Contact PyTorch team "
|
|
// << "for details or see D10380678. Offending blob name: " << name;
|
|
}
|
|
|
|
TensorProto& proto = *proto_ptr;
|
|
proto.mutable_segment()->set_begin(chunkBegin);
|
|
proto.mutable_segment()->set_end(chunkBegin + chunkSize);
|
|
|
|
for (int i = 0; i < input.ndim(); ++i) {
|
|
proto.add_dims(input.dim(i));
|
|
}
|
|
const TensorProto::DataType data_type = TypeMetaToDataType(input.meta());
|
|
proto.set_data_type(data_type);
|
|
StoreDeviceDetail(input, &proto);
|
|
auto uniq_ptr = CreateContext(input.GetDevice());
|
|
// A lot of copypaste is error prone. Should we create a macro for this?
|
|
switch (data_type) {
|
|
case TensorProto_DataType_FLOAT:
|
|
detail::CopyToProtoAsIs(
|
|
chunkSize,
|
|
input.template data<float>() + chunkBegin,
|
|
proto.mutable_float_data(),
|
|
uniq_ptr.get());
|
|
break;
|
|
case TensorProto_DataType_INT32:
|
|
detail::CopyToProtoAsIs(
|
|
chunkSize,
|
|
input.template data<int>() + chunkBegin,
|
|
proto.mutable_int32_data(),
|
|
uniq_ptr.get());
|
|
break;
|
|
case TensorProto_DataType_BYTE:
|
|
LOG(FATAL) << "This should not happen. When serializing, "
|
|
"BYTE is deprecated and moved to UINT8.";
|
|
break;
|
|
case TensorProto_DataType_STRING: {
|
|
proto.mutable_string_data()->Reserve(chunkSize);
|
|
const string* content = input.template data<string>();
|
|
for (int i = chunkBegin; i < chunkBegin + chunkSize; ++i) {
|
|
proto.add_string_data(content[i]);
|
|
}
|
|
break;
|
|
}
|
|
case TensorProto_DataType_BOOL:
|
|
detail::CopyToProtoWithCast(
|
|
chunkSize,
|
|
input.template data<bool>() + chunkBegin,
|
|
proto.mutable_int32_data(),
|
|
uniq_ptr.get());
|
|
break;
|
|
case TensorProto_DataType_UINT8:
|
|
detail::CopyToProtoWithCast(
|
|
chunkSize,
|
|
input.template data<uint8_t>() + chunkBegin,
|
|
proto.mutable_int32_data(),
|
|
uniq_ptr.get());
|
|
break;
|
|
case TensorProto_DataType_INT8:
|
|
detail::CopyToProtoWithCast(
|
|
chunkSize,
|
|
input.template data<int8_t>() + chunkBegin,
|
|
proto.mutable_int32_data(),
|
|
uniq_ptr.get());
|
|
break;
|
|
case TensorProto_DataType_UINT16:
|
|
detail::CopyToProtoWithCast(
|
|
chunkSize,
|
|
input.template data<uint16_t>() + chunkBegin,
|
|
proto.mutable_int32_data(),
|
|
uniq_ptr.get());
|
|
break;
|
|
case TensorProto_DataType_INT16:
|
|
detail::CopyToProtoWithCast(
|
|
chunkSize,
|
|
input.template data<int16_t>() + chunkBegin,
|
|
proto.mutable_int32_data(),
|
|
uniq_ptr.get());
|
|
break;
|
|
case TensorProto_DataType_INT64:
|
|
detail::CopyToProtoAsIs(
|
|
chunkSize,
|
|
input.template data<int64_t>() + chunkBegin,
|
|
proto.mutable_int64_data(),
|
|
uniq_ptr.get());
|
|
break;
|
|
case TensorProto_DataType_FLOAT16: {
|
|
if (FLAGS_caffe2_serialize_fp16_as_bytes) {
|
|
const int kValue = 1;
|
|
CAFFE_ENFORCE_EQ(
|
|
reinterpret_cast<const char*>(&kValue)[0],
|
|
1,
|
|
"Serialization of FLOAT16 on big endian platform "
|
|
"is not written yet.");
|
|
unique_ptr<char[]> buffer(new char[2 * chunkSize]);
|
|
this->context_->template CopyToCPU<char>(
|
|
2 * chunkSize,
|
|
reinterpret_cast<const char*>(
|
|
input.template data<at::Half>() + chunkBegin),
|
|
buffer.get());
