mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary:
Included functions:
* save_mobile_module -> saves a mobile::Module to flatbuffer
* load_mobile_module_from_file -> loads a flatbuffer into mobile::Module
* parse_mobile_module -> parses from bytes or deserialized flatbuffer
Module object
Fixes #{issue number}
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67351
Reviewed By: iseeyuan
Differential Revision: D32010095
Pulled By: qihqi
fbshipit-source-id: d763b0557780f7c2661b6485105b045e41a5e8f1
516 lines
18 KiB
C++
516 lines
18 KiB
C++
#include <torch/csrc/jit/mobile/flatbuffer_loader.h>
|
|
|
|
#include <ATen/core/ivalue.h>
|
|
#include <ATen/core/qualified_name.h>
|
|
#include <c10/core/CPUAllocator.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/util/Optional.h>
|
|
#include <c10/util/ScopeExit.h>
|
|
#include <caffe2/serialize/inline_container.h>
|
|
#include <torch/csrc/jit/frontend/script_type_parser.h>
|
|
#include <torch/csrc/jit/mobile/import.h>
|
|
#include <torch/csrc/jit/mobile/interpreter.h>
|
|
#include <torch/csrc/jit/mobile/observer.h>
|
|
#include <torch/csrc/jit/mobile/type_parser.h>
|
|
#include <torch/csrc/jit/runtime/instruction.h>
|
|
#include <torch/csrc/jit/serialization/import_export_constants.h>
|
|
#include <torch/csrc/jit/serialization/import_read.h>
|
|
#include <torch/custom_class.h>
|
|
|
|
#include <flatbuffers/flatbuffers.h>
|
|
|
|
#if defined(HAVE_MMAP)
|
|
#include <fcntl.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace {
|
|
|
|
using caffe2::serialize::IStreamAdapter;
|
|
using caffe2::serialize::PyTorchStreamReader;
|
|
using caffe2::serialize::ReadAdapterInterface;
|
|
|
|
static constexpr c10::string_view kCustomClassPrefix =
|
|
"__torch__.torch.classes";
|
|
static constexpr c10::string_view kTorchPrefix = "__torch__";
|
|
static constexpr c10::string_view kJitPrefix = "torch.jit";
|
|
|
|
class FlatbufferLoader {
|
|
public:
|
|
FlatbufferLoader()
|
|
: mcu_(std::make_shared<mobile::CompilationUnit>()),
|
|
cu_(std::make_shared<CompilationUnit>()) {}
|
|
|
|
mobile::Module parseModule(mobile::serialization::Module* module);
|
|
|
|
private:
|
|
IValue parseIValue(const mobile::serialization::IValue* ivalue);
|
|
IValue parseList(const mobile::serialization::List* list);
|
|
at::Tensor parseTensor(const mobile::serialization::TensorMetadata* tensor);
|
|
IValue parseTuple(const mobile::serialization::Tuple* tuple);
|
|
IValue parseDict(const mobile::serialization::Dict* dict);
|
|
IValue parseObject(const mobile::serialization::Object* object);
|
|
std::unique_ptr<mobile::Function> parseFunction(
|
|
const mobile::serialization::Function* method);
|
|
|
|
IValue& getIValue(uint32_t pos) {
|
|
TORCH_CHECK(pos < all_ivalues_.size());
|
|
return all_ivalues_[pos];
|
|
}
|
|
|
|
mobile::Function* getFunction(uint32_t pos) {
|
|
return all_functions_[pos];
|
|
}
|
|
|
|
ClassTypePtr getType(uint32_t pos) const {
|
|
TORCH_CHECK(pos < all_ivalues_.size());
|
|
return all_types_[pos];
|
|
// auto iter = all_types_.find(pos);
|
|
// AT_ASSERT(iter != all_types_.end(), "type not found at pos: ", pos);
|
|
// return iter->second;
|
|
}
|
|
|
|
c10::Storage getStorage(uint32_t index);
|
|
TypePtr getOrCreateTypeAnnotations(const flatbuffers::String* offset);
|
|
|
|
// fields
|
|
std::unordered_map<uint32_t, mobile::Function*> all_functions_;
|
|
std::vector<ClassTypePtr> all_types_;
|
|
std::unordered_set<uint32_t> initialized_types_;
|
|
std::unordered_map<const flatbuffers::String*, TypePtr> type_annotations_;
|
|
std::vector<bool> storage_loaded_;
|
|
std::vector<c10::Storage> storages_;
|
|
std::vector<IValue> all_ivalues_;
|
|
std::shared_ptr<mobile::CompilationUnit> mcu_;
|
|
std::shared_ptr<CompilationUnit> cu_;
|
|
mobile::serialization::Module* module_ = nullptr;
|
|
};
|
|
|
|
mobile::Module FlatbufferLoader::parseModule(
|
|
mobile::serialization::Module* module) {
|
|
module_ = module;
|
|
all_ivalues_.clear();
|
|
all_types_.clear();
|
|
storages_.clear();
|
|
storage_loaded_.clear();
|
|
|
|
const auto* ivalues = module->ivalues();
|
|
all_ivalues_.resize(ivalues->size());
|
|
all_types_.resize(module->object_types()->size());
|
|
storages_.resize(module->storage_data_size());
|
|
storage_loaded_.resize(module->storage_data_size(), false);
|
|
|
|
for (uint32_t i = 0; i < ivalues->size(); i++) {
|
|
const auto* ival = ivalues->Get(i);
|
|
if (const auto* func = ival->val_as_Function()) {
|
|
auto func_ptr = parseFunction(func);
|
|
all_functions_[i] = func_ptr.get();
|
|
mcu_->register_function(std::move(func_ptr));
|
|
} else {
|
|
all_ivalues_[i] = parseIValue(ival);
|
|
}
|
|
}
|
|
|
|
IValue& module_ivalue = getIValue(module->state_obj());
|
|
// register function to class
|
|
// for (const auto& func: all_functions_) {
|
|
// const auto* fb_func = ivalues->Get(func.first)->val_as_Function();
|
|
// auto class_type = getType(fb_func->class_type());
|
|
// class_type->addMethod(func.second);
|
|
// }
|
|
return mobile::Module(module_ivalue.toObject(), mcu_);
|
|
}
|
|
|
|
std::unique_ptr<mobile::Function> FlatbufferLoader::parseFunction(
|
|
const mobile::serialization::Function* method) {
|
|
auto function = std::make_unique<mobile::Function>(
|
|
c10::QualifiedName(method->qn()->str()));
|
|
// TODO(qihan) add debug handle
|
|
// const auto* debug_handle = method->debug_info()->debug_handle();
|
|
for (const auto* inst : *method->instructions()) {
|
|
function->append_instruction(
|
|
static_cast<OpCode>(inst->op()), inst->x(), inst->n());
|
|
}
|
|
|
|
for (uint32_t i : *method->constants()) {
|
|
function->append_constant(getIValue(i));
|
|
}
|
|
|
|
std::unordered_set<std::string> unsupported_op_names;
|
|
const int64_t model_version = 0x6L;
|
|
for (const auto* op : *method->operators()) {
|
|
c10::optional<int> num_args = c10::nullopt;
|
|
if (op->num_args_serialized() > -1) {
|
|
num_args = op->num_args_serialized();
|
|
}
|
|
|
|
auto op_found = function->append_operator(
|
|
op->name()->str(), op->overload_name()->str(), num_args, model_version);
|
|
|
|
if (!op_found) {
|
|
unsupported_op_names.emplace(
|
|
op->name()->str() + "/" + op->overload_name()->str());
|
|
}
|
|
}
|
|
|
|
AT_ASSERT(unsupported_op_names.empty());
|
|
|
|
for (const auto i : *method->type_annotations()) {
|
|
function->append_type(getOrCreateTypeAnnotations(i));
|
|
}
|
|
|
|
function->set_register_size(method->register_size());
|
|
if (method->schema()) {
|
|
auto parseArgList = [this](const auto* args_fb) {
|
|
std::vector<c10::Argument> args;
|
|
for (const auto* arg_tb : *args_fb) {
|
|
IValue default_value = getIValue(arg_tb->default_value());
|
|
TypePtr type_ptr = getOrCreateTypeAnnotations(arg_tb->type());
|
|
auto arg = c10::Argument(
|
|
arg_tb->name()->str(),
|
|
std::move(type_ptr),
|
|
c10::nullopt /*N*/,
|
|
std::move(default_value));
|
|
args.emplace_back(std::move(arg));
|
|
}
|
|
return args;
|
|
};
|
|
c10::FunctionSchema schema(
|
|
method->qn()->str(),
|
|
"" /*overload_name*/,
|
|
parseArgList(method->schema()->arguments()),
|
|
parseArgList(method->schema()->returns()),
|
|
false /*is_varargs*/,
|
|
false /*is_varret*/);
|
|
|
|
function->setSchema(std::move(schema));
|
|
}
|
|
return function;
|
|
}
|
|
|
|
at::Tensor FlatbufferLoader::parseTensor(
|
|
const mobile::serialization::TensorMetadata* tensor_md) {
|
|
at::ScalarType type = static_cast<at::ScalarType>(tensor_md->scalar_type());
|
|
auto options = at::CPU(type).options();
|
|
at::Tensor tensor;
|
|
if (tensor_md->quantized_schema() != nullptr) {
|
|
// is quantized
|
|
const auto* schema = tensor_md->quantized_schema();
|
|
auto qscheme_type = static_cast<at::QScheme>(schema->qscheme());
|
|
switch (qscheme_type) {
|
|
case at::kPerTensorAffine: {
|
|
tensor = at::_empty_affine_quantized(
|
|
{0}, options, schema->scale(), schema->zero_point());
|
|
} break;
|
|
case at::kPerChannelAffineFloatQParams:
|
|
case at::kPerChannelAffine: {
|
|
at::Tensor scales = parseTensor(schema->scales());
|
|
at::Tensor zero_points = parseTensor(schema->zero_points());
|
|
tensor = at::_empty_per_channel_affine_quantized(
|
|
{0}, scales, zero_points, schema->axis(), options);
|
|
} break;
|
|
default:
|
|
TORCH_CHECK(
|
|
false,
|
|
"Unsupported tensor quantization type in serialization ",
|
|
toString(qscheme_type));
|
|
break;
|
|
}
|
|
} else {
|
|
tensor = at::empty({0}, options);
|
|
}
|
|
at::TensorImpl* impl = tensor.unsafeGetTensorImpl();
|
|
|
|
c10::Storage storage;
|
|
storage = getStorage(tensor_md->storage_location_index());
|
|
impl->set_storage_keep_dtype(storage);
|
|
impl->set_storage_offset(tensor_md->storage_offset());
|
|
|
|
std::vector<int64_t> size{
|
|
tensor_md->sizes()->begin(), tensor_md->sizes()->end()};
|
|
std::vector<int64_t> stride{
|
|
tensor_md->strides()->begin(), tensor_md->strides()->end()};
|
|
impl->set_sizes_and_strides(size, stride);
|
|
tensor = autograd::make_variable(tensor, tensor_md->requires_grad());
|
|
return tensor;
|
|
}
|
|
IValue FlatbufferLoader::parseList(const mobile::serialization::List* list) {
|
|
auto res = c10::impl::GenericList(AnyType::get());
|
|
for (int i : *list->items()) {
|
|
res.emplace_back(getIValue(i));
|
|
}
|
|
auto type =
|
|
getOrCreateTypeAnnotations(list->annotation_str())->cast<ListType>();
|
|
res.unsafeSetElementType(type->getElementType());
|
|
return res;
|
|
}
|
|
|
|
IValue FlatbufferLoader::parseTuple(const mobile::serialization::Tuple* tuple) {
|
|
std::vector<IValue> res;
|
|
for (int i : *tuple->items()) {
|
|
res.emplace_back(getIValue(i));
|
|
}
|
|
return c10::ivalue::Tuple::create(res);
|
|
}
|
|
|
|
IValue FlatbufferLoader::parseDict(const mobile::serialization::Dict* dict) {
|
|
auto result = c10::impl::GenericDict(AnyType::get(), AnyType::get());
|
|
const auto* keys = dict->keys();
|
|
const auto* values = dict->values();
|
|
for (size_t i = 0; i < keys->size(); ++i) {
|
|
uint32_t key = keys->Get(i);
|
|
uint32_t val = values->Get(i);
|
|
result.insert_or_assign(getIValue(key), getIValue(val));
|
|
}
|
|
auto type =
|
|
getOrCreateTypeAnnotations(dict->annotation_str())->cast<DictType>();
|
|
result.unsafeSetKeyType(type->getKeyType());
|
|
result.unsafeSetValueType(type->getValueType());
|
|
return result;
|
|
}
|
|
|
|
IValue FlatbufferLoader::parseObject(
|
|
const mobile::serialization::Object* object) {
|
|
const mobile::serialization::ObjectType* obj_type =
|
|
module_->object_types()->Get(object->type_index());
|
|
auto cls = getType(object->type_index());
|
|
bool initialized = true;
|
|
if (cls == nullptr) {
|
|
c10::string_view qn_str(
|
|
obj_type->type_name()->c_str(), obj_type->type_name()->size());
|
|
if (qn_str.starts_with(kTorchPrefix) || qn_str.starts_with(kJitPrefix)) {
|
|
c10::QualifiedName qn(obj_type->type_name()->str());
|
|
cls = cu_->get_class(qn);
|
|
if (cls == nullptr) {
|
|
cls = ClassType::create(qn, cu_, true);
|
|
cu_->register_type(cls);
|
|
}
|
|
} else {
|
|
cls = c10::parseType(std::string(qn_str))->cast<ClassType>();
|
|
}
|
|
TORCH_CHECK(object->type_index() < all_ivalues_.size());
|
|
all_types_[object->type_index()] = cls;
|
|
initialized = false;
|
|
}
|
|
Stack stack;
|
|
switch (obj_type->type()) {
|
|
case mobile::serialization::TypeType::CLASS_WITH_FIELD: {
|
|
auto obj = c10::ivalue::Object::create(
|
|
at::StrongTypePtr(cu_, cls), object->attrs()->size());
|
|
if (!initialized) {
|
|
for (uint32_t i = 0; i < object->attrs()->size(); i++) {
|
|
IValue val = getIValue(object->attrs()->Get(i));
|
|
cls->addAttribute(obj_type->attr_names()->Get(i)->str(), val.type());
|
|
obj->setSlot(i, std::move(val));
|
|
}
|
|
initialized_types_.insert(object->type_index());
|
|
} else {
|
|
for (uint32_t i = 0; i < object->attrs()->size(); i++) {
|
|
IValue val = getIValue(object->attrs()->Get(i));
|
|
obj->setSlot(i, std::move(val));
|
|
}
|
|
}
|
|
return obj;
|
|
}
|
|
case mobile::serialization::TypeType::CLASS_WITH_SETSTATE: {
|
|
IValue input = getIValue(object->state());
|
|
mobile::Function* setstate = getFunction(object->setstate_func());
|
|
auto obj = c10::ivalue::Object::create(at::StrongTypePtr(cu_, cls), 0);
|
|
stack.push_back(obj);
|
|
stack.emplace_back(std::move(input));
|
|
setstate->run(stack);
|
|
return obj;
|
|
}
|
|
case mobile::serialization::TypeType::CUSTOM_CLASS: {
|
|
auto custom_class_type =
|
|
torch::jit::getCustomClass(cls->name()->qualifiedName());
|
|
IValue input = getIValue(object->state());
|
|
auto obj = c10::ivalue::Object::create(
|
|
c10::StrongTypePtr(nullptr, custom_class_type), 1);
|
|
stack.push_back(obj);
|
|
stack.emplace_back(std::move(input));
|
|
custom_class_type->getMethod("__setstate__").run(stack);
|
|
return obj;
|
|
}
|
|
default:
|
|
AT_ASSERT(false, "need to be object");
|
|
}
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
std::vector<T> parseListNative(const U* list) {
|
|
return {list->items()->begin(), list->items()->end()};
|
|
}
|
|
|
|
IValue FlatbufferLoader::parseIValue(
|
|
const mobile::serialization::IValue* ivalue) {
|
|
switch (ivalue->val_type()) {
|
|
case mobile::serialization::IValueUnion::NONE:
|
|
return {};
|
|
case mobile::serialization::IValueUnion::Int:
|
|
return ivalue->val_as_Int()->int_val();
|
|
case mobile::serialization::IValueUnion::Bool:
|
|
return ivalue->val_as_Bool()->bool_val();
|
|
case mobile::serialization::IValueUnion::Double:
|
|
return ivalue->val_as_Double()->double_val();
|
|
case mobile::serialization::IValueUnion::ComplexDouble: {
|
|
const auto* comp = ivalue->val_as_ComplexDouble();
|
|
return c10::complex<double>(comp->real(), comp->imag());
|
|
}
|
|
case mobile::serialization::IValueUnion::TensorMetadata:
|
|
return parseTensor(ivalue->val_as_TensorMetadata());
|
|
case mobile::serialization::IValueUnion::String:
|
|
return ivalue->val_as_String()->data()->str();
|
|
case mobile::serialization::IValueUnion::List:
|
|
return parseList(ivalue->val_as_List());
|
|
case mobile::serialization::IValueUnion::IntList:
|
|
return parseListNative<int64_t>(ivalue->val_as_IntList());
|
|
case mobile::serialization::IValueUnion::DoubleList:
|
|
return parseListNative<double>(ivalue->val_as_DoubleList());
|
|
case mobile::serialization::IValueUnion::BoolList: {
|
|
std::vector<uint8_t> res =
|
|
parseListNative<uint8_t>(ivalue->val_as_BoolList());
|
|
c10::List<bool> boollist;
|
|
for (auto x : res) {
|
|
boollist.push_back(x);
|
|
}
|
|
return boollist;
|
|
}
|
|
case mobile::serialization::IValueUnion::Tuple:
|
|
return parseTuple(ivalue->val_as_Tuple());
|
|
case mobile::serialization::IValueUnion::Dict:
|
|
return parseDict(ivalue->val_as_Dict());
|
|
case mobile::serialization::IValueUnion::Object: {
|
|
auto val = parseObject(ivalue->val_as_Object());
|
|
return val;
|
|
}
|
|
case mobile::serialization::IValueUnion::Device: {
|
|
return c10::Device(ivalue->val_as_Device()->str()->str());
|
|
}
|
|
case mobile::serialization::IValueUnion::EnumValue: {
|
|
const auto* enum_val = ivalue->val_as_EnumValue();
|
|
auto enum_type = getOrCreateTypeAnnotations(enum_val->type_name())
|
|
->cast<c10::EnumType>();
|
|
AT_ASSERT(
|
|
enum_type,
|
|
"Enum with type: " + enum_val->type_name()->str() + " not found.");
|
|
IValue val = getIValue(enum_val->value());
|
|
for (const auto& p : enum_type->enumNamesValues()) {
|
|
if (p.second == val) {
|
|
auto enum_holder = c10::make_intrusive<at::ivalue::EnumHolder>(
|
|
enum_type, p.first, p.second);
|
|
return IValue(std::move(enum_holder));
|
|
}
|
|
}
|
|
AT_ASSERT(
|
|
false,
|
|
"Enum with type: " + enum_val->type_name()->str() + " not found.");
|
|
}
|
|
default:
|
|
return {};
|
|
}
|
|
}
|
|
|
|
void deleteNothing2(void*);
|
|
void deleteNothing2(void*) {}
|
|
|
|
c10::Storage FlatbufferLoader::getStorage(uint32_t index) {
|
|
TORCH_CHECK(index < storage_loaded_.size());
|
|
TORCH_CHECK(index < storages_.size());
|
|
if (!storage_loaded_[index]) {
|
|
auto* storage = module_->storage_data()->GetMutableObject(index);
|
|
size_t size = storage->data()->size();
|
|
void* ptr = static_cast<void*>(storage->mutable_data()->data());
|
|
at::DataPtr data(ptr, ptr, deleteNothing2, DeviceType::CPU);
|
|
storages_[index] =
|
|
c10::Storage(c10::Storage::use_byte_size_t(), size, std::move(data));
|
|
storage_loaded_[index] = true;
|
|
}
|
|
return storages_[index];
|
|
}
|
|
|
|
TypePtr FlatbufferLoader::getOrCreateTypeAnnotations(
|
|
const flatbuffers::String* offset) {
|
|
auto iter = type_annotations_.find(offset);
|
|
if (iter != type_annotations_.end()) {
|
|
return iter->second;
|
|
}
|
|
TypePtr type;
|
|
c10::string_view qn_str(offset->c_str(), offset->size());
|
|
c10::QualifiedName qn(offset->str());
|
|
if (qn_str.starts_with(kCustomClassPrefix)) {
|
|
type = getCustomClass(qn.qualifiedName());
|
|
TORCH_CHECK(
|
|
type,
|
|
"The implementation of class ",
|
|
qn.qualifiedName(),
|
|
" cannot be found.");
|
|
} else if (
|
|
qn_str.starts_with(kTorchPrefix) || qn_str.starts_with(kJitPrefix)) {
|
|
if (cu_->get_class(qn) == nullptr) {
|
|
auto classtype = ClassType::create(qn, cu_, true);
|
|
cu_->register_type(classtype);
|
|
type = classtype;
|
|
} else {
|
|
type = cu_->get_class(qn);
|
|
}
|
|
} else {
|
|
type = c10::parseType(qn.qualifiedName());
|
|
}
|
|
type_annotations_[offset] = type;
|
|
return type;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
mobile::Module parse_and_initialize_mobile_module(
|
|
std::shared_ptr<char> data,
|
|
size_t,
|
|
c10::optional<at::Device>) {
|
|
auto* flatbuffer_module = mobile::serialization::GetMutableModule(data.get());
|
|
mobile::Module m = FlatbufferLoader().parseModule(flatbuffer_module);
|
|
m.set_delete_memory(std::move(data));
|
|
return m;
|
|
}
|
|
|
|
mobile::Module initialize_mobile_module(
|
|
mobile::serialization::Module* flatbuffer_module,
|
|
c10::optional<at::Device>) {
|
|
mobile::Module m = FlatbufferLoader().parseModule(flatbuffer_module);
|
|
return m;
|
|
}
|
|
|
|
mobile::Module load_mobile_module_from_file(
|
|
const std::string& filename,
|
|
c10::optional<c10::Device> device) {
|
|
#if defined(HAVE_MMAP)
|
|
int fd = open(filename.c_str(), O_RDONLY);
|
|
struct stat statbuf {};
|
|
fstat(fd, &statbuf);
|
|
int size = statbuf.st_size;
|
|
void* ptr = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
|
|
close(fd);
|
|
auto deleter = [statbuf](char* ptr) { munmap(ptr, statbuf.st_size); };
|
|
std::shared_ptr<char> data(reinterpret_cast<char*>(ptr), deleter);
|
|
#else
|
|
FILE* f = fopen(filename.c_str(), "rb");
|
|
fseek(f, 0, SEEK_END);
|
|
long size = ftell(f);
|
|
fseek(f, 0, SEEK_SET);
|
|
std::shared_ptr<char> data(static_cast<char*>(malloc(size)), free); // NOLINT
|
|
fread(data.get(), size, 1, f);
|
|
fclose(f);
|
|
#endif
|
|
return parse_and_initialize_mobile_module(std::move(data), size, device);
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|