pytorch/torch/csrc/jit/codegen/cuda/codegen.cpp
Nikita Shulga eac02f85cf Fix more clang-tidy errors (#57235)
Summary:
In my last PR I've missed CUDA and distributed folders, fixing this now
This change is autogenerated by `python tool/clang_tidy.py -s`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57235

Reviewed By: janeyx99

Differential Revision: D28084444

Pulled By: malfet

fbshipit-source-id: bf222f69ee90c7872c3cb0931e8cdb84f0cb3cda
2021-04-28 23:29:10 -07:00

656 lines
20 KiB
C++

#include <torch/csrc/jit/codegen/cuda/codegen.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir.h>
#include <torch/csrc/jit/codegen/cuda/type.h>
#include <torch/csrc/jit/codegen/cuda/utils.h>
#include <sstream>
#include <vector>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace codegen {
namespace {
class CudaKernelGenerator : private OptInConstDispatch {
static constexpr char* kTab = " ";
public:
static std::string generateKernelDefinition(
const Kernel* kernel,
const std::string& kernel_name) {
CudaKernelGenerator codegen(kernel);
codegen.genDeclaration(kernel_name);
codegen.startBlock();
codegen.genPrologue();
codegen.genBody();
codegen.endBlock();
TORCH_CHECK(codegen.block_nest_level_ == 0);
return codegen.code_.str();
}
private:
explicit CudaKernelGenerator(const Kernel* kernel) : kernel_(kernel) {}
// Generates the kernel function declaration
void genDeclaration(const std::string& kernel_name) {
const auto& kernel_summary = kernel_->summary();
code_ << "__global__ void " << kernel_name << "(";
std::vector<Val*> params;
// Inputs
for (auto val : kernel_->inputs()) {
params.push_back(val);
}
// Outputs
for (auto val : kernel_->outputs()) {
params.push_back(val);
}
// Global buffers
for (auto allocate : kernel_summary.global_allocations) {
params.push_back(allocate->buffer());
}
// Generate parameter declarations
for (Val* val : params) {
switch (val->getValType().value()) {
case ValType::KirTensorView: {
// TODO(kir): review this
const auto tv = val->as<kir::TensorView>();
code_ << "Tensor<" << val->getDataType().value() << ", "
<< TensorDomain::noReductions(
tv->fuserTv()->getMaybeRFactorDomain())
.size()
<< "> " << gen(tv);
break;
}
case ValType::KirScalar:
code_ << val->getDataType().value() << " " << gen(val);
break;
default:
TORCH_CHECK(!"Unexpected parameter type");
}
if (val != params.back()) {
code_ << ", ";
}
}
// Kernels generating random numbers take extra (seed, offset) arguments
if (kernel_summary.is_stochastic) {
code_ << ", unsigned long long seed, unsigned long long offset";
}
code_ << ") ";
}
// Generates setup code which is executed before the kernel body
void genPrologue() {
const auto& kernel_summary = kernel_->summary();
// Random number generator (optional)
if (kernel_summary.is_stochastic) {
indent() << "const int idx = blockIdx.x*blockDim.x + threadIdx.x;\n";
indent() << "Philox rnd(seed, idx, offset);\n";
}
// Do we have any dynamic shared memory buffers?
const bool has_dynamic_smem =
!kernel_summary.dynamic_smem_allocations.empty();
// Do we have any reductions?
