pytorch/torch/quantization/fx/utils.py
Jerry Zhang ed57f804fa [quant][refactor] Move some util functions from torch/quantization/fx/utils.py to torch/quantization/utils.py (#48107)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/48107

Test Plan: Imported from OSS

Reviewed By: supriyar

Differential Revision: D25026495

fbshipit-source-id: 3634b6b95a18670232600874b1e593180ea9f44c
2020-11-18 22:32:19 -08:00

172 lines
6.4 KiB
Python

import re
import torch
from ..utils import is_per_tensor, is_per_channel
# turn foo.bar -> ['foo', 'bar']
def _parent_name(target):
r = target.rsplit('.', 1)
if len(r) == 1:
return '', r[0]
else:
return r[0], r[1]
def graph_pretty_str(g, shorten=True) -> str:
"""Returns a printable representation of the ops in the graph of g.
If shorten is True, tries to abbreviate fields.
"""
built_in_func_re = re.compile('<built-in function (.*)>')
built_in_meth_re = re.compile('<built-in method (.*) of type.*>')
op_dict = {
'placeholder': 'plchdr',
'get_attr': 'gt_prm',
'call_function': 'cl_fun',
'call_module': 'cl_mod',
'call_method': 'cl_meth',
}
max_lens = {}
col_names = ("name", "op", "target", "args", "kwargs")
for s in col_names:
max_lens[s] = len(s)
results = []
for n in g.nodes:
# activation_post_process_0 -> obs_0
name = str(n.name)
if shorten:
name = name.replace("activation_post_process", "obs")
op = str(n.op)
# placeholder -> plchdr, and so on
if shorten and op in op_dict:
op = op_dict[op]
target = str(n.target)
# <built-in function foo> -> <bi_fun foo>, and so on
if shorten:
built_in_func = built_in_func_re.search(target)
if built_in_func:
target = f"<bi_fun {built_in_func.group(1)}>"
built_in_meth = built_in_meth_re.search(target)
if built_in_meth:
target = f"<bi_meth {built_in_meth.group(1)}>"
target = target.replace("activation_post_process", "obs")
args = str(n.args)
if shorten:
args = args.replace("activation_post_process", "obs")
kwargs = str(n.kwargs)
# calculate maximum length of each column, so we can tabulate properly
for k, v in zip(col_names, (name, op, target, args, kwargs)):
max_lens[k] = max(max_lens[k], len(v))
results.append([name, op, target, args, kwargs])
res_str = ""
format_str = "{:<{name}} {:<{op}} {:<{target}} {:<{args}} {:<{kwargs}}\n"
res_str += format_str.format(*col_names, **max_lens)
for result in results:
res_str += format_str.format(*result, **max_lens)
# print an exra note on abbreviations which change attribute names,
# since users will have to un-abbreviate for further debugging
if shorten:
res_str += "*obs_{n} = activation_post_process_{n}\n"
return res_str
def get_per_tensor_qparams(activation_post_process):
assert is_per_tensor(activation_post_process.qscheme), 'Only per tensor quantization is supported'
scale, zero_point = activation_post_process.calculate_qparams()
scale = float(scale)
zero_point = int(zero_point)
dtype = activation_post_process.dtype
return scale, zero_point, dtype
def get_quantize_op_and_qparams(activation_post_process):
''' Given an activation_post_process module,
return quantize op(e.g. quantize_per_tensor) and a dictionary
of extracted qparams from the module
'''
scale, zero_point = activation_post_process.calculate_qparams()
dtype = activation_post_process.dtype
if is_per_channel(activation_post_process.qscheme):
ch_axis = int(activation_post_process.ch_axis)
qparams = {'_scale_': scale, '_zero_point_': zero_point, '_axis_': ch_axis, '_dtype_': dtype}
quantize_op = torch.quantize_per_channel
else:
scale = float(scale)
zero_point = int(zero_point)
qparams = {'_scale_': scale, '_zero_point_': zero_point, '_dtype_': dtype}
quantize_op = torch.quantize_per_tensor
return quantize_op, qparams
def quantize_node(root_module, graph, node, activation_post_process):
''' Add quantization nodes for given node to graph
with the qparams calculated from activation_post_process module
e.g. Given input `node` in `node = self.conv(x)`, insert node:
`quantized_node = torch.quantize_per_tensor(x, self._scale_0, self._zer_point_0, self._dtype_0)`
where self._scale_0, self._zero_point_0 and self._dtype_0 are
calculated from `activation_post_process`
'''
def module_has_qparams_attr_with_index(module, qparams, i):
for name in qparams.keys():
if hasattr(module, name + str(i)):
return True
return False
def get_next_qparams_idx(module, qparams):
idx = 0
while module_has_qparams_attr_with_index(module, qparams, idx):
idx += 1
return idx
quantize_op, qparams = get_quantize_op_and_qparams(activation_post_process)
idx = get_next_qparams_idx(root_module, qparams)
inputs = [node]
for key, value in qparams.items():
setattr(root_module, key + str(idx), value)
qparam_full_path = key + str(idx)
inputs.append(graph.create_node('get_attr', qparam_full_path))
return graph.create_node('call_function', quantize_op, tuple(inputs), {})
def get_custom_module_class_keys(custom_config_dict, custom_config_dict_key):
r""" Get all the unique custom module keys in the custom config dict
e.g.
Input:
custom_config_dict = {
"float_to_observed_custom_module_class": {
"static": {
CustomModule1: ObservedCustomModule
},
"dynamic": {
CustomModule2: DynamicObservedCustomModule
},
"weight_only": {
CustomModule3: WeightOnlyObservedCustomModule
},
},
}
Output:
# extract all the keys in "static", "dynamic" and "weight_only" dict
[CustomModule1, CustomModule2, CustomModule3]
"""
# using set to dedup
float_custom_module_classes = set()
custom_module_mapping = custom_config_dict.get(custom_config_dict_key, {})
for quant_mode in ["static", "dynamic", "weight_only"]:
quant_mode_custom_module_config = custom_module_mapping.get(quant_mode, {})
quant_mode_custom_module_classes = set(quant_mode_custom_module_config.keys())
float_custom_module_classes |= quant_mode_custom_module_classes
return list(float_custom_module_classes)
def get_linear_prepack_op_for_dtype(dtype):
if dtype == torch.float16:
return torch.ops.quantized.linear_prepack_fp16
elif dtype == torch.qint8:
return torch.ops.quantized.linear_prepack
else:
raise Exception("can't get linear prepack op for dtype:", dtype)