pytorch/torch/csrc/jit/codegen/cuda/utils.cpp
Kevin Stephano ec916bf6af Create Cache for Fusion Reuse in NVFuser in Python Frontend for Primtorch (#83267)
This PR does the following:

- Replaces the `FusionOwner` with a `FusionCache` and `FusionInterface`.  The `FusionCache` is a singleton that contains a cache of Fusions based on the `FusionDefinition`.  It replaces the TorchScript graph caching that looked up a Fusion based on a stringified and canonicalized representation of the TorchScript graph with a prefix tree of statements in the `FusionDefinition`.  The `FusionInterface` is an object that represents a Fusion in python.  It can also query the cache based on id.
- The ability to print out a mechanically derived definition, in python, for the user to use when debugging was added.
- Replaces the python `examples` directory with true python tests under `test/test_nvfuser_frontend.py`.
- Adds a set of C++ tests under the `test` directory to verify the `FusionCache`, `FusionDefinition`, and parts of the `RecordFunctor` child classes.
- Adds a README file to explain how to use the Python Frontend

While there are 3,000+ line edits, the bulk of the changes were repetitive line changes to the python bindings for each operation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83267
Approved by: https://github.com/jjsjann123, https://github.com/davidberard98
2022-09-13 23:28:39 +00:00

332 lines
12 KiB
C++

#include <torch/csrc/jit/codegen/cuda/utils.h>
#include <c10/util/string_view.h>
#include <cstdlib>
#include <iostream>
#include <unordered_map>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace {
auto parseDebugDumpOptions() {
std::unordered_map<DebugDumpOption, bool> options_map = {
{DebugDumpOption::FusionIr, false},
{DebugDumpOption::FusionIrMath, false},
{DebugDumpOption::FusionIrPresched, false},
{DebugDumpOption::KernelIr, false},
{DebugDumpOption::ComputeAtMap, false},
{DebugDumpOption::CudaKernel, false},
{DebugDumpOption::CudaFull, false},
{DebugDumpOption::CudaToFile, false},
{DebugDumpOption::DebugInfo, false},
{DebugDumpOption::LaunchParam, false},
{DebugDumpOption::FusionSegments, false},
{DebugDumpOption::FusionSegmenterLog, false},
{DebugDumpOption::FusionArgs, false},
{DebugDumpOption::KernelArgs, false},
{DebugDumpOption::EffectiveBandwidth, false},
{DebugDumpOption::FusionSegmentsDrawing, false},
{DebugDumpOption::PrintPtxasLog, false},
{DebugDumpOption::BufferReuseInfo, false},
{DebugDumpOption::SchedulerDebug, false},
{DebugDumpOption::ParallelDimensions, false},
{DebugDumpOption::Halo, false},
{DebugDumpOption::PerfDebugVerbose, false},
{DebugDumpOption::PythonDefinition, false},
{DebugDumpOption::PythonFrontendDebug, false},
{DebugDumpOption::TransformPropagator, false},
{DebugDumpOption::InlinePropagator, false}};
if (const char* dump_options = std::getenv("PYTORCH_NVFUSER_DUMP")) {
c10::string_view options_view(dump_options);
while (!options_view.empty()) {
const auto end_pos = options_view.find_first_of(',');
const auto token = options_view.substr(0, end_pos);
if (token == "fusion_ir") {
options_map[DebugDumpOption::FusionIr] = true;
} else if (token == "fusion_ir_math") {
options_map[DebugDumpOption::FusionIrMath] = true;
} else if (token == "fusion_ir_presched") {
options_map[DebugDumpOption::FusionIrPresched] = true;
} else if (token == "kernel_ir") {
options_map[DebugDumpOption::KernelIr] = true;
} else if (token == "ca_map") {
options_map[DebugDumpOption::ComputeAtMap] = true;
} else if (token == "cuda_kernel") {
options_map[DebugDumpOption::CudaKernel] = true;
} else if (token == "cuda_full") {
options_map[DebugDumpOption::CudaFull] = true;
} else if (token == "cuda_to_file") {
options_map[DebugDumpOption::CudaToFile] = true;
} else if (token == "debug_info") {
options_map[DebugDumpOption::DebugInfo] = true;
} else if (token == "launch_param") {
options_map[DebugDumpOption::LaunchParam] = true;
} else if (token == "segmented_fusion") {
options_map[DebugDumpOption::FusionSegments] = true;
} else if (token == "segmenter_logging") {
options_map[DebugDumpOption::FusionSegmenterLog] = true;
} else if (token == "fusion_args") {
options_map[DebugDumpOption::FusionArgs] = true;
} else if (token == "kernel_args") {
options_map[DebugDumpOption::KernelArgs] = true;
} else if (token == "dump_eff_bandwidth") {
options_map[DebugDumpOption::EffectiveBandwidth] = true;
} else if (token == "draw_segmented_fusion") {
options_map[DebugDumpOption::FusionSegmentsDrawing] = true;
} else if (token == "ptxas_verbose") {
options_map[DebugDumpOption::PrintPtxasLog] = true;
} else if (token == "buffer_reuse_verbose") {
options_map[DebugDumpOption::BufferReuseInfo] = true;
} else if (token == "scheduler_params") {
options_map[DebugDumpOption::SchedulerDebug] = true;
} else if (token == "parallel_dimensions") {
options_map[DebugDumpOption::ParallelDimensions] = true;
} else if (token == "halo") {
options_map[DebugDumpOption::Halo] = true;
} else if (token == "perf_debug_verbose") {
options_map[DebugDumpOption::PerfDebugVerbose] = true;
} else if (token == "python_definition") {
options_map[DebugDumpOption::PythonDefinition] = true;
} else if (token == "python_frontend_debug") {
options_map[DebugDumpOption::PythonFrontendDebug] = true;
} else if (token == "transform_propagator") {
options_map[DebugDumpOption::TransformPropagator] = true;
} else if (token == "inline_propagator") {
options_map[DebugDumpOption::InlinePropagator] = true;
} else {
TORCH_CHECK(
false,
"Invalid debug dump option: '",
token,
"'\nAvailable options:\n",
"\tfusion_ir, fusion_ir_math, fusion_ir_presched, kernel_ir, ca_map,\n",
"\tcuda_kernel, cuda_full, cuda_to_file, debug_info, launch_param,\n",
"\tsegmented_fusion, fusion_args, kernel_args, dump_eff_bandwidth,\n",
"\tdraw_segmented_fusion, scheduler_params, parallel_dimensions,\n",
"\tbuffer_reuse_verbose, ptxas_verbose, halo, segmenter_logging,\n",
"\tperf_debug_verbose, python_definition, python_frontend_debug,\n",
"\ttransform_propagator, inline_propagator\n");
}
options_view = (end_pos != c10::string_view::npos)
? options_view.substr(end_pos + 1)
: "";
}
}
return options_map;
}
auto parseDisableOptions() {
std::unordered_map<DisableOption, bool> options_map = {
{DisableOption::ArchCheck, false},
{DisableOption::Fallback, false},
{DisableOption::Fma, false},
{DisableOption::IndexHoist, false},
{DisableOption::Nvtx, false},
{DisableOption::PredicateElimination, false},
{DisableOption::UnrollWithRng, false}};
if (const char* dump_options = std::getenv("PYTORCH_NVFUSER_DISABLE")) {
c10::string_view options_view(dump_options);
while (!options_view.empty()) {
const auto end_pos = options_view.find_first_of(',');
const auto token = options_view.substr(0, end_pos);
if (token == "arch_check") {
options_map[DisableOption::ArchCheck] = true;
} else if (token == "fallback") {
options_map[DisableOption::Fallback] = true;
} else if (token == "fma") {
TORCH_WARN(
"fmad is disabled for nvrtc, which could negatively affect performance. Try removing `fma` from env variable PYTORCH_NVFUSER_DISABLE for optimal performance.");
options_map[DisableOption::Fma] = true;
} else if (token == "index_hoist") {
options_map[DisableOption::IndexHoist] = true;
} else if (token == "nvtx") {
options_map[DisableOption::Nvtx] = true;
} else if (token == "predicate_elimination") {
options_map[DisableOption::PredicateElimination] = true;
} else if (token == "unroll_with_rng") {
options_map[DisableOption::UnrollWithRng] = true;
} else {
TORCH_CHECK(
false,
"Invalid disable option: '",
token,
"'\nAvailable options:\n",
"\tarch_check, fallback, fma, index_hoist, nvtx, predicate_elimination\n",
"unroll_with_rng");
}
options_view = (end_pos != c10::string_view::npos)
? options_view.substr(end_pos + 1)
: "";
}
}
return options_map;
}
auto parseEnableOptions() {
std::unordered_map<EnableOption, bool> options_map = {
{EnableOption::Complex, false},
{EnableOption::KernelProfile, false},
{EnableOption::LinearDecomposition, false},
{EnableOption::ConvDecomposition, false}};
if (const char* dump_options = std::getenv("PYTORCH_NVFUSER_ENABLE")) {
c10::string_view options_view(dump_options);
while (!options_view.empty()) {
const auto end_pos = options_view.find_first_of(',');
const auto token = options_view.substr(0, end_pos);
if (token == "complex") {
options_map[EnableOption::Complex] = true;
} else if (token == "kernel_profile") {
options_map[EnableOption::KernelProfile] = true;
} else if (token == "linear_decomposition") {
options_map[EnableOption::LinearDecomposition] = true;
} else if (token == "conv_decomposition") {
options_map[EnableOption::ConvDecomposition] = true;
} else {
TORCH_CHECK(
false,
"Invalid disable option: '",
token,
"'\nAvailable options:\n",
"\tcomplex, kernel_profile");
}
options_view = (end_pos != c10::string_view::npos)
? options_view.substr(end_pos + 1)
: "";
}
}
return options_map;
}
} // namespace
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-function"
void debugPrint(const c10::TensorTypePtr& type) {
std::stringstream sizes_s;
if (auto sizes = type->symbolic_sizes().sizes()) {
for (const auto& shape_symbol : *sizes) {
if (shape_symbol.is_static()) {
sizes_s << shape_symbol.static_size() << ", ";
} else {
sizes_s << "s(" << *reinterpret_cast<const int64_t*>(&shape_symbol)
<< "), ";
}
}
} else {
sizes_s << "no size available";
}
std::cout << "sizes:" << sizes_s.str() << std::endl;
if (const auto& stride_properties = type->stride_properties().sizes()) {
std::stringstream stride_s;
std::stringstream index_s;
std::stringstream contig_s;
for (const auto& stride_property : *stride_properties) {
if (stride_property.has_value() && stride_property->stride_.has_value()) {
stride_s << *stride_property->stride_ << ", ";
} else {
stride_s << "?, ";
}
if (stride_property.has_value() &&
stride_property->stride_index_.has_value()) {
index_s << *stride_property->stride_index_ << ", ";
} else {
index_s << "?, ";
}
if (stride_property.has_value() &&
stride_property->contiguous_.has_value()) {
contig_s << *stride_property->contiguous_ << ", ";
} else {
contig_s << "?, ";
}
}
std::cout << "stride: " << stride_s.str() << std::endl;
std::cout << "stride index: " << index_s.str() << std::endl;
std::cout << "contiguous: " << contig_s.str() << std::endl;
} else {
std::cout << "no stride properties available" << std::endl;
}
}
#pragma clang diagnostic pop
bool is_zero_dim_tensor(const std::shared_ptr<c10::TensorType>& tensor_type) {
return tensor_type && tensor_type->dim().has_value() &&
tensor_type->dim().value() == 0;
}
bool is_zero_sized_tensor(const std::shared_ptr<c10::TensorType>& tensor_type) {
auto opt_sizes = tensor_type->sizes().concrete_sizes();
if (opt_sizes.has_value()) {
auto sizes = opt_sizes.value();
for (const auto& size : sizes) {
if (size == 0) {
return true;
}
}
}
return false;
}
bool is_cpu_scalar(const at::Tensor& tensor) {
return tensor.device().is_cpu() && tensor.numel() == 1 && tensor.dim() == 0;
}
bool is_cpu_scalar(const c10::TensorType& tensor_type) {
auto opt_device = tensor_type.device();
auto opt_dim = tensor_type.dim();
auto opt_numel = tensor_type.numel();
return opt_device.has_value() && opt_device.value().is_cpu() &&
opt_dim.has_value() && opt_numel.has_value() && opt_dim.value() == 0 &&
opt_numel.value() == 1;
}
bool isDebugDumpEnabled(DebugDumpOption option) {
const static auto dump_options = parseDebugDumpOptions();
return dump_options.at(option);
}
bool isOptionDisabled(DisableOption option) {
const static auto options = parseDisableOptions();
return options.at(option);
}
bool isOptionEnabled(EnableOption option) {
const static auto options = parseEnableOptions();
return options.at(option);
}
bool useFallback() {
// Keep this env var for compatibility
const char* disable_fb_env = getenv("PYTORCH_NVFUSER_DISABLE_FALLBACK");
bool fallback_disabled = disable_fb_env ? atoi(disable_fb_env) : false;
fallback_disabled =
fallback_disabled || isOptionDisabled(DisableOption::Fallback);
return !fallback_disabled;
}
std::vector<int64_t> getTensorSizes(TensorTypePtr const& tensor_type) {
TORCH_INTERNAL_ASSERT(tensor_type != nullptr, "Input must be a Tensor.");
auto optional_sizes = tensor_type->sizes().concrete_sizes();
TORCH_INTERNAL_ASSERT(
optional_sizes.has_value(), "Missing size information for the tensor.");
return optional_sizes.value();
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch