mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Based from https://github.com/pytorch/pytorch/pull/50466 Adds the initial implementation of `torch.cov` similar to `numpy.cov`. For simplicity, we removed support for many parameters in `numpy.cov` that are either redundant such as `bias`, or have simple workarounds such as `y` and `rowvar`. cc PandaBoi closes https://github.com/pytorch/pytorch/issues/19037 Pull Request resolved: https://github.com/pytorch/pytorch/pull/58311 Reviewed By: jbschlosser Differential Revision: D29431651 Pulled By: heitorschueroff fbshipit-source-id: 167dea880f534934b145ba94291a9d634c25b01b
684 lines
17 KiB
ReStructuredText
684 lines
17 KiB
ReStructuredText
.. currentmodule:: torch
|
|
|
|
.. _tensor-doc:
|
|
|
|
torch.Tensor
|
|
===================================
|
|
|
|
A :class:`torch.Tensor` is a multi-dimensional matrix containing elements of
|
|
a single data type.
|
|
|
|
|
|
Data types
|
|
----------
|
|
|
|
Torch defines 10 tensor types with CPU and GPU variants which are as follows:
|
|
|
|
======================================= =========================================== ============================= ================================
|
|
Data type dtype CPU tensor GPU tensor
|
|
======================================= =========================================== ============================= ================================
|
|
32-bit floating point ``torch.float32`` or ``torch.float`` :class:`torch.FloatTensor` :class:`torch.cuda.FloatTensor`
|
|
64-bit floating point ``torch.float64`` or ``torch.double`` :class:`torch.DoubleTensor` :class:`torch.cuda.DoubleTensor`
|
|
16-bit floating point [1]_ ``torch.float16`` or ``torch.half`` :class:`torch.HalfTensor` :class:`torch.cuda.HalfTensor`
|
|
16-bit floating point [2]_ ``torch.bfloat16`` :class:`torch.BFloat16Tensor` :class:`torch.cuda.BFloat16Tensor`
|
|
32-bit complex ``torch.complex32``
|
|
64-bit complex ``torch.complex64``
|
|
128-bit complex ``torch.complex128`` or ``torch.cdouble``
|
|
8-bit integer (unsigned) ``torch.uint8`` :class:`torch.ByteTensor` :class:`torch.cuda.ByteTensor`
|
|
8-bit integer (signed) ``torch.int8`` :class:`torch.CharTensor` :class:`torch.cuda.CharTensor`
|
|
16-bit integer (signed) ``torch.int16`` or ``torch.short`` :class:`torch.ShortTensor` :class:`torch.cuda.ShortTensor`
|
|
32-bit integer (signed) ``torch.int32`` or ``torch.int`` :class:`torch.IntTensor` :class:`torch.cuda.IntTensor`
|
|
64-bit integer (signed) ``torch.int64`` or ``torch.long`` :class:`torch.LongTensor` :class:`torch.cuda.LongTensor`
|
|
Boolean ``torch.bool`` :class:`torch.BoolTensor` :class:`torch.cuda.BoolTensor`
|
|
quantized 8-bit integer (unsigned) ``torch.quint8`` :class:`torch.ByteTensor` /
|
|
quantized 8-bit integer (signed) ``torch.qint8`` :class:`torch.CharTensor` /
|
|
quantized 32-bit integer (signed) ``torch.qfint32`` :class:`torch.IntTensor` /
|
|
quantized 4-bit integer (unsigned) [3]_ ``torch.quint4x2`` :class:`torch.ByteTensor` /
|
|
======================================= =========================================== ============================= ================================
|
|
|
|
.. [1]
|
|
Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10
|
|
significand bits. Useful when precision is important at the expense of range.
|
|
.. [2]
|
|
Sometimes referred to as Brain Floating Point: uses 1 sign, 8 exponent, and 7
|
|
significand bits. Useful when range is important, since it has the same
|
|
number of exponent bits as ``float32``
|
|
.. [3]
|
|
quantized 4-bit integer is stored as a 8-bit signed integer. Currently it's only supported in EmbeddingBag operator.
|
|
|
|
:class:`torch.Tensor` is an alias for the default tensor type (:class:`torch.FloatTensor`).
|
|
|
|
Initializing and basic operations
|
|
---------------------------------
|
|
|
|
A tensor can be constructed from a Python :class:`list` or sequence using the
|
|
:func:`torch.tensor` constructor:
|
|
|
|
::
|
|
|
|
>>> torch.tensor([[1., -1.], [1., -1.]])
|
|
tensor([[ 1.0000, -1.0000],
|
|
[ 1.0000, -1.0000]])
|
|
>>> torch.tensor(np.array([[1, 2, 3], [4, 5, 6]]))
|
|
tensor([[ 1, 2, 3],
|
|
[ 4, 5, 6]])
|
|
|
|
.. warning::
|
|
|
|
:func:`torch.tensor` always copies :attr:`data`. If you have a Tensor
|
|
:attr:`data` and just want to change its ``requires_grad`` flag, use
|
|
:meth:`~torch.Tensor.requires_grad_` or
|
|
:meth:`~torch.Tensor.detach` to avoid a copy.
|
|
If you have a numpy array and want to avoid a copy, use
|
|
:func:`torch.as_tensor`.
|
|
|
|
A tensor of specific data type can be constructed by passing a
|
|
:class:`torch.dtype` and/or a :class:`torch.device` to a
|
|
constructor or tensor creation op:
|
|
|
|
::
|
|
|
|
>>> torch.zeros([2, 4], dtype=torch.int32)
|
|
tensor([[ 0, 0, 0, 0],
|
|
[ 0, 0, 0, 0]], dtype=torch.int32)
|
|
>>> cuda0 = torch.device('cuda:0')
|
|
>>> torch.ones([2, 4], dtype=torch.float64, device=cuda0)
|
|
tensor([[ 1.0000, 1.0000, 1.0000, 1.0000],
|
|
[ 1.0000, 1.0000, 1.0000, 1.0000]], dtype=torch.float64, device='cuda:0')
|
|
|
|
For more information about building Tensors, see :ref:`tensor-creation-ops`
|
|
|
|
|
|
The contents of a tensor can be accessed and modified using Python's indexing
|
|
and slicing notation:
|
|
|
|
::
|
|
|
|
>>> x = torch.tensor([[1, 2, 3], [4, 5, 6]])
|
|
>>> print(x[1][2])
|
|
tensor(6)
|
|
>>> x[0][1] = 8
|
|
>>> print(x)
|
|
tensor([[ 1, 8, 3],
|
|
[ 4, 5, 6]])
|
|
|
|
Use :meth:`torch.Tensor.item` to get a Python number from a tensor containing a
|
|
single value:
|
|
|
|
::
|
|
|
|
>>> x = torch.tensor([[1]])
|
|
>>> x
|
|
tensor([[ 1]])
|
|
>>> x.item()
|
|
1
|
|
>>> x = torch.tensor(2.5)
|
|
>>> x
|
|
tensor(2.5000)
|
|
>>> x.item()
|
|
2.5
|
|
|
|
For more information about indexing, see :ref:`indexing-slicing-joining`
|
|
|
|
A tensor can be created with :attr:`requires_grad=True` so that
|
|
:mod:`torch.autograd` records operations on them for automatic differentiation.
|
|
|
|
::
|
|
|
|
>>> x = torch.tensor([[1., -1.], [1., 1.]], requires_grad=True)
|
|
>>> out = x.pow(2).sum()
|
|
>>> out.backward()
|
|
>>> x.grad
|
|
tensor([[ 2.0000, -2.0000],
|
|
[ 2.0000, 2.0000]])
|
|
|
|
Each tensor has an associated :class:`torch.Storage`, which holds its data.
|
|
The tensor class also provides multi-dimensional, `strided <https://en.wikipedia.org/wiki/Stride_of_an_array>`_
|
|
view of a storage and defines numeric operations on it.
|
|
|
|
.. note::
|
|
For more information on tensor views, see :ref:`tensor-view-doc`.
|
|
|
|
.. note::
|
|
For more information on the :class:`torch.dtype`, :class:`torch.device`, and
|
|
:class:`torch.layout` attributes of a :class:`torch.Tensor`, see
|
|
:ref:`tensor-attributes-doc`.
|
|
|
|
.. note::
|
|
Methods which mutate a tensor are marked with an underscore suffix.
|
|
For example, :func:`torch.FloatTensor.abs_` computes the absolute value
|
|
in-place and returns the modified tensor, while :func:`torch.FloatTensor.abs`
|
|
computes the result in a new tensor.
|
|
|
|
.. note::
|
|
To change an existing tensor's :class:`torch.device` and/or :class:`torch.dtype`, consider using
|
|
:meth:`~torch.Tensor.to` method on the tensor.
|
|
|
|
.. warning::
|
|
Current implementation of :class:`torch.Tensor` introduces memory overhead,
|
|
thus it might lead to unexpectedly high memory usage in the applications with many tiny tensors.
|
|
If this is your case, consider using one large structure.
|
|
|
|
|
|
Tensor class reference
|
|
----------------------
|
|
|
|
.. class:: Tensor()
|
|
|
|
There are a few main ways to create a tensor, depending on your use case.
|
|
|
|
- To create a tensor with pre-existing data, use :func:`torch.tensor`.
|
|
- To create a tensor with specific size, use ``torch.*`` tensor creation
|
|
ops (see :ref:`tensor-creation-ops`).
|
|
- To create a tensor with the same size (and similar types) as another tensor,
|
|
use ``torch.*_like`` tensor creation ops
|
|
(see :ref:`tensor-creation-ops`).
|
|
- To create a tensor with similar type but different size as another tensor,
|
|
use ``tensor.new_*`` creation ops.
|
|
|
|
.. autoattribute:: Tensor.T
|
|
|
|
.. autosummary::
|
|
:toctree: generated
|
|
:nosignatures:
|
|
|
|
Tensor.new_tensor
|
|
Tensor.new_full
|
|
Tensor.new_empty
|
|
Tensor.new_ones
|
|
Tensor.new_zeros
|
|
|
|
Tensor.is_cuda
|
|
Tensor.is_quantized
|
|
Tensor.is_meta
|
|
Tensor.device
|
|
Tensor.grad
|
|
Tensor.ndim
|
|
Tensor.real
|
|
Tensor.imag
|
|
|
|
Tensor.abs
|
|
Tensor.abs_
|
|
Tensor.absolute
|
|
Tensor.absolute_
|
|
Tensor.acos
|
|
Tensor.acos_
|
|
Tensor.arccos
|
|
Tensor.arccos_
|
|
Tensor.add
|
|
Tensor.add_
|
|
Tensor.addbmm
|
|
Tensor.addbmm_
|
|
Tensor.addcdiv
|
|
Tensor.addcdiv_
|
|
Tensor.addcmul
|
|
Tensor.addcmul_
|
|
Tensor.addmm
|
|
Tensor.addmm_
|
|
Tensor.sspaddmm
|
|
Tensor.addmv
|
|
Tensor.addmv_
|
|
Tensor.addr
|
|
Tensor.addr_
|
|
Tensor.allclose
|
|
Tensor.amax
|
|
Tensor.amin
|
|
Tensor.angle
|
|
Tensor.apply_
|
|
Tensor.argmax
|
|
Tensor.argmin
|
|
Tensor.argsort
|
|
Tensor.asin
|
|
Tensor.asin_
|
|
Tensor.arcsin
|
|
Tensor.arcsin_
|
|
Tensor.as_strided
|
|
Tensor.atan
|
|
Tensor.atan_
|
|
Tensor.arctan
|
|
Tensor.arctan_
|
|
Tensor.atan2
|
|
Tensor.atan2_
|
|
Tensor.all
|
|
Tensor.any
|
|
Tensor.backward
|
|
Tensor.baddbmm
|
|
Tensor.baddbmm_
|
|
Tensor.bernoulli
|
|
Tensor.bernoulli_
|
|
Tensor.bfloat16
|
|
Tensor.bincount
|
|
Tensor.bitwise_not
|
|
Tensor.bitwise_not_
|
|
Tensor.bitwise_and
|
|
Tensor.bitwise_and_
|
|
Tensor.bitwise_or
|
|
Tensor.bitwise_or_
|
|
Tensor.bitwise_xor
|
|
Tensor.bitwise_xor_
|
|
Tensor.bitwise_left_shift
|
|
Tensor.bitwise_left_shift_
|
|
Tensor.bitwise_right_shift
|
|
Tensor.bitwise_right_shift_
|
|
Tensor.bmm
|
|
Tensor.bool
|
|
Tensor.byte
|
|
Tensor.broadcast_to
|
|
Tensor.cauchy_
|
|
Tensor.ceil
|
|
Tensor.ceil_
|
|
Tensor.char
|
|
Tensor.cholesky
|
|
Tensor.cholesky_inverse
|
|
Tensor.cholesky_solve
|
|
Tensor.chunk
|
|
Tensor.clamp
|
|
Tensor.clamp_
|
|
Tensor.clip
|
|
Tensor.clip_
|
|
Tensor.clone
|
|
Tensor.contiguous
|
|
Tensor.copy_
|
|
Tensor.conj
|
|
Tensor.conj_physical
|
|
Tensor.conj_physical_
|
|
Tensor.resolve_conj
|
|
Tensor.copysign
|
|
Tensor.copysign_
|
|
Tensor.cos
|
|
Tensor.cos_
|
|
Tensor.cosh
|
|
Tensor.cosh_
|
|
Tensor.count_nonzero
|
|
Tensor.cov
|
|
Tensor.acosh
|
|
Tensor.acosh_
|
|
Tensor.arccosh
|
|
Tensor.arccosh_
|
|
Tensor.cpu
|
|
Tensor.cross
|
|
Tensor.cuda
|
|
Tensor.logcumsumexp
|
|
Tensor.cummax
|
|
Tensor.cummin
|
|
Tensor.cumprod
|
|
Tensor.cumprod_
|
|
Tensor.cumsum
|
|
Tensor.cumsum_
|
|
Tensor.data_ptr
|
|
Tensor.deg2rad
|
|
Tensor.dequantize
|
|
Tensor.det
|
|
Tensor.dense_dim
|
|
Tensor.detach
|
|
Tensor.detach_
|
|
Tensor.diag
|
|
Tensor.diag_embed
|
|
Tensor.diagflat
|
|
Tensor.diagonal
|
|
Tensor.fill_diagonal_
|
|
Tensor.fmax
|
|
Tensor.fmin
|
|
Tensor.diff
|
|
Tensor.digamma
|
|
Tensor.digamma_
|
|
Tensor.dim
|
|
Tensor.dist
|
|
Tensor.div
|
|
Tensor.div_
|
|
Tensor.divide
|
|
Tensor.divide_
|
|
Tensor.dot
|
|
Tensor.double
|
|
Tensor.dsplit
|
|
Tensor.eig
|
|
Tensor.element_size
|
|
Tensor.eq
|
|
Tensor.eq_
|
|
Tensor.equal
|
|
Tensor.erf
|
|
Tensor.erf_
|
|
Tensor.erfc
|
|
Tensor.erfc_
|
|
Tensor.erfinv
|
|
Tensor.erfinv_
|
|
Tensor.exp
|
|
Tensor.exp_
|
|
Tensor.expm1
|
|
Tensor.expm1_
|
|
Tensor.expand
|
|
Tensor.expand_as
|
|
Tensor.exponential_
|
|
Tensor.fix
|
|
Tensor.fix_
|
|
Tensor.fill_
|
|
Tensor.flatten
|
|
Tensor.flip
|
|
Tensor.fliplr
|
|
Tensor.flipud
|
|
Tensor.float
|
|
Tensor.float_power
|
|
Tensor.float_power_
|
|
Tensor.floor
|
|
Tensor.floor_
|
|
Tensor.floor_divide
|
|
Tensor.floor_divide_
|
|
Tensor.fmod
|
|
Tensor.fmod_
|
|
Tensor.frac
|
|
Tensor.frac_
|
|
Tensor.frexp
|
|
Tensor.gather
|
|
Tensor.gcd
|
|
Tensor.gcd_
|
|
Tensor.ge
|
|
Tensor.ge_
|
|
Tensor.greater_equal
|
|
Tensor.greater_equal_
|
|
Tensor.geometric_
|
|
Tensor.geqrf
|
|
Tensor.ger
|
|
Tensor.get_device
|
|
Tensor.gt
|
|
Tensor.gt_
|
|
Tensor.greater
|
|
Tensor.greater_
|
|
Tensor.half
|
|
Tensor.hardshrink
|
|
Tensor.heaviside
|
|
Tensor.histc
|
|
Tensor.histogram
|
|
Tensor.hsplit
|
|
Tensor.hypot
|
|
Tensor.hypot_
|
|
Tensor.i0
|
|
Tensor.i0_
|
|
Tensor.igamma
|
|
Tensor.igamma_
|
|
Tensor.igammac
|
|
Tensor.igammac_
|
|
Tensor.index_add_
|
|
Tensor.index_add
|
|
Tensor.index_copy_
|
|
Tensor.index_copy
|
|
Tensor.index_fill_
|
|
Tensor.index_fill
|
|
Tensor.index_put_
|
|
Tensor.index_put
|
|
Tensor.index_select
|
|
Tensor.indices
|
|
Tensor.inner
|
|
Tensor.int
|
|
Tensor.int_repr
|
|
Tensor.inverse
|
|
Tensor.isclose
|
|
Tensor.isfinite
|
|
Tensor.isinf
|
|
Tensor.isposinf
|
|
Tensor.isneginf
|
|
Tensor.isnan
|
|
Tensor.is_contiguous
|
|
Tensor.is_complex
|
|
Tensor.is_conj
|
|
Tensor.is_floating_point
|
|
Tensor.is_inference
|
|
Tensor.is_leaf
|
|
Tensor.is_pinned
|
|
Tensor.is_set_to
|
|
Tensor.is_shared
|
|
Tensor.is_signed
|
|
Tensor.is_sparse
|
|
Tensor.istft
|
|
Tensor.isreal
|
|
Tensor.item
|
|
Tensor.kthvalue
|
|
Tensor.lcm
|
|
Tensor.lcm_
|
|
Tensor.ldexp
|
|
Tensor.ldexp_
|
|
Tensor.le
|
|
Tensor.le_
|
|
Tensor.less_equal
|
|
Tensor.less_equal_
|
|
Tensor.lerp
|
|
Tensor.lerp_
|
|
Tensor.lgamma