|
|
this->context_->FinishDeviceComputation();
|
|
proto.set_byte_data(buffer.release(), 2 * chunkSize);
|
|
} else {
|
|
detail::CopyToProtoWithCast(
|
|
chunkSize,
|
|
reinterpret_cast<const uint16_t*>(input.template data<at::Half>()) +
|
|
chunkBegin,
|
|
proto.mutable_int32_data(),
|
|
uniq_ptr.get());
|
|
}
|
|
} break;
|
|
case TensorProto_DataType_DOUBLE:
|
|
detail::CopyToProtoAsIs(
|
|
chunkSize,
|
|
input.template data<double>() + chunkBegin,
|
|
proto.mutable_double_data(),
|
|
uniq_ptr.get());
|
|
break;
|
|
case TensorProto_DataType_UNDEFINED: {
|
|
proto.mutable_string_data()->Reserve(chunkSize);
|
|
if (chunkSize > 0) {
|
|
const char* raw_data = static_cast<const char*>(input.raw_data());
|
|
for (int i = chunkBegin; i < chunkBegin + chunkSize; ++i) {
|
|
proto.add_string_data(
|
|
SerializeBlob(raw_data + i * input.itemsize(), input.meta(), ""));
|
|
}
|
|
}
|
|
} break;
|
|
// Note: we intentially do not provide "default:" so if any new data types
|
|
// are added, the compiler should warn the user to add the case here.
|
|
}
|
|
}
|
|
|
|
int GetGPUIDForPointer(const void* ptr);
|
|
|
|
void TensorSerializer::StoreDeviceDetail(
|
|
const Tensor& input,
|
|
TensorProto* proto) {
|
|
ExtractDeviceOption(proto->mutable_device_detail(), input.GetDevice());
|
|
}
|
|
// The actual serialization registry objects.
|
|
C10_DEFINE_TYPED_REGISTRY(
|
|
BlobSerializerRegistry,
|
|
TypeIdentifier,
|
|
BlobSerializerBase,
|
|
std::unique_ptr);
|
|
|
|
C10_DEFINE_REGISTRY(BlobDeserializerRegistry, BlobDeserializerBase);
|
|
|
|
void DeserializeBlob(const string& content, Blob* result) {
|
|
BlobProto blob_proto;
|
|
CAFFE_ENFORCE(
|
|
blob_proto.ParseFromString(content),
|
|
"Cannot parse content into a BlobProto.");
|
|
DeserializeBlob(blob_proto, result);
|
|
}
|
|
|
|
void DeserializeBlob(const BlobProto& blob_proto, Blob* result) {
|
|
if (blob_proto.type() == kTensorBlobType) {
|
|
// This is a tensor object. Depending on the device type, we will
|
|
// use the corresponding TensorDeserializer.
|
|
auto deserializer = CreateDeserializer(
|
|
"Tensor" +
|
|
DeviceTypeName(blob_proto.tensor().device_detail().device_type()));
|
|
// Tensor's deserializer should always be registered, but we will double
|
|
// check if it is not null anyway.
|
|
CAFFE_ENFORCE(deserializer.get());
|
|
deserializer->Deserialize(blob_proto, result);
|
|
} else {
|
|
auto deserializer = CreateDeserializer(blob_proto.type());
|
|
CAFFE_ENFORCE(
|
|
deserializer.get(),
|
|
"No registered deserializer for type ",
|
|
blob_proto.type());
|
|
deserializer->Deserialize(blob_proto, result);
|
|
}
|
|
}
|
|
|
|
void TensorDeserializer::Deserialize(const BlobProto& blob_proto, Blob* blob) {
|
|
auto tensor_proto = blob_proto.tensor();
|
|
Deserialize(
|
|
tensor_proto,
|
|
BlobGetMutableTensor(
|
|
blob,
|
|
static_cast<DeviceType>(tensor_proto.device_detail().device_type())));
|
|
}
|
|
|
|
void TensorDeserializer::Deserialize(const TensorProto& proto, Tensor* tensor) {
|
|
// We create a local context for deserializing. Since Caffe2 contexts are
|
|
// usually lightweight, this should not involve too much overhead.
