mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
- gloo, pybind11, nanopb and nccl now live in third_party. - ATen builds in aten/build rather than torch/lib/build/aten - A bit of faffing about in the scripts was necessary, because they used to assume that everything lived in the same directory. Now you are expected to cd into the correct directory before calling one of the build functions. The actual builder script lives in tools - Lint now just unconditionally ignores third_party, rather than enumerating folders explicitly
849 lines
29 KiB
Python
849 lines
29 KiB
Python
# Welcome to the PyTorch setup.py.
|
|
#
|
|
# Environment variables you are probably interestd in:
|
|
#
|
|
# DEBUG
|
|
# build with -O0 and -g (debug symbols)
|
|
#
|
|
# MAX_JOBS
|
|
# maximum number of compile jobs we should use to compile your code
|
|
#
|
|
# NO_CUDA
|
|
# disables CUDA build
|
|
#
|
|
# CFLAGS
|
|
# flags to apply to both C and C++ files to be compiled (a quirk of setup.py
|
|
# which we have faithfully adhered to in our build system is that CFLAGS
|
|
# also applies to C++ files, in contrast to the default behavior of autogoo
|
|
# and cmake build systems.)
|
|
#
|
|
# CC
|
|
# the C/C++ compiler to use (NB: the CXX flag has no effect for distutils
|
|
# compiles, because distutils always uses CC to compile, even for C++
|
|
# files.
|
|
#
|
|
# Environment variables for feature toggles:
|
|
#
|
|
# NO_CUDNN
|
|
# disables the cuDNN build
|
|
#
|
|
# NO_NNPACK
|
|
# disables NNPACK build
|
|
#
|
|
# NO_DISTRIBUTED
|
|
# disables THD (distributed) build
|
|
#
|
|
# NO_SYSTEM_NCCL
|
|
# disables use of system-wide nccl (we will use our submoduled
|
|
# copy in third_party/nccl)
|
|
#
|
|
# WITH_GLOO_IBVERBS
|
|
# toggle features related to distributed support
|
|
#
|
|
# PYTORCH_BINARY_BUILD
|
|
# toggle static linking against libstdc++, used when we're building
|
|
# binaries for distribution
|
|
#
|
|
# PYTORCH_BUILD_VERSION
|
|
# PYTORCH_BUILD_NUMBER
|
|
# specify the version of PyTorch, rather than the hard-coded version
|
|
# in this file; used when we're building binaries for distribution
|
|
#
|
|
# Environment variables we respect (these environment variables are
|
|
# conventional and are often understood/set by other software.)
|
|
#
|
|
# CUDA_HOME (Linux/OS X)
|
|
# CUDA_PATH (Windows)
|
|
# specify where CUDA is installed; usually /usr/local/cuda or
|
|
# /usr/local/cuda-x.y
|
|
#
|
|
# CUDNN_LIB_DIR
|
|
# CUDNN_INCLUDE_DIR
|
|
# CUDNN_LIBRARY
|
|
# specify where cuDNN is installed
|
|
#
|
|
# NCCL_ROOT_DIR
|
|
# NCCL_LIB_DIR
|
|
# NCCL_INCLUDE_DIR
|
|
# specify where nccl is installed
|
|
#
|
|
# NVTOOLSEXT_PATH (Windows only)
|
|
# specify where nvtoolsext is installed
|
|
#
|
|
# LIBRARY_PATH
|
|
# LD_LIBRARY_PATH
|
|
# we will search for libraries in these paths
|
|
|
|
|
|
from setuptools import setup, Extension, distutils, Command, find_packages
|
|
import setuptools.command.build_ext
|
|
import setuptools.command.install
|
|
import setuptools.command.develop
|
|
import setuptools.command.build_py
|
|
import distutils.unixccompiler
|
|
import distutils.command.build
|
|
import distutils.command.clean
|
|
import platform
|
|
import subprocess
|
|
import shutil
|
|
import multiprocessing
|
|
import sys
|
|
import os
|
|
import json
|
|
import glob
|
|
import importlib
|
|
|
|
from tools.setup_helpers.env import check_env_flag
|
|
from tools.setup_helpers.cuda import WITH_CUDA, CUDA_HOME, CUDA_VERSION
|
|
from tools.setup_helpers.cudnn import (WITH_CUDNN, CUDNN_LIBRARY,
|
|
CUDNN_LIB_DIR, CUDNN_INCLUDE_DIR)
|
|
from tools.setup_helpers.nccl import WITH_NCCL, WITH_SYSTEM_NCCL, NCCL_LIB_DIR, \
|
|
NCCL_INCLUDE_DIR, NCCL_ROOT_DIR, NCCL_SYSTEM_LIB
|
|
from tools.setup_helpers.nnpack import WITH_NNPACK
|
|
from tools.setup_helpers.nvtoolext import NVTOOLEXT_HOME
|
|
from tools.setup_helpers.generate_code import generate_code
|
|
from tools.setup_helpers.ninja_builder import NinjaBuilder, ninja_build_ext
|
|
from tools.setup_helpers.dist_check import WITH_DISTRIBUTED, \
|
|