const bool has_reductions = kernel_summary.has_block_reductions ||
kernel_summary.has_grid_reductions;
// Shared memory
if (has_dynamic_smem || has_reductions) {
indent() << "alignas("
#ifndef __HIP_PLATFORM_HCC__
<< dataTypeSize(kernel_summary.largest_smem_data_type)
#else
<< 8 // for HIP, we want 8-aligned even for smaller datatypes
#endif
<< ") extern __shared__ char array[];\n";
if (has_dynamic_smem) {
indent() << "unsigned offset = 0;\n";
}
if (has_reductions) {
indent() << "void* shared_mem = array;\n";
if (has_dynamic_smem) {
indent() << "offset += "
<< "((blockDim.x * blockDim.y * blockDim.z) * sizeof("
<< kernel_summary.largest_smem_data_type << "));\n";
}
}
}
}
void genBody() {
for (auto expr : kernel_->topLevelExprs()) {
OptInConstDispatch::handle(expr);
}
}
void startBlock(bool continuation = false) {
if (continuation) {
code_ << "{\n";
} else {
indent() << "{\n";
}
++block_nest_level_;
}
void endBlock(const char* sep = "\n") {
--block_nest_level_;
TORCH_CHECK(block_nest_level_ >= 0);
indent() << "}" << sep;
}
std::ostream& indent() {
for (int i = 0; i < block_nest_level_; ++i) {
code_ << kTab;
}
return code_;
}
std::string gen(const Statement* stmt) {
std::stringstream tmp_code;
std::swap(tmp_code, code_);
handle(stmt);
std::swap(tmp_code, code_);
return tmp_code.str();
}
std::string gen(const kir::TensorView* tv) {
std::stringstream tv_name;
tv_name << "T" << tv->name();
return tv_name.str();
}
std::string genInline(const Statement* stmt) {
const bool saved_inline = print_inline_;
print_inline_ = true;
const auto result = gen(stmt);
print_inline_ = saved_inline;
// NOLINTNEXTLINE(performance-no-automatic-move)
return result;
}
void handle(const Statement* node) final {
OptInConstDispatch::handle(node);
}
void handle(const Expr* node) final {
OptInConstDispatch::handle(node);
}
void handle(const Val* node) final {
OptInConstDispatch::handle(node);
}
void handle(const kir::Bool* node) final {
const auto def = node->getOrigin();
if (print_inline_ && def != nullptr) {
code_ << "(" << gen(def) << ")";
} else if (node->isSymbolic()) {
code_ << "b" << node->name();
} else {
code_ << *node->value();
}
}
void handle(const kir::Float* node) final {
const auto def = node->getOrigin();
if (print_inline_ && def != nullptr) {
code_ << "(" << gen(def) << ")";
} else if (node->isSymbolic()) {
code_ << "f" << node->name();
} else {
const int digits = std::numeric_limits<Float::ScalarType>::max_digits10;
code_ << "float(" << std::setprecision(digits) << *node->value() << ")";
}
}
void handle(const kir::Half* node) final {
const auto def = node->getOrigin();
if (print_inline_ && def != nullptr) {
code_ << "(" << gen(def) << ")";
} else if (node->isSymbolic()) {
code_ << "h" << node->name();
} else {
code_ << "__float2half(" << *node->value() << ")";
}
}
void handle(const kir::Int* node) final {
const auto def = node->getOrigin();
if (print_inline_ && def != nullptr) {
code_ << "(" << gen(def) << ")";
} else if (node->isSymbolic()) {
code_ << "i" << node->name();
} else {
code_ << *node->value();
}
}
void handle(const kir::NamedScalar* node) final {
code_ << node->name();
}
void handle(const kir::TensorIndex* node) final {
code_ << gen(node->view()) << "[";
bool first = true;
for (auto* ind : node->indices()) {
if (!ind->isZeroInt()) {
if (!first) {
code_ << " + ";
}
code_ << genInline(ind);
first = false;
}
}
if (first) {
code_ << "0";
}
code_ << "]";
}
void handle(const kir::IterDomain* node) final {
TORCH_INTERNAL_ASSERT(!"Unreachable");
}