|
|
auto uniq_ptr = CreateContext(OptionToDevice(proto.device_detail()));
|
|
auto context = uniq_ptr.get();
|
|
context->SwitchToDevice(0);
|
|
vector<int64_t> dims;
|
|
for (const int64_t d : proto.dims()) {
|
|
dims.push_back(d);
|
|
}
|
|
tensor->Resize(dims);
|
|
|
|
int64_t chunkBegin = 0;
|
|
auto chunkEnd = tensor->numel();
|
|
if (proto.has_segment()) {
|
|
chunkBegin = proto.segment().begin();
|
|
chunkEnd = proto.segment().end();
|
|
}
|
|
CAFFE_ENFORCE(
|
|
0 <= chunkBegin && chunkBegin <= chunkEnd && chunkEnd <= tensor->numel(),
|
|
"Invalid chunk ",
|
|
chunkBegin,
|
|
' ',
|
|
chunkEnd,
|
|
" with total tensor size ",
|
|
tensor->numel());
|
|
auto chunkSize = chunkEnd - chunkBegin;
|
|
|
|
switch (proto.data_type()) {
|
|
case TensorProto_DataType_FLOAT:
|
|
detail::CopyFromProtoAsIs(
|
|
chunkSize,
|
|
proto.float_data(),
|
|
tensor->template mutable_data<float>() + chunkBegin,
|
|
context);
|
|
break;
|
|
case TensorProto_DataType_INT32:
|
|
detail::CopyFromProtoAsIs(
|
|
chunkSize,
|
|
proto.int32_data(),
|
|
tensor->template mutable_data<int>() + chunkBegin,
|
|
context);
|
|
break;
|
|
case TensorProto_DataType_BYTE:
|
|
// Since BYTE stores the data in a string field instead of a repreated
|
|
// field we will have it special cased.
|
|
CAFFE_ENFORCE_EQ(
|
|
chunkSize, proto.byte_data().size(), "Incorrect proto field size.");
|
|
context->template CopyToCPU<uint8_t>(
|
|
chunkSize,
|
|
reinterpret_cast<const uint8_t*>(proto.byte_data().data()),
|
|
tensor->template mutable_data<uint8_t>() + chunkBegin);
|
|
break;
|
|
case TensorProto_DataType_STRING:
|
|
// Special handing of string because it is a non-fundamental type.
|
|
{
|
|
string* content = tensor->template mutable_data<string>();
|
|
for (int i = 0; i < chunkSize; ++i) {
|
|
content[i + chunkBegin] = proto.string_data(i);
|
|
}
|
|
}
|
|
break;
|
|
case TensorProto_DataType_BOOL:
|
|
detail::CopyFromProtoWithCast(
|
|
chunkSize,
|
|
proto.int32_data(),
|
|
tensor->template mutable_data<bool>() + chunkBegin,
|
|
context);
|
|
break;
|
|
case TensorProto_DataType_UINT8:
|
|
detail::CopyFromProtoWithCast(
|
|
chunkSize,
|
|
proto.int32_data(),
|
|
tensor->template mutable_data<uint8_t>() + chunkBegin,
|
|
context);
|
|
break;
|
|
case TensorProto_DataType_INT8:
|
|
detail::CopyFromProtoWithCast(
|
|
chunkSize,
|
|
proto.int32_data(),
|
|
tensor->template mutable_data<int8_t>() + chunkBegin,
|
|
context);
|
|
break;
|
|
case TensorProto_DataType_UINT16:
|
|
detail::CopyFromProtoWithCast(
|
|
chunkSize,
|
|
proto.int32_data(),
|
|
tensor->template mutable_data<uint16_t>() + chunkBegin,
|
|
context);
|
|
break;
|
|
case TensorProto_DataType_INT16:
|
|
detail::CopyFromProtoWithCast(
|
|
chunkSize,
|
|
proto.int32_data(),
|
|
tensor->template mutable_data<int16_t>() + chunkBegin,