|
|
Tensor.lgamma_
|
|
Tensor.log
|
|
Tensor.log_
|
|
Tensor.logdet
|
|
Tensor.log10
|
|
Tensor.log10_
|
|
Tensor.log1p
|
|
Tensor.log1p_
|
|
Tensor.log2
|
|
Tensor.log2_
|
|
Tensor.log_normal_
|
|
Tensor.logaddexp
|
|
Tensor.logaddexp2
|
|
Tensor.logsumexp
|
|
Tensor.logical_and
|
|
Tensor.logical_and_
|
|
Tensor.logical_not
|
|
Tensor.logical_not_
|
|
Tensor.logical_or
|
|
Tensor.logical_or_
|
|
Tensor.logical_xor
|
|
Tensor.logical_xor_
|
|
Tensor.logit
|
|
Tensor.logit_
|
|
Tensor.long
|
|
Tensor.lstsq
|
|
Tensor.lt
|
|
Tensor.lt_
|
|
Tensor.less
|
|
Tensor.less_
|
|
Tensor.lu
|
|
Tensor.lu_solve
|
|
Tensor.as_subclass
|
|
Tensor.map_
|
|
Tensor.masked_scatter_
|
|
Tensor.masked_scatter
|
|
Tensor.masked_fill_
|
|
Tensor.masked_fill
|
|
Tensor.masked_select
|
|
Tensor.matmul
|
|
Tensor.matrix_power
|
|
Tensor.matrix_exp
|
|
Tensor.max
|
|
Tensor.maximum
|
|
Tensor.mean
|
|
Tensor.median
|
|
Tensor.nanmedian
|
|
Tensor.min
|
|
Tensor.minimum
|
|
Tensor.mm
|
|
Tensor.smm
|
|
Tensor.mode
|
|
Tensor.movedim
|
|
Tensor.moveaxis
|
|
Tensor.msort
|
|
Tensor.mul
|
|
Tensor.mul_
|
|
Tensor.multiply
|
|
Tensor.multiply_
|
|
Tensor.multinomial
|
|
Tensor.mv
|
|
Tensor.mvlgamma
|
|
Tensor.mvlgamma_
|
|
Tensor.nansum
|
|
Tensor.narrow
|
|
Tensor.narrow_copy
|
|
Tensor.ndimension
|
|
Tensor.nan_to_num
|
|
Tensor.nan_to_num_
|
|
Tensor.ne
|
|
Tensor.ne_
|
|
Tensor.not_equal
|
|
Tensor.not_equal_
|
|
Tensor.neg
|
|
Tensor.neg_
|
|
Tensor.negative
|
|
Tensor.negative_
|
|
Tensor.nelement
|
|
Tensor.nextafter
|
|
Tensor.nextafter_
|
|
Tensor.nonzero
|
|
Tensor.norm
|
|
Tensor.normal_
|
|
Tensor.numel
|
|
Tensor.numpy
|
|
Tensor.orgqr
|
|
Tensor.ormqr
|
|
Tensor.outer
|
|
Tensor.permute
|
|
Tensor.pin_memory
|
|
Tensor.pinverse
|
|
Tensor.polygamma
|
|
Tensor.polygamma_
|
|
Tensor.positive
|
|
Tensor.pow
|
|
Tensor.pow_
|
|
Tensor.prod
|
|
Tensor.put_
|
|
Tensor.qr
|
|
Tensor.qscheme
|
|
Tensor.quantile
|
|
Tensor.nanquantile
|
|
Tensor.q_scale
|
|
Tensor.q_zero_point
|
|
Tensor.q_per_channel_scales
|
|
Tensor.q_per_channel_zero_points
|
|
Tensor.q_per_channel_axis
|
|
Tensor.rad2deg
|
|
Tensor.random_
|
|
Tensor.ravel
|
|
Tensor.reciprocal
|
|
Tensor.reciprocal_
|
|
Tensor.record_stream
|
|
Tensor.register_hook
|
|
Tensor.remainder
|
|
Tensor.remainder_
|
|
Tensor.renorm
|
|
Tensor.renorm_
|
|
Tensor.repeat
|
|
Tensor.repeat_interleave
|
|
Tensor.requires_grad
|
|
Tensor.requires_grad_
|
|
Tensor.reshape
|
|
Tensor.reshape_as
|
|
Tensor.resize_
|
|
Tensor.resize_as_
|
|
Tensor.retain_grad
|
|
Tensor.retains_grad
|
|
Tensor.roll
|
|
Tensor.rot90
|
|
Tensor.round
|
|
Tensor.round_
|
|
Tensor.rsqrt
|
|
Tensor.rsqrt_
|
|
Tensor.scatter
|
|
Tensor.scatter_
|
|
Tensor.scatter_add_
|
|
Tensor.scatter_add
|
|
Tensor.select
|
|
Tensor.set_
|
|
Tensor.share_memory_
|
|
Tensor.short
|
|
Tensor.sigmoid
|
|
Tensor.sigmoid_
|
|
Tensor.sign
|
|
Tensor.sign_
|
|
Tensor.signbit
|
|
Tensor.sgn
|
|
Tensor.sgn_
|
|
Tensor.sin
|
|
Tensor.sin_
|
|
Tensor.sinc
|
|
Tensor.sinc_
|
|
Tensor.sinh
|
|
Tensor.sinh_
|
|
Tensor.asinh
|
|
Tensor.asinh_
|
|
Tensor.arcsinh
|
|
Tensor.arcsinh_
|
|
Tensor.size
|
|
Tensor.slogdet
|
|
Tensor.solve
|
|
Tensor.sort
|
|
Tensor.split
|
|
Tensor.sparse_mask
|
|
Tensor.sparse_dim
|
|
Tensor.sqrt
|
|
Tensor.sqrt_
|
|
Tensor.square
|
|
Tensor.square_
|
|
Tensor.squeeze
|
|
Tensor.squeeze_
|
|
Tensor.std
|
|
Tensor.stft
|
|
Tensor.storage
|
|
Tensor.storage_offset
|
|
Tensor.storage_type
|
|
Tensor.stride
|
|
Tensor.sub
|
|
Tensor.sub_
|
|
Tensor.subtract
|
|
Tensor.subtract_
|
|
Tensor.sum
|
|
Tensor.sum_to_size
|
|
Tensor.svd
|
|
Tensor.swapaxes
|
|
Tensor.swapdims
|
|
Tensor.symeig
|
|
Tensor.t
|
|
Tensor.t_
|
|
Tensor.tensor_split
|
|
Tensor.tile
|
|
Tensor.to
|
|
Tensor.to_mkldnn
|
|
Tensor.take
|
|
Tensor.take_along_dim
|
|
Tensor.tan
|
|
Tensor.tan_
|
|
Tensor.tanh
|
|
Tensor.tanh_
|
|
Tensor.atanh
|
|
Tensor.atanh_
|
|
Tensor.arctanh
|
|
Tensor.arctanh_
|
|
Tensor.tolist
|
|
Tensor.topk
|
|
Tensor.to_sparse
|
|
Tensor.trace
|
|
Tensor.transpose
|
|
Tensor.transpose_
|
|
Tensor.triangular_solve
|
|
Tensor.tril
|
|
Tensor.tril_
|
|
Tensor.triu
|
|
Tensor.triu_
|
|
Tensor.true_divide
|
|
Tensor.true_divide_
|
|
Tensor.trunc
|
|
Tensor.trunc_
|
|
Tensor.type
|
|
Tensor.type_as
|
|
Tensor.unbind
|
|
Tensor.unfold
|
|
Tensor.uniform_
|
|
Tensor.unique
|
|
Tensor.unique_consecutive
|
|
Tensor.unsqueeze
|
|
Tensor.unsqueeze_
|
|
Tensor.values
|
|
Tensor.var
|
|
Tensor.vdot
|
|
Tensor.view
|
|
Tensor.view_as
|
|
Tensor.vsplit
|
|
Tensor.where
|
|
Tensor.xlogy
|
|
Tensor.xlogy_
|
|
Tensor.zero_
|