pytorch/caffe2/python/regularizer.py
Honghao Wei e76015040a add regulariztion in caffe2 and dper
Summary:
Regularization added for caffe2 and dper.

This regularization is intended for `dense feature `only. Sparse feature would serve as individual optimizer, see ` D5618405 ` and  `D5534579` for details.

The implementation of dense regularization is similar to the ones in optimizer. we now support `l1 norm` and  ` l2 norm` in regularizer. In dper, we would call different regularization based on regularization type defined in model_definition.thrift.

Reviewed By: xianjiec

Differential Revision: D5724851

fbshipit-source-id: 0fbee698cfeff1ac477fc9d07785406069f8d9c8
2017-09-08 11:39:22 -07:00

58 lines
1.7 KiB
Python

# @package optimizer
# Module caffe2.python.optimizer
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core
class Regularizer(object):
def __init__(self):
pass
'''
Adds regularization to train_net for given parameter. Its factor ahead of
regularization is given when initialization.
The param should be a BlobReference.
'''
def __call__(self, train_net, param):
assert isinstance(param, core.BlobReference)
return self._run(train_net, param)
def _run(self, train_net, param):
raise Exception("Not Impelemented")
class L1Norm(Regularizer):
def __init__(self, reg_lambda):
super(L1Norm, self).__init__()
assert reg_lambda >= 0,\
'factor ahead of regularization should be 0 or positive'
self.reg_lambda = reg_lambda
def _run(self, train_net, param):
output_blob = train_net.NextScopedBlob(param + '_l1_regularization')
train_net.LpNorm([param], [output_blob], p=1)
train_net.Scale([output_blob], [output_blob], scale=self.reg_lambda)
return output_blob
class L2Norm(Regularizer):
def __init__(self, reg_lambda):
super(L2Norm, self).__init__()
assert reg_lambda >= 0,\
'factor ahead of regularization should be 0 or positive'
self.reg_lambda = reg_lambda
def _run(self, train_net, param):
output_blob = train_net.NextScopedBlob(param + '_l2_regularization')
train_net.LpNorm([param], [output_blob], p=2)
train_net.Scale([output_blob], [output_blob], scale=self.reg_lambda)
return output_blob