|
|
context);
|
|
break;
|
|
case TensorProto_DataType_INT64:
|
|
detail::CopyFromProtoAsIs(
|
|
chunkSize,
|
|
proto.int64_data(),
|
|
tensor->template mutable_data<int64_t>() + chunkBegin,
|
|
context);
|
|
break;
|
|
case TensorProto_DataType_FLOAT16:
|
|
if (proto.has_byte_data()) {
|
|
const int kValue = 1;
|
|
CAFFE_ENFORCE_EQ(
|
|
reinterpret_cast<const char*>(&kValue)[0],
|
|
1,
|
|
"Serialization of FLOAT16 on big endian platform "
|
|
"is not written yet.");
|
|
CAFFE_ENFORCE_EQ(
|
|
2 * chunkSize,
|
|
proto.byte_data().size(),
|
|
"Incorrect proto field size.");
|
|
context->template CopyToCPU<at::Half>(
|
|
chunkSize,
|
|
reinterpret_cast<const at::Half*>(proto.byte_data().data()),
|
|
tensor->template mutable_data<at::Half>() + chunkBegin);
|
|
} else {
|
|
// Backward compatibility with models which used int32_data field
|
|
detail::CopyFromProtoWithCast(
|
|
chunkSize,
|
|
proto.int32_data(),
|
|
reinterpret_cast<uint16_t*>(
|
|
tensor->template mutable_data<at::Half>()) +
|
|
chunkBegin,
|
|
context);
|
|
}
|
|
break;
|
|
case TensorProto_DataType_DOUBLE:
|
|
detail::CopyFromProtoAsIs(
|
|
chunkSize,
|
|
proto.double_data(),
|
|
tensor->template mutable_data<double>() + chunkBegin,
|
|
context);
|
|
break;
|
|
case TensorProto_DataType_UNDEFINED: {
|
|
Blob temp_blob;
|
|
void* raw_ptr = nullptr;
|
|
for (int i = 0; i < chunkSize; ++i) {
|
|
DeserializeBlob(proto.string_data(i), &temp_blob);
|
|
if (i == 0) {
|
|
raw_ptr = tensor->raw_mutable_data(temp_blob.meta());
|
|
}
|
|
temp_blob.meta().copy()(
|
|
temp_blob.GetRaw(),
|
|
static_cast<char*>(raw_ptr) +
|
|
(i + chunkBegin) * temp_blob.meta().itemsize(),
|
|
1);
|
|
}
|
|
} break;
|
|
// Note: we intentially do not provide "default:" so if any new data types
|
|
}
|
|
context->FinishDeviceComputation();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Serialization Helpers
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
std::string SerializeAsString_EnforceCheck(
|
|
const google::protobuf::MessageLite& msg,
|
|
const char* error_location) {
|
|
std::string serialize_output;
|
|
bool result = msg.SerializeToString(&serialize_output);
|
|
if (!error_location) {
|
|
CAFFE_ENFORCE(result, "protobuf::SerializeToString failed");
|
|
} else {
|
|
CAFFE_ENFORCE(result,
|
|
"protobuf::SerializeToString failed for ", error_location);
|
|
}
|
|
return serialize_output;
|
|
}
|
|
|
|
|
|
namespace {
|
|
// Serialize Tensor
|
|
REGISTER_BLOB_SERIALIZER((TypeMeta::Id<Tensor>()), TensorSerializer);
|
|
REGISTER_BLOB_DESERIALIZER(TensorCPU, TensorDeserializer);
|
|
// Serialize std::string
|
|
REGISTER_BLOB_SERIALIZER((TypeMeta::Id<std::string>()), StringSerializer);
|
|
REGISTER_BLOB_DESERIALIZER(std::string, StringDeserializer);
|
|
} // namespace
|
|
} // namespace caffe2
|