pytorch/torch/optim/_adafactor.py
ErezYosef 197601eeea Add Support for Tracking Parameter Names (named_parameters) in Optimizer State Dict (#134107)
A proposal addressing Issue #1489: **Optimizer should track parameter names and not id.**

(also mentioned in here: [[RFC] Introducing FQNs/clarity eyeglasses to optim state_dict](https://dev-discuss.pytorch.org/t/rfc-introducing-fqns-clarity-to-optim-state-dict/1552)

## Summary
This PR introduces a backward-compatible enhancement where optimizers track parameter names instead of just their id.
Optimizers can be initialized with `named_parameters()` as:
```python
optimizer = optim.SGD(model.named_parameters(), lr=0.01, momentum=0.9)
```
This allows for greater clarity and ease when handling optimizers, as the parameters' names are preserved within the optimizer’s `state_dict` as:
```
state_dict =
{
    'state': {
    0: {'momentum_buffer': tensor(...), ...},
    1: {'momentum_buffer': tensor(...), ...},
    },
    'param_groups': [
        {
        'lr': 0.01,
        'weight_decay': 0,
        ...
        'params': [0,1]
        'param_names' ['layer.weight', 'layer.bias']  (optional)
        }
    ]
}
```
Loading `state_dict` is not changed (backward-compatible) and the `param_names` key will be ignored.

## Key Features
#### Named Parameters in Optimizer Initialization:
Optimizers can accept the output of `model.named_parameters()` during initialization, allowing them to store parameter names directly.
#### Parameter Names in `state_dict`:
The parameter names are saved as a list in the optimizer’s `state_dict` with key `param_names`, alongside the `params` indices, ensuring seamless tracking of both names and parameters.

## Backward Compatibility
#### No Breaking Changes:
This change is fully backward-compatible. The added `param_names` key in the optimizer's `state_dict` is ignored when loading a state to the optimizer.

#### Customization with Hooks:
For more control, the loaded state_dict can be modified using a custom `register_load_state_dict_pre_hook`, providing flexibility for different design needs.

## Documentation Updates
Please refer to the documentation changes for more details on how this feature is implemented and how it can be used effectively.

## Solution Example:

A suggested solution to the problem mentioned in #1489, for the same parameters but in a different order.
The following `register_load_state_dict_pre_hook` should be added to the optimizer before loading to enable loading the state dict :
```python
def adapt_state_dict_ids(optimizer, state_dict):
    # assuming a single param group.
    current_state_group = optimizer.state_dict()['param_groups'][0]
    loaded_state_group = state_dict['param_groups'][0]

    # same number of params, same names, only different ordering
    current_state_name_to_id_mapping = {}  # mapping --  param_name: id
    for i, name in enumerate(current_state_group['param_names']):
        current_state_name_to_id_mapping[name] = current_state_group['params'][i]

    # changing the ids of the loaded state dict to match the order of the given state dict.
    for i, name in enumerate(current_state_group['param_names']):
        loaded_state_group['params'][i] = current_state_name_to_id_mapping[name]

    return state_dict
```
In this code, the loaded `state_dict` ids are adapted to match the order of the current optimizer `state_dict`.
Both the previous and the current optimizers are required to be initiated with `named_parameters()` to have the 'param_names' key in the dict.

### Note
This is my first contribution to PyTorch, and I wish to receive feedback or suggestions for improvement.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134107
Approved by: https://github.com/janeyx99

Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
2024-10-14 19:24:44 +00:00

657 lines
28 KiB
Python

# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
from typing import cast, Dict, List, Optional, Tuple, TYPE_CHECKING, Union
import torch
from torch import Tensor
from .optimizer import (
_disable_dynamo_if_unsupported,
_get_scalar_dtype,
_maximize_doc,
_params_doc,
Optimizer,
ParamsT,
TensorListList,
)
__all__ = ["Adafactor", "adafactor"]
class Adafactor(Optimizer):
def __init__(
self,
params: ParamsT,
lr: Union[float, Tensor] = 1e-2,
beta2_decay: float = -0.8,
eps: Tuple[Optional[float], float] = (None, 1e-3),
d: float = 1.0,
weight_decay: float = 0.0,
*,
foreach: Optional[bool] = None,
maximize: bool = False,
):
if isinstance(lr, Tensor) and lr.numel() != 1:
raise ValueError("Tensor lr must be 1-element")
if not 0.0 <= lr:
raise ValueError(f"Learning rate should be >= 0 but is: {lr}")
if not 0.0 >= beta2_decay:
raise ValueError(f"beta2_decay should be <= 0 but is: {beta2_decay}")
if eps[0] is not None and not 0.0 <= eps[0]:
raise ValueError(f"epsilon1 should be >= 0 but is: {eps[0]}")
if not 0.0 <= eps[1]:
raise ValueError(f"epsilon2 should be >= 0 but is: {eps[1]}")
if not 1.0 <= d:
raise ValueError(f"Clipping threshold d should be >= 1 but is: {d}")
if not 0.0 <= weight_decay:
raise ValueError(f"weight_decay should be >= 0 but is: {weight_decay}")
defaults = dict(
lr=lr,
beta2_decay=beta2_decay,
eps=eps,
d=d,
weight_decay=weight_decay,
foreach=foreach,
maximize=maximize,
)
super().__init__(params, defaults)
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("foreach", None)
for p in group["params"]:
p_state = self.state.get(p, [])
if len(p_state) != 0 and not torch.is_tensor(p_state["step"]):
step_val = float(p_state["step"])
p_state["step"] = torch.tensor(step_val, dtype=_get_scalar_dtype())
def _init_group(
self,
group,
params_with_grad,
grads,
row_vars,
col_vars,
variances,
state_steps,
):
for p in group["params"]:
if p.grad is None:
continue
if torch.is_complex(p):
raise RuntimeError("Adafactor does not support complex parameters")
if p.grad.is_sparse:
raise RuntimeError("Adafactor does not support sparse gradients")
params_with_grad.append(p)
grads.append(p.grad)
state = self.state[p]
# State initialization
if len(state) == 0:
# note(crcrpar): Deliberately host `step` on CPU if both capturable and fused are off.
# This is because kernel launches are costly on CUDA and XLA.
state["step"] = torch.tensor(0.0, dtype=_get_scalar_dtype())
if p.grad.dim() > 1:
row_shape = list(p.grad.shape)
row_shape[-1] = 1
# Row factor of variance, NOT the same shape as grads (will be reduced along last dim)
state["row_var"] = p.grad.new_zeros(row_shape)
col_shape = list(p.grad.shape)
col_shape[-2] = 1
# Col factor of variance, NOT the same shape as grads (will be reduced along penultimate dim)
state["col_var"] = p.grad.new_zeros(col_shape)
else:
state["variance"] = torch.zeros_like(
p.grad, memory_format=torch.preserve_format
)
row_vars.append(state.get("row_var", None))
col_vars.append(state.get("col_var", None))
variances.append(state.get("variance", None))
state_steps.append(state["step"])
return False # has_complex
@torch.no_grad()
def step(self, closure=None):
r"""Perform a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
"""
self._cuda_graph_capture_health_check()
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad: List[Tensor] = []
grads: List[Tensor] = []
row_vars: List[Optional[Tensor]] = []
col_vars: List[Optional[Tensor]] = []
variances: List[Optional[Tensor]] = []
state_steps: List[Tensor] = []
eps1, eps2 = group["eps"]
has_complex = self._init_group(
group,
params_with_grad,
grads,
row_vars,
col_vars,
variances,
state_steps,
)
adafactor(
params_with_grad,
grads,
row_vars,
col_vars,
variances,
state_steps,
d=group["d"],
lr=group["lr"],
beta2_decay=group["beta2_decay"],
weight_decay=group["weight_decay"],
eps1=eps1,
eps2=eps2,
foreach=group["foreach"],
maximize=group["maximize"],
grad_scale=getattr(self, "grad_scale", None),
found_inf=getattr(self, "found_inf", None),
has_complex=has_complex,
)
return loss
Adafactor.__doc__ = (
r"""Implements Adafactor algorithm.
