pytorch/test/cpp/jit/test_peephole_optimize.h
eellison dc6b5b2a52 Optimize boolean expressions & unwraps (#18259)
Summary:
Simplify or eliminate boolean and/or expressions, optimize unwrapping a value that cannot be None, and optimize using `is` with a None and a non-None value

Since peephole optimize is now introducing constants, i added another constant propagation pass after running it.

Previously i had a PR that did this & optimized shape ops - i will add the shape optimizations in a separate PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18259

Differential Revision: D14602749

Pulled By: eellison

fbshipit-source-id: 1c3f5a67067d8dfdf55d7b78dcb616472ea8a267
2019-03-25 21:50:57 -07:00

105 lines
2.3 KiB
C++

#pragma once
#include <test/cpp/jit/test_base.h>
#include <test/cpp/jit/test_utils.h>
#include <torch/csrc/jit/irparser.h>
#include <torch/csrc/jit/passes/peephole.h>
namespace torch {
namespace jit {
using namespace script;
using namespace testing;
namespace test {
void testPeepholeOptimize() {
// test is / is not none optimization
{
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph(%0 : int):
%1 : None = prim::Constant()
%2 : bool = aten::__is__(%0, %1)
%3 : bool = aten::__isnot__(%0, %1)
return (%2, %3)
)IR",
graph.get());
PeepholeOptimize(graph);
testing::FileCheck()
.check_not("aten::__is__")
->check_not("aten::__isnot__")
->run(*graph);
}
{
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph(%0: int?):
%1 : None = prim::Constant()
%2 : bool = aten::__is__(%0, %1)
%3 : bool = aten::__isnot__(%0, %1)
return (%2, %3)
)IR",
graph.get());
PeepholeOptimize(graph);
testing::FileCheck()
.check("aten::__is__")
->check("aten::__isnot__")
->run(*graph);
}
{
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph(%0: int?):
%1 : Tensor = prim::AutogradZero()
%2 : None = prim::Constant()
%4 : bool = aten::__is__(%0, %1)
%5 : bool = aten::__isnot__(%1, %2)
return (%4, %5)
)IR",
graph.get());
PeepholeOptimize(graph);
testing::FileCheck()
.check("aten::__is__")
->check_not("aten::__isnot__")
->run(*graph);
}
// test unwrap optional
{
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph():
%1 : Float(*, *, *) = prim::Constant()
%2 : bool = aten::_unwrap_optional(%1)
%3 : bool = prim::unchecked_unwrap_optional(%1)
return (%2, %3)
)IR",
graph.get());
PeepholeOptimize(graph);
testing::FileCheck().check_not("unwrap")->run(*graph);
}
{
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph(%1 : Float(*, *, *)?):
%2 : bool = aten::_unwrap_optional(%1)
%3 : bool = prim::unchecked_unwrap_optional(%1)
return (%2, %3)
)IR",
graph.get());
PeepholeOptimize(graph);
testing::FileCheck().check_count("unwrap", 2)->run(*graph);
}
}
} // namespace test
} // namespace jit
} // namespace torch