pytorch/test/jit/test_sparse.py
David Berard ebc35a7ead [JIT] Enable freezing for sparse COO tensors (#69614)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69614

Previously sparse COO tensors were ignored during freezing, because
`tryInsertConstant` would fail during `freeze_module.cpp`, and because
hashes weren't implemented for COO tensor IValues.

Test Plan: Imported from OSS

Reviewed By: mrshenli

Differential Revision: D32954620

Pulled By: davidberard98

fbshipit-source-id: a91f97fdfc2152b417f43a6948100c94970c0831
2021-12-14 15:43:50 -08:00

62 lines
1.7 KiB
Python

# Owner(s): ["oncall: jit"]
import io
import torch
from torch.testing._internal.jit_utils import JitTestCase
class TestSparse(JitTestCase):
def test_freeze_sparse_coo(self):
class SparseTensorModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = torch.rand(3, 4).to_sparse()
self.b = torch.rand(3, 4).to_sparse()
def forward(self, x):
return x + self.a + self.b
x = torch.rand(3, 4).to_sparse()
m = SparseTensorModule()
unfrozen_result = m.forward(x)
m.eval()
frozen = torch.jit.freeze(torch.jit.script(m))
frozen_result = frozen.forward(x)
self.assertEqual(unfrozen_result, frozen_result)
buffer = io.BytesIO()
torch.jit.save(frozen, buffer)
buffer.seek(0)
loaded_model = torch.jit.load(buffer)
loaded_result = loaded_model.forward(x)
self.assertEqual(unfrozen_result, loaded_result)
def test_serialize_sparse_coo(self):
class SparseTensorModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = torch.rand(3, 4).to_sparse()
self.b = torch.rand(3, 4).to_sparse()
def forward(self, x):
return x + self.a + self.b
x = torch.rand(3, 4).to_sparse()
m = SparseTensorModule()
expected_result = m.forward(x)
buffer = io.BytesIO()
torch.jit.save(torch.jit.script(m), buffer)
buffer.seek(0)
loaded_model = torch.jit.load(buffer)
loaded_result = loaded_model.forward(x)
self.assertEqual(expected_result, loaded_result)