WITH_DISTRIBUTED_MW, WITH_GLOO_IBVERBS
|
|
|
|
DEBUG = check_env_flag('DEBUG')
|
|
|
|
IS_WINDOWS = (platform.system() == 'Windows')
|
|
IS_DARWIN = (platform.system() == 'Darwin')
|
|
IS_LINUX = (platform.system() == 'Linux')
|
|
|
|
NUM_JOBS = multiprocessing.cpu_count()
|
|
max_jobs = os.getenv("MAX_JOBS")
|
|
if max_jobs is not None:
|
|
NUM_JOBS = min(NUM_JOBS, int(max_jobs))
|
|
|
|
try:
|
|
import ninja
|
|
WITH_NINJA = True
|
|
except ImportError:
|
|
WITH_NINJA = False
|
|
|
|
if not WITH_NINJA:
|
|
################################################################################
|
|
# Monkey-patch setuptools to compile in parallel
|
|
################################################################################
|
|
|
|
def parallelCCompile(self, sources, output_dir=None, macros=None,
|
|
include_dirs=None, debug=0, extra_preargs=None,
|
|
extra_postargs=None, depends=None):
|
|
# those lines are copied from distutils.ccompiler.CCompiler directly
|
|
macros, objects, extra_postargs, pp_opts, build = self._setup_compile(
|
|
output_dir, macros, include_dirs, sources, depends, extra_postargs)
|
|
cc_args = self._get_cc_args(pp_opts, debug, extra_preargs)
|
|
|
|
# compile using a thread pool
|
|
import multiprocessing.pool
|
|
|
|
def _single_compile(obj):
|
|
src, ext = build[obj]
|
|
self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts)
|
|
multiprocessing.pool.ThreadPool(NUM_JOBS).map(_single_compile, objects)
|
|
|
|
return objects
|
|
distutils.ccompiler.CCompiler.compile = parallelCCompile
|
|
|
|
original_link = distutils.unixccompiler.UnixCCompiler.link
|
|
|
|
|
|
def patched_link(self, *args, **kwargs):
|
|
_cxx = self.compiler_cxx
|
|
self.compiler_cxx = None
|
|
result = original_link(self, *args, **kwargs)
|
|
self.compiler_cxx = _cxx
|
|
return result
|
|
|
|
|
|
distutils.unixccompiler.UnixCCompiler.link = patched_link
|
|
|
|
################################################################################
|
|
# Workaround setuptools -Wstrict-prototypes warnings
|
|
# I lifted this code from https://stackoverflow.com/a/29634231/23845
|
|
################################################################################
|
|
import distutils.sysconfig
|
|
cfg_vars = distutils.sysconfig.get_config_vars()
|
|
for key, value in cfg_vars.items():
|
|
if type(value) == str:
|
|
cfg_vars[key] = value.replace("-Wstrict-prototypes", "")
|
|
|
|
################################################################################
|
|
# Custom build commands
|
|
################################################################################
|
|
|
|
dep_libs = [
|
|
'nccl', 'ATen',
|
|
'libshm', 'libshm_windows', 'gloo', 'THD', 'nanopb',
|
|
]
|
|
|
|
|
|
# global ninja file for building generated code stuff
|
|
ninja_global = None
|
|
if WITH_NINJA:
|
|
ninja_global = NinjaBuilder('global')
|
|
|
|
|
|
def build_libs(libs):
|
|
for lib in libs:
|
|
assert lib in dep_libs, 'invalid lib: {}'.format(lib)
|
|
if IS_WINDOWS:
|
|
build_libs_cmd = ['tools\\build_pytorch_libs.bat']
|
|
else:
|
|
build_libs_cmd = ['bash', 'tools/build_pytorch_libs.sh']
|
|
my_env = os.environ.copy()
|
|
my_env["PYTORCH_PYTHON"] = sys.executable
|
|
my_env["NUM_JOBS"] = str(NUM_JOBS)
|
|
if not IS_WINDOWS:
|
|
if WITH_NINJA:
|
|
my_env["CMAKE_GENERATOR"] = '-GNinja'
|
|
my_env["CMAKE_INSTALL"] = 'ninja install'
|
|
else:
|
|
my_env['CMAKE_GENERATOR'] = ''
|
|
my_env['CMAKE_INSTALL'] = 'make install'
|
|
if WITH_SYSTEM_NCCL:
|
|
my_env["NCCL_ROOT_DIR"] = NCCL_ROOT_DIR
|
|
if WITH_CUDA:
|
|
my_env["CUDA_BIN_PATH"] = CUDA_HOME
|
|
build_libs_cmd += ['--with-cuda']
|
|
if WITH_NNPACK:
|
|
build_libs_cmd += ['--with-nnpack']
|
|
if WITH_CUDNN:
|
|
my_env["CUDNN_LIB_DIR"] = CUDNN_LIB_DIR
|
|
my_env["CUDNN_LIBRARY"] = CUDNN_LIBRARY
|
|
my_env["CUDNN_INCLUDE_DIR"] = CUDNN_INCLUDE_DIR
|
|
|
|
if WITH_GLOO_IBVERBS:
|
|
build_libs_cmd += ['--with-gloo-ibverbs']
|
|
|
|
if subprocess.call(build_libs_cmd + libs, env=my_env) != 0:
|
|
sys.exit(1)
|
|
|
|
missing_pydep = '''
|
|
Missing build dependency: Unable to `import {importname}`.
|
|
Please install it via `conda install {module}` or `pip install {module}`
|
|
'''.strip()
|
|
|
|
|
|
def check_pydep(importname, module):
|
|
try:
|
|
importlib.import_module(importname)
|
|
except ImportError:
|
|
raise RuntimeError(missing_pydep.format(importname=importname, module=module))
|
|
|
|
|
|
class build_deps(Command):
|
|
user_options = []
|
|
|
|
def initialize_options(self):
|
|
pass
|
|
|
|
def finalize_options(self):
|
|
pass
|
|
|
|
def run(self):
|
|
# Check if you remembered to check out submodules
|
|
def check_file(f):
|
|
if not os.path.exists(f):
|
|
print("Could not find {}".format(f))
|
|
print("Did you run 'git submodule update --init'?")
|
|
sys.exit(1)
|
|
check_file(os.path.join(third_party_path, "gloo", "CMakeLists.txt"))
|
|
check_file(os.path.join(third_party_path, "nanopb", "CMakeLists.txt"))
|
|
check_file(os.path.join(third_party_path, "pybind11", "CMakeLists.txt"))
|
|
check_file(os.path.join('aten', 'src', 'ATen', 'cpu', 'cpuinfo', 'CMakeLists.txt'))
|
|
check_file(os.path.join('aten', 'src', 'ATen', 'cpu', 'tbb', 'tbb_remote', 'Makefile'))
|
|
check_file(os.path.join('aten', 'src', 'ATen', 'utils', 'catch', 'CMakeLists.txt'))
|
|
|
|
check_pydep('yaml', 'pyyaml')
|
|
check_pydep('typing', 'typing')
|
|
|
|
libs = []
|
|
if WITH_NCCL and not WITH_SYSTEM_NCCL:
|
|
libs += ['nccl']
|
|
libs += ['ATen', 'nanopb']
|
|
if IS_WINDOWS:
|
|
libs += ['libshm_windows']
|
|
else:
|
|
libs += ['libshm']
|
|
if WITH_DISTRIBUTED:
|
|
if sys.platform.startswith('linux'):
|
|
libs += ['gloo']
|
|
libs += ['THD']
|
|
build_libs(libs)
|
|
|
|
# Copy headers necessary to compile C++ extensions.
|
|
#
|
|
# This is not perfect solution as build does not depend on any of
|
|
# the auto-generated code and auto-generated files will not be
|
|
# included in this copy. If we want to use auto-generated files,
|
|
# we need to find a batter way to do this.
|
|
# More information can be found in conversation thread of PR #5772
|
|
|
|
self.copy_tree('torch/csrc', 'torch/lib/include/torch/csrc/')
|
|
self.copy_tree('third_party/pybind11/include/pybind11/',
|
|
'torch/lib/include/pybind11')
|
|
self.copy_file('torch/torch.h', 'torch/lib/include/torch/torch.h')
|
|
|
|
|
|
build_dep_cmds = {}
|
|
|
|
for lib in dep_libs:
|
|
# wrap in function to capture lib
|
|
class build_dep(build_deps):
|
|
description = 'Build {} external library'.format(lib)
|
|
|
|
def run(self):
|
|
build_libs([self.lib])
|
|
build_dep.lib = lib
|
|
build_dep_cmds['build_' + lib.lower()] = build_dep
|
|
|
|
|
|
class build_module(Command):
|
|
user_options = []
|
|
|
|
def initialize_options(self):
|
|
pass
|
|
|
|
def finalize_options(self):
|
|
pass
|
|
|
|
def run(self):
|
|
self.run_command('build_py')
|
|
self.run_command('build_ext')
|
|
|
|
|
|
class build_py(setuptools.command.build_py.build_py):
|
|
|
|
def run(self):
|
|
self.create_version_file()
|
|
setuptools.command.build_py.build_py.run(self)
|
|
|
|
@staticmethod
|
|
def create_version_file():
|
|
global version, cwd
|
|
print('-- Building version ' + version)
|
|
version_path = os.path.join(cwd, 'torch', 'version.py')
|
|
with open(version_path, 'w') as f:
|
|
f.write("__version__ = '{}'\n".format(version))