void handle(const kir::TensorDomain* node) final {
TORCH_INTERNAL_ASSERT(!"Unreachable");
}
void handle(const kir::TensorView* node) final {
TORCH_INTERNAL_ASSERT(!"Unreachable");
}
void handle(const kir::UnaryOp* node) final {
if (!print_inline_) {
indent() << gen(node->out());
if (!node->out()->isScalar() && !node->in()->isScalar()) {
code_ << "\n";
indent() << kTab;
}
code_ << " = ";
}
if (auto op = inline_op_str(node->getUnaryOpType())) {
code_ << *op << gen(node->in());
} else {
if (node->getUnaryOpType() == UnaryOpType::Cast) {
const auto cast_str = cast_func_str(
{node->in()->getDataType().value(),
node->out()->getDataType().value()});
code_ << cast_str.value();
} else {
code_ << node->getUnaryOpType();
}
code_ << "(";
if (node->getUnaryOpType() == UnaryOpType::RandLike) {
code_ << "rnd";
} else {
code_ << gen(node->in());
}
code_ << ")";
}
if (!print_inline_) {
code_ << ";\n";
}
}
std::string genBinaryOp(
BinaryOpType op_type,
const std::string& lhs,
const std::string& rhs) {
std::stringstream expr;
if (auto op = inline_op_str(op_type)) {
expr << lhs << " " << *op << " " << rhs;
} else {
expr << op_type << "(" << lhs << ", " << rhs << ")";
}
return expr.str();
}
void handle(const kir::BinaryOp* node) final {
const auto op_type = node->getBinaryOpType();
if (print_inline_) {
// Inline expression: `lhs op rhs`
code_ << genBinaryOp(op_type, gen(node->lhs()), gen(node->rhs()));
} else {
indent() << gen(node->out());
if (node->out()->isScalar()) {
// Single line: `out = lhs op rhs;`
code_ << " = "
<< genBinaryOp(op_type, gen(node->lhs()), gen(node->rhs()));
} else {
// Split TensorView expressions across multiple lines:
//
// out
// = lhs
// op rhs;
//
if (auto op = inline_op_str(op_type)) {
code_ << "\n";
indent() << kTab << "= " << gen(node->lhs()) << "\n";
indent() << kTab << *op << " " << gen(node->rhs());
} else {
code_ << " = " << op_type << "(\n";
indent() << kTab << gen(node->lhs()) << ",\n";
indent() << kTab << gen(node->rhs()) << ")";
}
}
code_ << ";\n";
}
}
void handle(const kir::TernaryOp* node) final {
if (!print_inline_) {
indent() << gen(node->out());
if (!node->out()->isScalar()) {
code_ << "\n";
indent() << kTab;
}
code_ << " = ";
}
code_ << node->getTernaryOpType() << "(" << gen(node->in1()) << ", "
<< gen(node->in2()) << ", " << gen(node->in3()) << ")";
if (!print_inline_) {
code_ << ";\n";
}
}
std::string genReductionOp(BinaryOpType op_type, DataType data_type) {
std::stringstream lambda;
lambda << "[](" << data_type << " &a, " << data_type << " b) "
<< "{ a = " << genBinaryOp(op_type, "a", "b") << "; }";
return lambda.str();
}
void handle(const kir::BroadcastOp* node) final {
const ir_utils::ParallelTypeBitmap domains =
ir_utils::getParallelBroadcastDomains(
node->out(), kernel_->predicateMap());
const bool thread_x = domains.get(ParallelType::TIDx);
const bool thread_y = domains.get(ParallelType::TIDy);
const bool thread_z = domains.get(ParallelType::TIDz);
const bool block_x = domains.get(ParallelType::BIDx);
const bool block_y = domains.get(ParallelType::BIDy);
const bool block_z = domains.get(ParallelType::BIDz);
const bool grid_broadcast_needed = block_x || block_y || block_z;
const bool block_broadcast_needed = thread_x || thread_y || thread_z;
TORCH_INTERNAL_ASSERT(
!grid_broadcast_needed,
"Parallel broadcast across blocks not supported");
if (block_broadcast_needed) {
const auto data_type = node->out()->getDataType().value();
indent() << "broadcast::blockBroadcast<" << (thread_x ? "true" : "false")
<< ", " << (thread_y ? "true" : "false") << ", "
<< (thread_z ? "true" : "false") << ">(\n";
indent() << kTab << gen(node->out()) << ",\n";
indent() << kTab << gen(node->in()) << ",\n";
indent() << kTab << "static_cast<" << data_type << "*>(shared_mem));\n";
} else {
indent() << gen(node->out()) << "\n";
indent() << kTab << " = " << gen(node->in()) << ";\n";
}
}
void handle(const kir::ReductionOp* node) final {
TORCH_CHECK(node->out()->getValType() == ValType::TensorIndex);
const auto out = node->out()->as<kir::TensorIndex>();
const auto domain = out->view()->domain();
const bool has_block_reduce = domain->hasBlockReduction();
const bool has_grid_reduce = domain->hasGridReduction();
if (!has_block_reduce && !has_grid_reduce) {
const auto gen_out = gen(out);
const auto op_type = node->getReductionOpType();
indent() << gen_out << " = "
<< genBinaryOp(op_type, gen_out, gen(node->in())) << ";\n";
return;
}
const auto par_domains = node->getParallelReductionDomains();
const bool tidx = par_domains.find(ParallelType::TIDx) != par_domains.end();
const bool tidy = par_domains.find(ParallelType::TIDy) != par_domains.end();
const bool tidz = par_domains.find(ParallelType::TIDz) != par_domains.end();
const auto data_type = node->out()->getDataType().value();
const auto op_type = node->getReductionOpType();
if (has_block_reduce) {
if (has_grid_reduce) {
indent() << data_type << " "
<< "block_result"
<< ";\n";
}
indent() << "blockReduce<" << (tidx ? "true" : "false") << ", "
<< (tidy ? "true" : "false") << ", " << (tidz ? "true" : "false")
<< ">(\n";
if (has_grid_reduce) {
indent() << kTab << "block_result"
<< ",\n";
} else {
indent() << kTab << gen(node->out()) << ",\n";
}
indent() << kTab << gen(node->in()) << ",\n";
indent() << kTab << genReductionOp(op_type, data_type) << ",\n";
indent() << kTab << "threadIdx,\n";
indent() << kTab << "blockDim,\n";
indent() << kTab << "static_cast<" << data_type << "*>(shared_mem),\n";
if (node->pred() == nullptr) {
indent() << kTab << "true,\n";
} else {
indent() << kTab << genInline(node->pred()) << ",\n";
}
indent() << kTab << genInline(node->init()) << ");\n";
}
}
void handle(const kir::GridReduction* node) final {
const auto rop = node->reduction_op();
TORCH_INTERNAL_ASSERT(rop->out()->getValType() == ValType::TensorIndex);
const auto out = rop->out()->as<kir::TensorIndex>();
const auto domain = out->view()->domain();
TORCH_INTERNAL_ASSERT(domain->hasGridReduction());
const auto par_domains = rop->getParallelReductionDomains();
const bool tidx = par_domains.find(ParallelType::TIDx) != par_domains.end();
const bool tidy = par_domains.find(ParallelType::TIDy) != par_domains.end();
const bool tidz = par_domains.find(ParallelType::TIDz) != par_domains.end();
const bool bidx = par_domains.find(ParallelType::BIDx) != par_domains.end();
const bool bidy = par_domains.find(ParallelType::BIDy) != par_domains.end();
const bool bidz = par_domains.find(ParallelType::BIDz) != par_domains.end();
const auto data_type = rop->out()->getDataType().value();
const auto op_type = rop->getReductionOpType();
TORCH_INTERNAL_ASSERT(
node->reduction_buffer()->buffer()->getValType().value() ==
ValType::KirTensorView);
TORCH_INTERNAL_ASSERT(
node->sync_buffer()->buffer()->getValType().value() ==
ValType::KirTensorView);
const auto work_buffer =
node->reduction_buffer()->buffer()->as<kir::TensorView>();
const auto sync_buffer =
node->sync_buffer()->buffer()->as<kir::TensorView>();
// Since block-level reduction is already done, those dimensions
// with tidx/y/z being true do not participate in the grid reduction.
indent() << kir::GridReduction::getPredicateFlagName(out->view()) << " = "
<< "reduction::gridReduce<" << (bidx ? "true" : "false") << ", "
<< (bidy ? "true" : "false") << ", " << (bidz ? "true" : "false")
<< ", " << (!tidx ? "true" : "false") << ", "
<< (!tidy ? "true" : "false") << ", " << (!tidz ? "true" : "false")
<< ">(\n";
indent() << kTab << gen(rop->out()) << ",\n";
if (domain->hasBlockReduction()) {
indent() << kTab << "block_result"
<< ",\n";
} else {
indent() << kTab << gen(rop->in()) << ",\n";
}
indent() << kTab << genReductionOp(op_type, data_type) << ",\n";
indent() << kTab << "&" << gen(work_buffer) << "[0],\n";
indent() << kTab << gen(sync_buffer) << ",\n";
indent() << kTab << "static_cast<" << data_type << "*>(shared_mem),\n";
if (node->pred() == nullptr) {
indent() << kTab << "true,\n";
} else {
indent() << kTab << genInline(node->pred()) << ",\n";
}
indent() << kTab << genInline(node->reduction_op()->init()) << ");\n";
}
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Woverloaded-virtual"
// TODO(Kir): fix me
void handle(const kir::Scope& scope) {
for (auto expr : scope.exprs()) {
handle(expr);
}
}
#pragma clang diagnostic pop
void handle(const kir::ForLoop* node) final {
// TODO(kir): handle this during lowering
if (node->iter_domain()->isThread() || node->iter_domain()->isBroadcast()) {
handle(node->body());
return;
}
const auto gen_index = gen(node->index());
const auto gen_start = genInline(node->iter_domain()->start());
const auto gen_extent = genInline(node->iter_domain()->extent());
indent() << "for(size_t " << gen_index << " = " << gen_start << "; "
<< gen_index << " < " << gen_extent << "; ++" << gen_index << ") ";
startBlock(true);
handle(node->body());
endBlock();
}
void handle(const kir::IfThenElse* node) final {
indent() << "if (" << genInline(node->cond()) << ") ";
// "then" block
startBlock(true);
handle(node->thenBody());
// "else" block (optional)
if (node->hasElse()) {
endBlock(" else ");
startBlock(true);
handle(node->elseBody());
}
endBlock();
}
// TODO(kir): fold initialization into Allocate
void handle(const kir::Allocate* node) final {
if (node->buffer()->getValType().value() != ValType::KirTensorView) {
indent() << node->buffer_type() << " " << gen(node->buffer()) << ";\n";
return;
}
const auto tv = node->buffer()->as<kir::TensorView>();
TORCH_INTERNAL_ASSERT(tv->domain()->nDims() > 0);
TORCH_INTERNAL_ASSERT(node->size() != nullptr);
if (node->alias() != nullptr) {
// Allocate alias another Allocate node
const auto alias_tv = node->alias()->buffer()->as<kir::TensorView>();
indent() << "// Alias Allocation - " << node->getMemoryType() << "\n";
indent() << node->buffer_type() << "* " << gen(tv) << " = "
<< gen(alias_tv) << ";\n";
} else {
// Standard Memory Allocation
switch (tv->memoryType()) {
case MemoryType::Global:
indent() << "// Allocate global tensor " << gen(tv) << "\n";
break;
case MemoryType::Shared:
if (node->size()->isConstScalar()) {
// Static shared memory
indent() << "__shared__ " << node->buffer_type() << " " << gen(tv)
<< "[" << genInline(node->size()) << "];\n";
} else {
// Align Offset Position
indent() << "offset = alignBufferSize(offset,"
<< dataTypeSize(node->buffer_type()) << ");\n";
// Shared Memory Pointer
indent() << node->buffer_type() << "* " << gen(tv)
<< " = reinterpret_cast<" << node->buffer_type() << "*>"
<< "(array + offset);\n";
// Increment Offset Position
indent() << "offset += (" << genInline(node->size()) << " * sizeof("
<< node->buffer_type() << "));\n";
}
break;
case MemoryType::Local:
indent() << node->buffer_type() << " " << gen(tv) << "["
<< genInline(node->size()) << "];\n";
break;
default:
TORCH_INTERNAL_ASSERT(false, "Unexpected memory type");
}
}
}
void handle(const kir::Sync* node) final {
indent() << "__syncthreads();\n";
}
private:
std::stringstream code_;
const Kernel* kernel_;
int block_nest_level_ = 0;
// TODO(kir): replace with explicit assignment statements
bool print_inline_ = false;
};
} // namespace
std::string generateCudaKernel(
const Kernel* kernel,
const std::string& kernel_name) {
FUSER_PERF_SCOPE("generateCudaKernel");
return CudaKernelGenerator::generateKernelDefinition(kernel, kernel_name);
}
} // namespace codegen
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch