pytorch/torch/ao/quantization/backend_config/utils.py
Jerry Zhang ecf277abec [quant][improvement] Check the fixedqparam op qconfig based on backend_config (#87425)
Summary:
Previously we hardcoded the supported observers for fixedqparam ops, this PR changes that to take the information from BackendConfig,
this allows users to customize the support for fixed qparam ops

Test Plan:
python test/test_quantization.py TestQuantizeFx.test_change_backend_config_for_fixed_qparam_ops

Reviewers:

Subscribers:

Tasks:

Tags:

unlinked from diff since it's too hard to land
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87425
Approved by: https://github.com/andrewor14
2022-10-28 23:38:40 +00:00

199 lines
8.5 KiB
Python

from typing import Dict, Any, List, Callable, Union, Tuple, Type
import torch
import torch.nn as nn
import torch.nn.functional as F
from .backend_config import BackendConfig, DTypeConfig
from ..utils import Pattern
from ..observer import _PartialWrapper
__all__ = [
"get_pattern_to_dtype_configs",
"get_qat_module_classes",
"get_fused_module_classes",
"get_pattern_to_input_type_to_index",
"get_root_module_to_quantized_reference_module",
"get_fuser_method_mapping",
"get_module_to_qat_module",
"get_fusion_pattern_to_root_node_getter",
"get_fusion_pattern_to_extra_inputs_getter",
"remove_boolean_dispatch_from_name",
"pattern_to_human_readable",
"entry_to_pretty_str",
]
def get_pattern_to_dtype_configs(backend_config: BackendConfig) -> Dict[Pattern, List[DTypeConfig]]:
pattern_to_dtype_configs: Dict[Pattern, List[DTypeConfig]] = {}
for pattern, config in backend_config.configs.items():
pattern_to_dtype_configs[pattern] = config.dtype_configs
return pattern_to_dtype_configs
def get_qat_module_classes(backend_config: BackendConfig) -> Tuple[type, ...]:
qat_module_classes = []
for config in backend_config.configs.values():
if config.qat_module is not None:
qat_module_classes.append(config.qat_module)
return tuple(set(qat_module_classes))
def get_fused_module_classes(backend_config: BackendConfig) -> Tuple[type, ...]:
fused_module_classes = []
for config in backend_config.configs.values():
if config.fused_module is not None:
fused_module_classes.append(config.fused_module)
return tuple(set(fused_module_classes))
def get_pattern_to_input_type_to_index(backend_config: BackendConfig) -> Dict[Pattern, Dict[str, int]]:
pattern_to_input_type_to_index: Dict[Pattern, Dict[str, int]] = {}
for pattern, config in backend_config.configs.items():
pattern_to_input_type_to_index[pattern] = config._input_type_to_index
return pattern_to_input_type_to_index
def get_root_module_to_quantized_reference_module(
backend_config: BackendConfig) -> Dict[Type[torch.nn.Module], Type[torch.nn.Module]]:
mapping: Dict[Type[torch.nn.Module], Type[torch.nn.Module]] = {}
for config in backend_config.configs.values():
if config.root_module is not None and config.reference_quantized_module is not None:
mapping[config.root_module] = config.reference_quantized_module
return mapping
def get_fuser_method_mapping(backend_config: BackendConfig) -> Dict[Pattern, Union[nn.Sequential, Callable]]:
fuser_method_mapping : Dict[Pattern, Union[nn.Sequential, Callable]] = {}
for pattern, config in backend_config.configs.items():
if config.fuser_method is not None:
fuser_method_mapping[pattern] = config.fuser_method
return fuser_method_mapping
def get_module_to_qat_module(backend_config: BackendConfig) -> Dict[Pattern, Type[torch.nn.Module]]:
module_to_qat_module: Dict[Pattern, Type[torch.nn.Module]] = {}
for pattern, config in backend_config.configs.items():
if config.qat_module is not None:
module_to_qat_module[pattern] = config.qat_module
return module_to_qat_module
def get_fusion_pattern_to_root_node_getter(backend_config: BackendConfig) -> Dict[Pattern, Callable]:
""" Get a map from fusion pattern to a function that returns the root node
from the fusion pattern, e.g. the most common one is:
def get_root_node(node_pattern):
while not isinstance(node_pattern[-1], Node):
node_pattern = node_pattern[-1]
return node_pattern[-1]
This can work for all patterns whose root node is the "last node" in the pattern,
e.g. (torch.add, MatchAllNode, (torch.ReLU, torch.Conv2d))
"""
root_node_getter_mapping: Dict[Pattern, Callable] = {}
for pattern, config in backend_config.configs.items():
if config._root_node_getter is not None:
root_node_getter_mapping[pattern] = config._root_node_getter
return root_node_getter_mapping
def get_fixed_qparams_op_to_overwrite_output_observer(backend_config: BackendConfig) -> Dict[Union[Callable, str], _PartialWrapper]:
fixed_qparam_op_to_overwrite_output_observer: Dict[Union[Callable, str], _PartialWrapper] = {}
for pattern, config in backend_config.configs.items():
if config._overwrite_output_observer is not None:
fixed_qparam_op_to_overwrite_output_observer[pattern] = config._overwrite_output_observer # type: ignore[index]
return fixed_qparam_op_to_overwrite_output_observer
def get_fusion_pattern_to_extra_inputs_getter(backend_config: BackendConfig) -> Dict[Pattern, Callable]:
""" Get a map from fusion pattern to a function that returns extra input nodes
from the fusion pattern, in the order required by the root node. This is optional,
if not specified, we will not copy over any extra inputs for the root node.
Example:
# Let's say we have the pattern (torch.add, MatchAllNode, (torch.nn.BatchNorm2d, torch.nn.Conv2d))
# and root node is torch.nn.Conv2d, and the node in MatchAllNode would be an extra
# argument to the fused module, we can unpack the pattern and return the node at
# MatchAllNode here
# we can implement extra_inputs_getter as follows:
def extra_inputs_getter(pattern) -> List[Any]:
add, extra_input, conv_pattern = pattern
return [extra_input]
"""
extra_inputs_getter_mapping: Dict[Pattern, Callable] = {}
for pattern, config in backend_config.configs.items():
if config._extra_inputs_getter is not None:
extra_inputs_getter_mapping[pattern] = config._extra_inputs_getter
return extra_inputs_getter_mapping
def remove_boolean_dispatch_from_name(p) -> Any:
"""
Some ops have a default string representation such as
'<function boolean_dispatch.<locals>.fn at 0x7ff1106bf280>',
this function replaces them with the hardcoded function names.
"""
if p is F.fractional_max_pool2d:
return "torch.nn.functional.fractional_max_pool2d"
elif p is F.fractional_max_pool3d:
return "torch.nn.functional.fractional_max_pool3d"
elif p is F.max_pool1d:
return "torch.nn.functional.max_pool1d"
elif p is F.max_pool2d:
return "torch.nn.functional.max_pool2d"
elif p is F.max_pool3d:
return "torch.nn.functional.max_pool3d"
elif p is F.adaptive_max_pool1d:
return "torch.nn.functional.adaptive_max_pool1d"
elif p is F.adaptive_max_pool2d:
return "torch.nn.functional.adaptive_max_pool2d"
elif p is F.adaptive_max_pool3d:
return "torch.nn.functional.adaptive_max_pool3d"
assert "boolean_dispatch" not in str(p), \
f"{p} does not have a human readable representation in " + \
"quantization documentation"
return p
def pattern_to_human_readable(p) -> Any:
if isinstance(p, tuple):
# nested patterns, recurse
return tuple(pattern_to_human_readable(inner_p) for inner_p in p)
elif isinstance(p, str):
# method names are already human readable
return p
else:
p = remove_boolean_dispatch_from_name(p)
return p
# TODO(future PR): move backend_config_dict to use dataclass and move this logic to
# the corresponding __str__ function
def entry_to_pretty_str(entry) -> str:
"""
Given a backend_config_dict entry, returns a string with the human readable
representation of it.
"""
s = "{\n"
# always output the pattern first
if "pattern" in entry:
pattern_str = pattern_to_human_readable(entry["pattern"])
s += f" 'pattern': {pattern_str},\n"
# custom output for dtype_configs to make it look nice
if "dtype_configs" in entry:
s += " 'dtype_configs': [\n"
for dtype_config in entry["dtype_configs"]:
s += " {\n"
for k, v in dtype_config.items():
s += f" '{k}': {v},\n"
s += " },\n"
s += " ],\n"
# custom output for num_tensor_args_to_observation_type to make it look nice
if "num_tensor_args_to_observation_type" in entry:
s += " 'num_tensor_args_to_observation_type': {\n"
for k, v in entry["num_tensor_args_to_observation_type"].items():
s += f" {k}: {v},\n"
s += " },\n"
# output all the other fields
custom_handled_fields = [
"pattern",
"dtype_configs",
"num_tensor_args_to_observation_type",
]
for field_name in entry:
if field_name in custom_handled_fields:
continue
s += f" '{field_name}': {entry[field_name]},\n"
s += "}"
return s