|
|
# NB: This is not 100% accurate, because you could have built the
|
|
# library code with DEBUG, but csrc without DEBUG (in which case
|
|
# this would claim to be a release build when it's not.)
|
|
f.write("debug = {}\n".format(repr(DEBUG)))
|
|
f.write("cuda = {}\n".format(repr(CUDA_VERSION)))
|
|
|
|
|
|
class develop(setuptools.command.develop.develop):
|
|
|
|
def run(self):
|
|
build_py.create_version_file()
|
|
setuptools.command.develop.develop.run(self)
|
|
self.create_compile_commands()
|
|
|
|
def create_compile_commands(self):
|
|
def load(filename):
|
|
with open(filename) as f:
|
|
return json.load(f)
|
|
ninja_files = glob.glob('build/*_compile_commands.json')
|
|
cmake_files = glob.glob('torch/lib/build/*/compile_commands.json')
|
|
all_commands = [entry
|
|
for f in ninja_files + cmake_files
|
|
for entry in load(f)]
|
|
with open('compile_commands.json', 'w') as f:
|
|
json.dump(all_commands, f, indent=2)
|
|
if not WITH_NINJA:
|
|
print("WARNING: 'develop' is not building C++ code incrementally")
|
|
print("because ninja is not installed. Run this to enable it:")
|
|
print(" > pip install ninja")
|
|
|
|
|
|
def monkey_patch_THD_link_flags():
|
|
'''
|
|
THD's dynamic link deps are not determined until after build_deps is run
|
|
So, we need to monkey-patch them in later
|
|
'''
|
|
# read tmp_install_path/THD_deps.txt for THD's dynamic linkage deps
|
|
with open(tmp_install_path + '/THD_deps.txt', 'r') as f:
|
|
thd_deps_ = f.read()
|
|
thd_deps = []
|
|
# remove empty lines
|
|
for l in thd_deps_.split(';'):
|
|
if l != '':
|
|
thd_deps.append(l)
|
|
|
|
C.extra_link_args += thd_deps
|
|
|
|
|
|
build_ext_parent = ninja_build_ext if WITH_NINJA \
|
|
else setuptools.command.build_ext.build_ext
|
|
|
|
|
|
class build_ext(build_ext_parent):
|
|
|
|
def run(self):
|
|
|
|
# Print build options
|
|
if WITH_NUMPY:
|
|
print('-- Building with NumPy bindings')
|
|
else:
|
|
print('-- NumPy not found')
|
|
if WITH_CUDNN:
|
|
print('-- Detected cuDNN at ' + CUDNN_LIBRARY + ', ' + CUDNN_INCLUDE_DIR)
|
|
else:
|
|
print('-- Not using cuDNN')
|
|
if WITH_CUDA:
|
|
print('-- Detected CUDA at ' + CUDA_HOME)
|
|
else:
|
|
print('-- Not using CUDA')
|
|
if WITH_NCCL and WITH_SYSTEM_NCCL:
|
|
print('-- Using system provided NCCL library at ' +
|
|
NCCL_SYSTEM_LIB + ', ' + NCCL_INCLUDE_DIR)
|
|
elif WITH_NCCL:
|
|
print('-- Building NCCL library')
|
|
else:
|
|
print('-- Not using NCCL')
|
|
if WITH_DISTRIBUTED:
|
|
print('-- Building with distributed package ')
|
|
monkey_patch_THD_link_flags()
|
|
else:
|
|
print('-- Building without distributed package')
|
|
|
|
generate_code(ninja_global)
|
|
|
|
if WITH_NINJA:
|
|
# before we start the normal build make sure all generated code
|
|
# gets built
|
|
ninja_global.run()
|
|
|
|
# It's an old-style class in Python 2.7...
|
|
setuptools.command.build_ext.build_ext.run(self)
|
|
|
|
|
|
class build(distutils.command.build.build):
|
|
sub_commands = [
|
|
('build_deps', lambda self: True),
|
|
] + distutils.command.build.build.sub_commands
|
|
|
|
|
|
class install(setuptools.command.install.install):
|
|
|
|
def run(self):
|
|
if not self.skip_build:
|
|
self.run_command('build_deps')
|
|
|
|
setuptools.command.install.install.run(self)
|
|
|
|
|
|
class clean(distutils.command.clean.clean):
|
|
|
|
def run(self):
|
|
import glob
|
|
with open('.gitignore', 'r') as f:
|
|
ignores = f.read()
|
|
for wildcard in filter(bool, ignores.split('\n')):
|
|
for filename in glob.glob(wildcard):
|
|
try:
|
|
os.remove(filename)
|
|
except OSError:
|
|
shutil.rmtree(filename, ignore_errors=True)
|
|
|
|
# It's an old-style class in Python 2.7...
|
|
distutils.command.clean.clean.run(self)
|
|
|
|
|
|
################################################################################
|
|
# Configure compile flags
|
|
################################################################################
|
|
|
|
include_dirs = []
|
|
library_dirs = []
|
|
extra_link_args = []
|
|
|
|
if IS_WINDOWS:
|
|
extra_compile_args = ['/Z7', '/EHa', '/DNOMINMAX', '/wd4267', '/wd4251', '/wd4522',
|
|
'/wd4522', '/wd4838', '/wd4305', '/wd4244', '/wd4190',
|
|
'/wd4101', '/wd4996', '/wd4275'
|
|
# /Z7 turns on symbolic debugging information in .obj files
|
|
# /EHa is about native C++ catch support for asynchronous
|
|
# structured exception handling (SEH)
|
|
# /DNOMINMAX removes builtin min/max functions
|
|
# /wdXXXX disables warning no. XXXX
|
|
]
|
|
if sys.version_info[0] == 2:
|
|
# /bigobj increases number of sections in .obj file, which is needed to link
|
|
# against libaries in Python 2.7 under Windows
|
|
extra_compile_args.append('/bigobj')
|
|
else:
|
|
extra_compile_args = ['-std=c++11', '-Wno-write-strings',
|
|
# Python 2.6 requires -fno-strict-aliasing, see
|
|
# http://legacy.python.org/dev/peps/pep-3123/
|
|
'-fno-strict-aliasing',
|
|
# Clang has an unfixed bug leading to spurious missing
|
|
# braces warnings, see
|
|
# https://bugs.llvm.org/show_bug.cgi?id=21629
|
|
'-Wno-missing-braces']
|
|
|
|
cwd = os.path.dirname(os.path.abspath(__file__))
|
|
lib_path = os.path.join(cwd, "torch", "lib")
|
|
third_party_path = os.path.join(cwd, "third_party")
|
|
|
|
|
|
tmp_install_path = lib_path + "/tmp_install"
|
|
include_dirs += [
|
|
cwd,
|
|
os.path.join(cwd, "torch", "csrc"),
|
|
third_party_path + "/pybind11/include",
|
|
tmp_install_path + "/include",
|
|
tmp_install_path + "/include/TH",
|
|
tmp_install_path + "/include/THNN",
|
|
tmp_install_path + "/include/ATen",
|
|
]
|
|
|
|
library_dirs.append(lib_path)
|
|
|
|
# we specify exact lib names to avoid conflict with lua-torch installs
|
|
ATEN_LIB = os.path.join(lib_path, 'libATen.so.1')
|
|
THD_LIB = os.path.join(lib_path, 'libTHD.a')
|
|
NCCL_LIB = os.path.join(lib_path, 'libnccl.so.1')
|
|
|
|
# static library only
|
|
NANOPB_STATIC_LIB = os.path.join(lib_path, 'libprotobuf-nanopb.a')
|
|
|
|
if IS_DARWIN:
|
|
ATEN_LIB = os.path.join(lib_path, 'libATen.1.dylib')
|
|
NCCL_LIB = os.path.join(lib_path, 'libnccl.1.dylib')
|
|
|
|
if IS_WINDOWS:
|
|
ATEN_LIB = os.path.join(lib_path, 'ATen.lib')
|
|
if DEBUG:
|
|
NANOPB_STATIC_LIB = os.path.join(lib_path, 'protobuf-nanopbd.lib')
|
|
else:
|
|
NANOPB_STATIC_LIB = os.path.join(lib_path, 'protobuf-nanopb.lib')
|
|
|
|
main_compile_args = ['-D_THP_CORE']
|
|
main_libraries = ['shm']
|
|
main_link_args = [ATEN_LIB, NANOPB_STATIC_LIB]
|
|
main_sources = [
|
|
"torch/csrc/PtrWrapper.cpp",
|
|
"torch/csrc/Module.cpp",
|
|
"torch/csrc/Generator.cpp",
|
|
"torch/csrc/Size.cpp",
|
|
"torch/csrc/Dtype.cpp",
|
|
"torch/csrc/Exceptions.cpp",
|
|
"torch/csrc/Storage.cpp",
|
|
"torch/csrc/DataLoader.cpp",
|
|
"torch/csrc/DynamicTypes.cpp",
|
|
"torch/csrc/assertions.cpp",
|
|
"torch/csrc/byte_order.cpp",
|
|
"torch/csrc/torch.cpp",
|
|
"torch/csrc/utils.cpp",
|
|
"torch/csrc/utils/cuda_lazy_init.cpp",
|
|
"torch/csrc/utils/invalid_arguments.cpp",
|
|
"torch/csrc/utils/object_ptr.cpp",
|
|
"torch/csrc/utils/python_arg_parser.cpp",
|
|
"torch/csrc/utils/tensor_list.cpp",
|
|
"torch/csrc/utils/tensor_new.cpp",
|
|
"torch/csrc/utils/tensor_numpy.cpp",
|
|
"torch/csrc/utils/tensor_dtypes.cpp",
|
|
"torch/csrc/utils/tensor_types.cpp",
|
|
"torch/csrc/utils/tuple_parser.cpp",
|
|
"torch/csrc/utils/tensor_apply.cpp",
|
|
"torch/csrc/utils/tensor_conversion_dispatch.cpp",
|
|
"torch/csrc/utils/tensor_flatten.cpp",
|
|
"torch/csrc/utils/variadic.cpp",
|
|
"torch/csrc/allocators.cpp",
|
|
"torch/csrc/serialization.cpp",
|
|
"torch/csrc/jit/init.cpp",
|
|
"torch/csrc/jit/interpreter.cpp",
|
|
"torch/csrc/jit/ir.cpp",
|
|
"torch/csrc/jit/fusion_compiler.cpp",
|
|
"torch/csrc/jit/graph_executor.cpp",
|
|
"torch/csrc/jit/python_ir.cpp",
|
|
"torch/csrc/jit/test_jit.cpp",
|
|
"torch/csrc/jit/tracer.cpp",
|
|
"torch/csrc/jit/tracer_state.cpp",
|
|
"torch/csrc/jit/python_tracer.cpp",
|
|
"torch/csrc/jit/passes/shape_analysis.cpp",
|
|
"torch/csrc/jit/interned_strings.cpp",
|
|
"torch/csrc/jit/type.cpp",
|
|
"torch/csrc/jit/export.cpp",
|
|
"torch/csrc/jit/autodiff.cpp",
|
|
"torch/csrc/jit/interpreter_autograd_function.cpp",
|
|
"torch/csrc/jit/python_arg_flatten.cpp",
|
|
"torch/csrc/jit/python_compiled_function.cpp",
|
|
"torch/csrc/jit/variable_flags.cpp",
|
|
"torch/csrc/jit/passes/create_autodiff_subgraphs.cpp",
|
|
"torch/csrc/jit/passes/graph_fuser.cpp",
|
|
"torch/csrc/jit/passes/onnx.cpp",
|
|
"torch/csrc/jit/passes/dead_code_elimination.cpp",
|
|
"torch/csrc/jit/passes/common_subexpression_elimination.cpp",
|
|
"torch/csrc/jit/passes/peephole.cpp",
|
|
"torch/csrc/jit/passes/inplace_check.cpp",
|
|
"torch/csrc/jit/passes/canonicalize.cpp",
|
|
"torch/csrc/jit/passes/batch_mm.cpp",
|
|
"torch/csrc/jit/passes/onnx/peephole.cpp",
|
|
"torch/csrc/jit/generated/aten_dispatch.cpp",
|
|
"torch/csrc/jit/script/lexer.cpp",
|
|
"torch/csrc/jit/script/compiler.cpp",
|
|
"torch/csrc/jit/script/module.cpp",
|
|
"torch/csrc/jit/script/init.cpp",
|
|
"torch/csrc/jit/script/python_tree_views.cpp",
|
|
"torch/csrc/autograd/init.cpp",
|
|
"torch/csrc/autograd/grad_mode.cpp",
|
|
"torch/csrc/autograd/engine.cpp",
|
|
"torch/csrc/autograd/function.cpp",
|
|
"torch/csrc/autograd/variable.cpp",
|
|
"torch/csrc/autograd/saved_variable.cpp",
|
|
"torch/csrc/autograd/input_buffer.cpp",
|
|
"torch/csrc/autograd/profiler.cpp",
|
|
"torch/csrc/autograd/python_function.cpp",
|
|
"torch/csrc/autograd/python_cpp_function.cpp",
|
|
"torch/csrc/autograd/python_variable.cpp",
|
|
"torch/csrc/autograd/python_variable_indexing.cpp",
|
|
"torch/csrc/autograd/python_engine.cpp",
|
|
"torch/csrc/autograd/python_hook.cpp",
|
|
"torch/csrc/autograd/generated/VariableType.cpp",
|
|
"torch/csrc/autograd/generated/Functions.cpp",
|
|
"torch/csrc/autograd/generated/python_torch_functions.cpp",
|
|
"torch/csrc/autograd/generated/python_variable_methods.cpp",
|
|
"torch/csrc/autograd/generated/python_functions.cpp",
|
|
"torch/csrc/autograd/generated/python_nn_functions.cpp",
|
|
"torch/csrc/autograd/functions/basic_ops.cpp",
|
|
"torch/csrc/autograd/functions/tensor.cpp",
|
|
"torch/csrc/autograd/functions/accumulate_grad.cpp",
|
|
"torch/csrc/autograd/functions/special.cpp",
|
|
"torch/csrc/autograd/functions/utils.cpp",
|
|
"torch/csrc/autograd/functions/init.cpp",
|
|
"torch/csrc/nn/THNN.cpp",
|
|
"torch/csrc/tensor/python_tensor.cpp",
|
|
"torch/csrc/onnx/onnx.pb.cpp",
|
|
"torch/csrc/onnx/onnx.cpp",
|
|
]
|
|
|
|
try:
|
|
import numpy as np
|
|
include_dirs += [np.get_include()]
|
|
extra_compile_args += ['-DWITH_NUMPY']
|
|
WITH_NUMPY = True
|
|
except ImportError:
|
|
WITH_NUMPY = False
|
|
|
|
if WITH_DISTRIBUTED:
|
|
extra_compile_args += ['-DWITH_DISTRIBUTED']
|
|
main_sources += [
|
|
"torch/csrc/distributed/Module.cpp",
|
|
]
|
|
if WITH_DISTRIBUTED_MW:
|
|
main_sources += [
|
|
"torch/csrc/distributed/Tensor.cpp",
|
|
"torch/csrc/distributed/Storage.cpp",
|
|
]
|
|
extra_compile_args += ['-DWITH_DISTRIBUTED_MW']
|
|
include_dirs += [tmp_install_path + "/include/THD"]
|
|
main_link_args += [THD_LIB]
|
|
|
|
if WITH_CUDA:
|
|
nvtoolext_lib_name = None
|
|
if IS_WINDOWS:
|
|
cuda_lib_path = CUDA_HOME + '/lib/x64/'
|
|
nvtoolext_lib_path = NVTOOLEXT_HOME + '/lib/x64/'
|
|
nvtoolext_include_path = os.path.join(NVTOOLEXT_HOME, 'include')
|
|
|
|
library_dirs.append(nvtoolext_lib_path)
|
|
include_dirs.append(nvtoolext_include_path)
|
|
|
|
nvtoolext_lib_name = 'nvToolsExt64_1'
|
|
|
|
# MSVC doesn't support runtime symbol resolving, `nvrtc` and `cuda` should be linked
|
|
main_libraries += ['nvrtc', 'cuda']
|
|
else:
|
|
cuda_lib_dirs = ['lib64', 'lib']
|
|
|
|
for lib_dir in cuda_lib_dirs:
|
|
cuda_lib_path = os.path.join(CUDA_HOME, lib_dir)
|
|
if os.path.exists(cuda_lib_path):
|
|
break
|
|
extra_link_args.append('-Wl,-rpath,' + cuda_lib_path)
|
|
|
|
nvtoolext_lib_name = 'nvToolsExt'
|
|
|
|
library_dirs.append(cuda_lib_path)
|
|
cuda_include_path = os.path.join(CUDA_HOME, 'include')
|
|
include_dirs.append(cuda_include_path)
|
|
include_dirs.append(tmp_install_path + "/include/THCUNN")
|
|
extra_compile_args += ['-DWITH_CUDA']
|
|
extra_compile_args += ['-DCUDA_LIB_PATH=' + cuda_lib_path]
|
|
main_libraries += ['cudart', nvtoolext_lib_name]
|
|
main_sources += [
|
|
"torch/csrc/cuda/Module.cpp",
|
|
"torch/csrc/cuda/Storage.cpp",
|
|
"torch/csrc/cuda/Stream.cpp",
|
|
"torch/csrc/cuda/utils.cpp",
|
|
"torch/csrc/cuda/comm.cpp",
|
|
"torch/csrc/cuda/python_comm.cpp",
|
|
"torch/csrc/cuda/serialization.cpp",
|
|
"torch/csrc/nn/THCUNN.cpp",
|
|
]
|
|
|
|
if WITH_NCCL:
|
|
if WITH_SYSTEM_NCCL:
|
|
main_link_args += [NCCL_SYSTEM_LIB]
|
|
include_dirs.append(NCCL_INCLUDE_DIR)
|
|
else:
|
|
main_link_args += [NCCL_LIB]
|
|
extra_compile_args += ['-DWITH_NCCL']
|
|
main_sources += [
|
|
"torch/csrc/cuda/nccl.cpp",
|
|
"torch/csrc/cuda/python_nccl.cpp",
|
|
]
|
|
if WITH_CUDNN:
|
|
main_libraries += [CUDNN_LIBRARY]
|
|
# NOTE: these are at the front, in case there's another cuDNN in CUDA path
|
|
include_dirs.insert(0, CUDNN_INCLUDE_DIR)
|
|
if not IS_WINDOWS:
|
|
extra_link_args.insert(0, '-Wl,-rpath,' + CUDNN_LIB_DIR)
|
|
extra_compile_args += ['-DWITH_CUDNN']
|
|
|
|
if DEBUG:
|
|
if IS_WINDOWS:
|
|
extra_link_args.append('/DEBUG:FULL')
|
|
else:
|
|
extra_compile_args += ['-O0', '-g']
|
|
extra_link_args += ['-O0', '-g']
|
|
|
|
if os.getenv('PYTORCH_BINARY_BUILD') and platform.system() == 'Linux':
|
|
print('PYTORCH_BINARY_BUILD found. Static linking libstdc++ on Linux')
|
|
# get path of libstdc++ and link manually.
|
|
# for reasons unknown, -static-libstdc++ doesn't fully link some symbols
|
|
CXXNAME = os.getenv('CXX', 'g++')
|
|
STDCPP_LIB = subprocess.check_output([CXXNAME, '-print-file-name=libstdc++.a'])
|
|
STDCPP_LIB = STDCPP_LIB[:-1]
|
|
if type(STDCPP_LIB) != str: # python 3
|
|
STDCPP_LIB = STDCPP_LIB.decode(sys.stdout.encoding)
|
|
main_link_args += [STDCPP_LIB]
|
|
version_script = os.path.abspath("tools/pytorch.version")
|
|
extra_link_args += ['-Wl,--version-script=' + version_script]
|
|
|
|
|
|
def make_relative_rpath(path):
|
|
if IS_DARWIN:
|
|
return '-Wl,-rpath,@loader_path/' + path
|
|
elif IS_WINDOWS:
|
|
return ''
|
|
else:
|
|
return '-Wl,-rpath,$ORIGIN/' + path
|
|
|
|
################################################################################
|
|
# Declare extensions and package
|
|
################################################################################
|
|
|
|
extensions = []
|
|
packages = find_packages(exclude=('tools', 'tools.*',))
|
|
C = Extension("torch._C",
|
|
libraries=main_libraries,
|
|
sources=main_sources,
|
|
language='c++',
|
|
extra_compile_args=main_compile_args + extra_compile_args,
|
|
include_dirs=include_dirs,
|
|
library_dirs=library_dirs,
|
|
extra_link_args=extra_link_args + main_link_args + [make_relative_rpath('lib')],
|
|
)
|
|
extensions.append(C)
|
|
|
|
if not IS_WINDOWS:
|
|
DL = Extension("torch._dl",
|
|
sources=["torch/csrc/dl.c"],
|
|
language='c',
|
|
)
|
|
extensions.append(DL)
|
|
|
|
|
|
if WITH_CUDA:
|
|
thnvrtc_link_flags = extra_link_args + [make_relative_rpath('lib')]
|
|
if IS_LINUX:
|
|
thnvrtc_link_flags = thnvrtc_link_flags + ['-Wl,--no-as-needed']
|
|
# these have to be specified as -lcuda in link_flags because they
|
|
# have to come right after the `no-as-needed` option
|
|
if IS_WINDOWS:
|
|
thnvrtc_link_flags += ['cuda.lib', 'nvrtc.lib']
|
|
else:
|
|
thnvrtc_link_flags += ['-lcuda', '-lnvrtc']
|
|
cuda_stub_path = [cuda_lib_path + '/stubs']
|
|
if IS_DARWIN:
|
|
# on macOS this is where the CUDA stub is installed according to the manual
|
|
cuda_stub_path = ["/usr/local/cuda/lib"]
|
|
THNVRTC = Extension("torch._nvrtc",
|
|
sources=['torch/csrc/nvrtc.cpp'],
|
|
language='c++',
|
|
include_dirs=include_dirs,
|
|
library_dirs=library_dirs + cuda_stub_path,
|
|
extra_link_args=thnvrtc_link_flags,
|
|
)
|
|
extensions.append(THNVRTC)
|
|
|
|
version = '0.4.0a0'
|
|
if os.getenv('PYTORCH_BUILD_VERSION'):
|
|
assert os.getenv('PYTORCH_BUILD_NUMBER') is not None
|
|
build_number = int(os.getenv('PYTORCH_BUILD_NUMBER'))
|
|
version = os.getenv('PYTORCH_BUILD_VERSION')
|
|
if build_number > 1:
|
|
version += '.post' + str(build_number)
|
|
else:
|
|
try:
|
|
sha = subprocess.check_output(['git', 'rev-parse', 'HEAD'], cwd=cwd).decode('ascii').strip()
|
|
version += '+' + sha[:7]
|
|
except Exception:
|
|
pass
|
|
|
|
cmdclass = {
|
|
'build': build,
|
|
'build_py': build_py,
|
|
'build_ext': build_ext,
|
|
'build_deps': build_deps,
|
|
'build_module': build_module,
|
|
'develop': develop,
|
|
'install': install,
|
|
'clean': clean,
|
|
}
|
|
cmdclass.update(build_dep_cmds)
|
|
|
|
if __name__ == '__main__':
|
|
setup(
|
|
name="torch",
|
|
version=version,
|
|
description=("Tensors and Dynamic neural networks in "
|
|
"Python with strong GPU acceleration"),
|
|
ext_modules=extensions,
|
|
cmdclass=cmdclass,
|
|
packages=packages,
|
|
package_data={
|
|
'torch': [
|
|
'lib/*.so*',
|
|
'lib/*.dylib*',
|
|
'lib/*.dll',
|
|
'lib/*.lib',
|
|
'lib/torch_shm_manager',
|
|
'lib/*.h',
|
|
'lib/include/ATen/*.h',
|
|
'lib/include/ATen/cuda/*.h',
|
|
'lib/include/ATen/cuda/*.cuh',
|
|
'lib/include/ATen/cudnn/*.h',
|
|
'lib/include/ATen/cuda/detail/*.cuh',
|
|
'lib/include/pybind11/*.h',
|
|
'lib/include/pybind11/detail/*.h',
|
|
'lib/include/TH/*.h',
|
|
'lib/include/TH/generic/*.h',
|
|
'lib/include/THC/*.h',
|
|
'lib/include/THC/*.cuh',
|
|
'lib/include/THC/generic/*.h',
|
|
'lib/include/THCUNN/*.cuh',
|
|
'lib/include/torch/csrc/*.h',
|
|
'lib/include/torch/csrc/autograd/*.h',
|
|
'lib/include/torch/csrc/jit/*.h',
|
|
'lib/include/torch/csrc/utils/*.h',
|
|
'lib/include/torch/torch.h',
|
|
]
|
|
})
|