.. math::
\begin{aligned}
&\rule{110mm}{0.4pt} \\
&\textbf{input} : \gamma \text{(lr)}, \: \tau
\text{(}\beta_2\text{ decay)}, \: \theta_0 \text{(params)}, \: f(\theta) \text{(objective)}, \\
&\hspace{15mm} \: \epsilon_1, \epsilon_2 \text{ (epsilons)}, \: d \text{(clipping threshold)}, \\
&\hspace{15mm} \: \lambda \text{(weight decay)},
\: \textit{maximize} \\
&\textbf{initialize} : \: R_0 \leftarrow 0 \text{ (second moment row factor)}, \\
&\hspace{23mm} \: C_0 \leftarrow 0 \text{ (second moment col factor)}, \\
&\hspace{23mm} \: \widehat{V}_0 \leftarrow 0 \text{ (second moment for vectors)} \\[-1.ex]
&\rule{110mm}{0.4pt} \\
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
&\hspace{5mm}\textbf{if} \: \textit{maximize}: \\
&\hspace{10mm}G_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\
&\hspace{5mm}\textbf{else} \\
&\hspace{10mm}G_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
&\hspace{5mm}\widehat{\beta}_{2_t} \leftarrow 1 - t^{\tau} \\
&\hspace{5mm}\rho_t \leftarrow min(lr, \frac{1}{\sqrt{t}}) \\
&\hspace{5mm}\alpha_t \leftarrow max(\epsilon_2,
\text{RMS}(\theta_{t-1}))\rho_t \\
&\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \\
&\hspace{5mm}\textbf{if} \: \text{dim}(G_t) > 1: \\
&\hspace{10mm}R_t \leftarrow \widehat{\beta}_{2_t}R_{t-1}+
(1-\widehat{\beta}_{2_t})(G_t \odot G_t) \cdot 1_m \\
&\hspace{10mm}C_t \leftarrow \widehat{\beta}_{2_t}C_{t-1}+
(1-\widehat{\beta}_{2_t}) 1^\top_n \cdot (G_t \odot G_t) \\
&\hspace{10mm}\widehat{V}_t \leftarrow
\frac{R_t \cdot C_t}{max(1^\top_n \cdot R_t, \epsilon_1)} \\
&\hspace{5mm}\textbf{else} \\
&\hspace{10mm}\widehat{V}_t \leftarrow \widehat{\beta}_{2_t}\widehat{V}_{t-1}+
(1-\widehat{\beta}_{2_t}) \cdot (G_t \odot G_t) \\
&\hspace{5mm}U_t \leftarrow
\frac{G_t}{max(\sqrt{\widehat{V}_t}, \epsilon_1)} \\
&\hspace{5mm}\widehat{U}_t \leftarrow \frac{U_t}{max(1, \frac{\text{RMS}(U_t)}{d})} \\
&\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \alpha_t \widehat{U}_t \\
&\rule{110mm}{0.4pt} \\[-1.ex]
&\bf{return} \: \theta_t \\[-1.ex]
&\rule{110mm}{0.4pt} \\[-1.ex]
\end{aligned}
For further details regarding the algorithm we refer to `Adafactor: Adaptive Learning Rates with Sublinear Memory Cost`_.
"""
+ rf"""
Args:
{_params_doc}
lr (float, Tensor, optional): unlike other optimizers, Adafactor does not require a
learning rate, and Shazeer, Noam, and Mitchell Stern do not use lr at all.
Deviating from the paper, this implementation uses lr for applying weight
decay and as the maximum value for relative step size rho_t. Note that in
the paper, a constant of 0.01 is used as the maximum value for relative
step size, and so we set 0.01 as the default value. (default: 1e-2)
beta2_decay (float, optional): the decay rate of beta2. beta2 standardly refers
to the coefficient used for computing the running average of the gradient
squared. (default: -0.8)
eps (Tuple[float, float], optional): epsilon1 is the term added to the denominator
of the update calculation to improve numerical stability. This use of epsilon1
deviates from the algorithm written in the paper! See note below for more details.
epsilon2 is the term used to avoid having too small a weight update when applying
parameter scaling. (default: (None, 1e-3))
d (float, optional): the clipping threshold, used to avoid larger-than-desired
updates.
weight_decay (float, optional): weight decay coefficient (default: 1e-2)
foreach (bool, optional): whether foreach implementation of optimizer is used. Note
that the foreach implementation uses ~ sizeof(params) more peak memory than the
for-loop version due to the intermediates being a tensorlist vs just one tensor.
As Adafactor is commonly used when memory is prohibitive, Adafactor will default
to the slower single tensor for-loop implementation unless this flag is explicitly
True. This behavior is contrary to other optimizers, which will attempt defaulting
to foreach on CUDA for faster runtime. (default: None)
{_maximize_doc}"""
+ r"""
.. Note::
The implementation of Adafactor subtly differs from Shazeer, Noam, and Mitchell Stern
and implementations in some other frameworks with its use of learning rate and
:math:`\epsilon_1`.
Regarding the learning rate hyperparameter: Shazeer, Noam, and Mitchell Stern do not
use lr at all, as the stated algorithm uses :math:`\rho_t` and update clipping to
affect the step size.
This implementation allows `lr` to influence the maximum value for :math:`\rho_t`:
.. math::
\begin{aligned}
&\hspace{5mm}\rho_t \leftarrow min(lr, \frac{1}{\sqrt{t}})
\end{aligned}
This differs from Shazeer, Noam, and Mitchell Stern, who use a constant of 0.01 as
the maximum value of :math:`\rho_t`
.. math::
\begin{aligned}
&\hspace{5mm}\rho_t \leftarrow min(0.01, \frac{1}{\sqrt{t}})
\end{aligned}
Shazeer, Noam, and Mitchell Stern do not enforce an opinion on how weight decay should
be computed, and so we use the learning rate as a coefficient for decoupled weight
decay, similar to what is suggested in `Decoupled Weight Decay Regularization`_.
Regarding the use of :math:`\epsilon_1`: The implementation attempts to replicate the
presumed intention of Shazeer, Noam, and Mitchell Stern to use :math:`\epsilon_1` as
a stabilizing term when the squared gradient becomes small.
This stabilization can be written as
.. math::
\begin{aligned}
&\hspace{5mm}R_t \leftarrow \widehat{\beta}_{2_t}R_{t-1}+
(1-\widehat{\beta}_{2_t})(G_t \odot G_t + 1_n \cdot 1^\top_m) \cdot 1_m \\
&\hspace{5mm}C_t \leftarrow \widehat{\beta}_{2_t}C_{t-1}+
(1-\widehat{\beta}_{2_t}) 1^\top_n \cdot (G_t \odot G_t + 1_n \cdot 1^\top_m) \\
&\hspace{5mm}\widehat{V}_t \leftarrow
\frac{R_t \cdot C_t}{max(1^\top_n \cdot R_t, \epsilon_1)} \\
&\hspace{5mm}U_t \leftarrow \frac{G_t}{max(\sqrt{\widehat{V}_t}, \epsilon_1)} \\
\end{aligned}
where the row and column factors of gradient squared :math:`R_t` and :math:`C_t`
are left alone, and we apply :math:`\epsilon_1` at the final calculation of
the variance estimate :math:`\widehat{V}_t` and for the update :math:`U_t`.
This is in contrast to Shazeer, Noam, and Mitchell Stern and other frameworks which
apply :math:`\epsilon_1` to both row and column factors of the squared gradient, but
not in the calculations after:
.. math::
\begin{aligned}
&\hspace{5mm}R_t \leftarrow \widehat{\beta}_{2_t}R_{t-1}+
(1-\widehat{\beta}_{2_t})(G_t \odot G_t + \epsilon_1 1_n \cdot 1^\top_m) \cdot 1_m \\
&\hspace{5mm}C_t \leftarrow \widehat{\beta}_{2_t}C_{t-1}+
(1-\widehat{\beta}_{2_t}) 1^\top_n \cdot (G_t \odot G_t + \epsilon_1 1_n \cdot 1^\top_m) \\
&\hspace{5mm}\widehat{V}_t \leftarrow \frac{R_t \cdot C_t}{1^\top_n \cdot R_t} \\
&\hspace{5mm}U_t \leftarrow \frac{G_t}{\sqrt{\widehat{V}_t}} \\
\end{aligned}
.. _Adafactor\: Adaptive Learning Rates with Sublinear Memory Cost:
https://arxiv.org/pdf/1804.04235
.. _Decoupled Weight Decay Regularization:
https://arxiv.org/abs/1711.05101
"""
)
def _single_tensor_adafactor(
params: List[Tensor],
grads: List[Tensor],
# If grad is 1-dimensional (aka a vector), there is no factorization necessary
# so row_var and col_var will be None while variance will be filled.
# Contrarily, for a grad with multiple dimensions, we will factor along the last
# 2 dimensions, and so row_var and col_var will be filled and variance will be None.
row_vars: List[Optional[Tensor]],
col_vars: List[Optional[Tensor]],
variances: List[Optional[Tensor]],
state_steps: List[Tensor],
grad_scale: Optional[Tensor],
found_inf: Optional[Tensor],
*,
d: float,
lr: Union[Tensor, float],
beta2_decay: float,
weight_decay: float,
eps1: Optional[float],
eps2: float,
maximize: bool,
has_complex: bool,
):
assert (
grad_scale is None and found_inf is None
), "Grad scaling should occur outside of optimizer.step()"
if torch.jit.is_scripting():
# this assert is due to JIT being dumb and not realizing that the ops below
# have overloads to handle both float and Tensor lrs, so we just assert it's
# a float since most people using JIT are using floats
assert isinstance(lr, float)
for i, param in enumerate(params):
grad = grads[i] if not maximize else -grads[i]
step_t = state_steps[i]
row_var = row_vars[i]
col_var = col_vars[i]
variance = variances[i]
if eps1 is None:
eps1 = torch.finfo(param.dtype).eps
# update step
step_t += 1
step_float = step_t.item()
one_minus_beta2_t = step_float**beta2_decay
rho_t = min(lr, 1 / (step_float**0.5))
alpha = max(eps2, param.norm(2).item() / (param.numel() ** 0.5)) * rho_t
# Perform stepweight decay
if weight_decay != 0:
param.mul_(1 - lr * weight_decay)
if grad.dim() > 1:
assert (
row_var is not None and col_var is not None
), "row_var and col_var should be defined when grad is multidimensional"
# same as (g * g).mean(dim=-1) w/o materializing an intermediate size g
row_mean = (
torch.norm(grad, dim=-1, keepdim=True).square_().div_(grad.size(-1))
)
row_var.lerp_(row_mean, one_minus_beta2_t)
# same as (g * g).mean(dim=-2) w/o materializing an intermediate size g
col_mean = (
torch.norm(grad, dim=-2, keepdim=True).square_().div_(grad.size(-2))
)
col_var.lerp_(col_mean, one_minus_beta2_t)
var_estimate = row_var @ col_var
var_estimate.div_(row_var.mean(dim=-2, keepdim=True).clamp_(min=eps1))
else:
assert (
variance is not None
), "variance should be defined when grad is a vector"
grad_squared = grad * grad
variance.lerp_(grad_squared, one_minus_beta2_t)
# avoid writing into variance during update
var_estimate = variance.clone()
# square the eps1 as we sqrt after to keep eps1's magnitude
update = var_estimate.clamp_(min=eps1 * eps1).rsqrt_()
update.mul_(grad)
denom = max(1.0, update.norm(2).item() / ((update.numel() ** 0.5) * d))
param.add_(update, alpha=-alpha / denom)
def _group_tensors_by_device_dtype_and_is_multidim(
tensorlists: TensorListList,
) -> Dict[
Tuple[Optional[torch.device], Optional[torch.dtype], bool],
List[List[Optional[Tensor]]],
]:
"""Groups tensors by device, dtype, AND multidimensionality -- whether the tensor
has multiple dims or just one dim (is a vector). This allows the foreach impl of
Adafactor to assume that every group of params will either be factored or not."""
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(tensorlists)
ultra_grouped_tensors: Dict[
Tuple[Optional[torch.device], Optional[torch.dtype], bool],
List[List[Optional[Tensor]]],
] = {}
for (device, dtype), (tensorlists, _) in grouped_tensors.items():
matrix_key = (device, dtype, True)
vector_key = (device, dtype, False)
# assumes grad is the second tensorlist
for j, tensor in enumerate(tensorlists[1]):
assert tensor is not None, "grad should not be None"
if tensor.dim() > 1:
if matrix_key not in ultra_grouped_tensors:
ultra_grouped_tensors[matrix_key] = [[] for _ in tensorlists]
for i in range(len(tensorlists)):
ultra_grouped_tensors[matrix_key][i].append(tensorlists[i][j])
else:
if vector_key not in ultra_grouped_tensors:
ultra_grouped_tensors[vector_key] = [[] for _ in tensorlists]
for i in range(len(tensorlists)):
ultra_grouped_tensors[vector_key][i].append(tensorlists[i][j])
return ultra_grouped_tensors
def _multi_tensor_adafactor(
params: List[Tensor],
grads: List[Tensor],
# If grad is 1-dimensional (aka a vector), there is no factorization necessary
# so row_var and col_var will be None while variance will be filled.
# Contrarily, for a grad with multiple dimensions, we will factor along the last
# 2 dimensions, and so row_var and col_var will be filled and variance will be None.
row_vars: List[Optional[Tensor]],
col_vars: List[Optional[Tensor]],
variances: List[Optional[Tensor]],
state_steps: List[Tensor],
grad_scale: Optional[Tensor],
found_inf: Optional[Tensor],
*,
d: float,
lr: Union[Tensor, float],
beta2_decay: float,
weight_decay: float,
eps1: Optional[float],
eps2: float,
maximize: bool,
has_complex: bool,
):
if len(params) == 0:
return
assert (
grad_scale is None and found_inf is None
), "Grad scaling should occur outside of optimizer.step()"
grouped_tensors = _group_tensors_by_device_dtype_and_is_multidim(
[params, grads, row_vars, col_vars, variances, state_steps] # type: ignore[list-item]
)
for (_, dtype, is_multidim), (
(
device_params_,
device_grads_,
device_row_vars_,
device_col_vars_,
device_variances_,
device_state_steps_,
)
) in grouped_tensors.items():
device_params = cast(List[Tensor], device_params_)
device_grads = cast(List[Tensor], device_grads_)
device_state_steps = cast(List[Tensor], device_state_steps_)
if eps1 is None:
assert (
dtype is not None
), "dtype is needed to compute eps1 when eps1 is unset"
eps1 = torch.finfo(dtype).eps
if TYPE_CHECKING:
assert device_state_steps[0] is not None
if maximize:
device_grads = torch._foreach_neg(device_grads) # type: ignore[assignment]
# Update steps
# If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
# and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
# wrapped it once now. The alpha is required to assure we go to the right overload.
if not torch._utils.is_compiling() and device_state_steps[0].is_cpu:
torch._foreach_add_(
device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0
)
else:
torch._foreach_add_(device_state_steps, 1.0)
one_minus_beta2_ts = []
beta2_ts = []
rho_ts = []
for s in device_state_steps:
one_minus_beta2_ts.append(s.item() ** beta2_decay)
beta2_ts.append(1 - s.item() ** beta2_decay)
rho_ts.append(min(lr, 1 / (s.item() ** 0.5)))
alphas = [
max(eps2, p.norm(2).item() / (p.numel() ** 0.5)) * r
for p, r in zip(device_params, rho_ts)
]
# Perform stepweight decay
if weight_decay != 0:
torch._foreach_mul_(device_params, 1 - lr * weight_decay)
if is_multidim:
device_row_vars = cast(List[Tensor], device_row_vars_)
device_col_vars = cast(List[Tensor], device_col_vars_)
assert (
device_row_vars[0] is not None and device_col_vars[0] is not None
), "row_var and col_var should be defined when grad is multidimensional"
# same as (g * g).mean(dim=-1) w/o materializing an intermediate size g
row_means = [
torch.norm(grad, dim=-1, keepdim=True) for grad in device_grads
]
torch._foreach_mul_(row_means, row_means)
torch._foreach_div_(row_means, [grad.size(-1) for grad in device_grads])
torch._foreach_mul_(device_row_vars, beta2_ts)
torch._foreach_mul_(row_means, one_minus_beta2_ts)
torch._foreach_add_(device_row_vars, row_means)
del row_means
# same as (g * g).mean(dim=-2) w/o materializing an intermediate size g
col_means = [
torch.norm(grad, dim=-2, keepdim=True) for grad in device_grads
]
torch._foreach_mul_(col_means, col_means)
torch._foreach_div_(col_means, [grad.size(-2) for grad in device_grads])
torch._foreach_mul_(device_col_vars, beta2_ts)
torch._foreach_mul_(col_means, one_minus_beta2_ts)
torch._foreach_add_(device_col_vars, col_means)
del col_means
var_estimates = [
row_var @ col_var
for row_var, col_var in zip(device_row_vars, device_col_vars)
]
row_var_means = [
row_var.mean(dim=-2, keepdim=True) for row_var in device_row_vars
]
torch._foreach_clamp_min_(row_var_means, eps1)
torch._foreach_div_(var_estimates, row_var_means)
del row_var_means
else:
device_variances = cast(List[Tensor], device_variances_)
assert (
device_variances[0] is not None
), "variance should be defined when grad is a vector"
grads_squared = torch._foreach_mul(device_grads, device_grads)
torch._foreach_mul_(device_variances, beta2_ts)
torch._foreach_mul_(grads_squared, one_minus_beta2_ts)
torch._foreach_add_(device_variances, grads_squared)
del grads_squared
# avoid writing into variance during update
var_estimates = [v.clone() for v in device_variances]
# square the eps1 as we sqrt after to keep eps1's magnitude
torch._foreach_clamp_min_(var_estimates, eps1 * eps1)
torch._foreach_sqrt_(var_estimates)
torch._foreach_reciprocal_(var_estimates)
torch._foreach_mul_(var_estimates, device_grads)
updates = var_estimates
alphas = [
-a / (max(1.0, update.norm(2).item() / ((update.numel() ** 0.5) * d)))
for a, update in zip(alphas, updates)
]
torch._foreach_mul_(updates, alphas)
torch._foreach_add_(device_params, updates)
@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_adafactor)
def adafactor(
params: List[Tensor],
grads: List[Tensor],
row_vars: List[Optional[Tensor]],
col_vars: List[Optional[Tensor]],
variances: List[Optional[Tensor]],
state_steps: List[Tensor],
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
foreach: Optional[bool] = None,
grad_scale: Optional[Tensor] = None,
found_inf: Optional[Tensor] = None,
has_complex: bool = False,
*,
d: float,
lr: Union[float, Tensor],
beta2_decay: float,
weight_decay: float,
eps1: float,
eps2: float,
maximize: bool,
):
r"""Functional API that performs Adafactor algorithm computation.
See :class:`~torch.optim.Adafactor` for details.
"""
if not torch._utils.is_compiling() and not all(
isinstance(t, torch.Tensor) for t in state_steps
):
raise RuntimeError(
"`state_steps` argument must contain a list of singleton tensors"
)
if foreach:
func = _multi_tensor_adafactor
else:
func = _single_tensor_adafactor
func(
params,
grads,
row_vars,
col_vars,
variances,
state_steps,
d=d,
lr=lr,
beta2_decay=beta2_decay,
weight_decay=weight_decay,
eps1=eps1,
eps2=eps2,
maximize=maximize,
grad_scale=grad_scale,
found_inf=found_inf,
has_complex=has_complex,
)