mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
This PR squashes together the following commits: https://github.com/pytorch/pytorch/pull/144115 https://github.com/pytorch/pytorch/pull/143417 https://github.com/pytorch/pytorch/pull/143405 https://github.com/pytorch/pytorch/pull/143387 https://github.com/pytorch/pytorch/pull/143304 https://github.com/pytorch/pytorch/pull/143296 This is a refactor of compiled autograd to use "functional autograd". The end goal is that it gets compiled autograd's initial capture to stop specializing on Tensor metadata, therefore allowing compiled autograd to better handle Tensor subclasses. For more information, please read the commit messages for each PR. Pull Request resolved: https://github.com/pytorch/pytorch/pull/144707 Approved by: https://github.com/bdhirsh, https://github.com/xmfan, https://github.com/jansel
584 lines
21 KiB
C++
584 lines
21 KiB
C++
#pragma once
|
|
|
|
#include <ATen/core/ivalue.h>
|
|
#include <c10/core/SymInt.h>
|
|
#include <c10/util/flat_hash_map.h>
|
|
#include <c10/util/irange.h>
|
|
#include <torch/csrc/autograd/function.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
#include <torch/csrc/autograd/variable_info.h>
|
|
#include <torch/csrc/dynamo/compiled_autograd.h>
|
|
#include <vector>
|
|
|
|
namespace torch::autograd {
|
|
|
|
using optional_variable_list = std::vector<std::optional<Variable>>;
|
|
using _jvp_fn_t = std::function<variable_list(variable_list, variable_list)>;
|
|
using _view_as_self_fn_t = std::function<at::Tensor(at::Tensor)>;
|
|
|
|
TORCH_API std::vector<std::optional<Variable>> _wrap_outputs(
|
|
const variable_list& input_vars,
|
|
const std::unordered_set<at::TensorImpl*>& non_differentiable,
|
|
const std::unordered_set<at::TensorImpl*>& dirty_inputs,
|
|
const at::ArrayRef<std::optional<Variable>> raw_outputs,
|
|
const std::shared_ptr<Node>& cdata,
|
|
const _jvp_fn_t& jvp_user_function,
|
|
const std::unordered_set<at::TensorImpl*>& to_save_if_setup_context,
|
|
const _view_as_self_fn_t& view_as_self_fn);
|
|
|
|
TORCH_API void check_variable_result(
|
|
const at::TensorBase& original,
|
|
const at::TensorBase& result,
|
|
const std::string& hook_name);
|
|
|
|
// Get the return type of the forward function of the custom Function class X
|
|
template <typename X, typename... Args>
|
|
using forward_t = decltype(X::forward(nullptr, std::declval<Args>()...));
|
|
|
|
/// To use custom autograd operations, implement a Function subclass with
|
|
/// static forward and backward functions:
|
|
///
|
|
/// `forward` can take as many arguments as you want and should return either a
|
|
/// variable list or a Variable. Use of any direct Variable arguments will be
|
|
/// registered in the graph but no vectors/sets or any other data structures
|
|
/// will be traversed. You can use std::optional<Tensor> as one of the arguments
|
|
/// and it will be registered as a variable in the graph if the argument has a
|
|
/// value. It should take a pointer to `torch::autograd::AutogradContext` as the
|
|
/// first argument. Variables can be saved in the `ctx` using
|
|
/// `ctx->save_for_backward`
|
|
/// (see `torch::autograd::AutogradContext::save_for_backward`) and other data
|
|
/// can be saved in the `ctx->saved_data` map
|
|
/// (see `torch::autograd::AutogradContext::saved_data`)
|
|
/// in the form of `<std::string, at::IValue>` pairs.
|
|
///
|
|
/// `backward` should take a pointer to `torch::autograd::AutogradContext`
|
|
/// and a variable list containing as many Variables as there were outputs from
|
|
/// `forward` as arguments. It should return as many Variables as there were
|
|
/// inputs with each of them containing the gradient w.r.t. its corresponding
|
|
/// input. Variables saved in `forward` can be accessed with
|
|
/// `ctx->get_saved_variables` (see
|
|
/// `torch::autograd::AutogradContext::get_saved_variables`) and other saved
|
|
/// data can be accessed from `ctx->saved_data`.
|
|
/// To enable compiled autograd support (torch.compile for backward) for your
|
|
/// custom autograd operation, you can set MyFunction::is_traceable
|
|
/// (see Function::istraceable notes below).
|
|
///
|
|
/// For example:
|
|
/// ```
|
|
/// class MyFunction : public Function<MyFunction> {
|
|
/// public:
|
|
/// static constexpr bool is_traceable = true;
|
|
///
|
|
/// static variable_list forward(AutogradContext *ctx, int n, Variable var) {
|
|
/// // Save data for backward in context
|
|
/// ctx->saved_data["n"] = n;
|
|
/// var.mul_(n);
|
|
/// // Mark var as modified by inplace operation
|
|
/// ctx->mark_dirty({var});
|
|
/// return {var};
|
|
/// }
|
|
///
|
|
/// static variable_list backward(AutogradContext *ctx, variable_list
|
|
/// grad_output) {
|
|
/// // Use data saved in forward
|
|
/// auto n = ctx->saved_data["n"].toInt();
|
|
/// return {grad_output[0]*n};
|
|
/// }
|
|
/// };
|
|
/// ```
|
|
///
|
|
/// To use `MyFunction`:
|
|
/// ```
|
|
/// Variable x;
|
|
/// auto y = MyFunction::apply(6, x);
|
|
/// // Example backward call
|
|
/// y[0].sum().backward();
|
|
/// ```
|
|
template <class T>
|
|
struct TORCH_API Function {
|
|
// We need to use a different template parameter than T here because T will
|
|
// inherit from Function, and when Function<T> is instantiated, T::forward
|
|
// is not declared yet.
|
|
// The enable_if check is to ensure that the user doesn't explicitly provide
|
|
// the parameter X.
|
|
template <typename X = T, typename... Args>
|
|
static auto apply(Args&&... args)
|
|
-> std::enable_if_t<std::is_same_v<X, T>, forward_t<X, Args...>>;
|
|
|
|
// This flag is for an experimental feature: compiled autograd. Not all
|
|
// built-in APIs are supported at the moment e.g. mark_dirty and
|
|
// mark_non_differentiable. Before setting this flag to enable tracing for
|
|
// your custom function <T>, you need to ensure that the backward function is
|
|
// traceable i.e. any variables accessed in the backward other than the input
|
|
// arguments must be handled in a similar manner to built-ins in
|
|
// CppNode::compiled_args and CppNode::apply_with_saved.
|
|
static constexpr bool is_traceable = false;
|
|
};
|
|
|
|
/// Context to save information during `forward` that can be accessed in
|
|
/// `backward` in custom autograd operations (see `torch::autograd::Function`
|
|
/// for details).
|
|
struct TORCH_API AutogradContext {
|
|
AutogradContext() = default;
|
|
AutogradContext(const AutogradContext& other) = delete;
|
|
AutogradContext& operator=(const AutogradContext& other) = delete;
|
|
AutogradContext(AutogradContext&& other) = delete;
|
|
AutogradContext& operator=(AutogradContext&& other) = delete;
|
|
~AutogradContext() = default;
|
|
|
|
AutogradContext(PackedArgs& packed_args);
|
|
|
|
/// Can be used to save non-variable data for `backward`.
|
|
ska::flat_hash_map<std::string, at::IValue> saved_data;
|
|
|
|
/// Saves the list of variables for a future call to `backward`. This
|
|
/// should be called at most once from inside of `forward`.
|
|
void save_for_backward(variable_list to_save);
|
|
/// Marks variables in the list as modified in an in-place operation. This
|
|
/// should be called at most once from inside of `forward` and all arguments
|
|
/// should be inputs.
|
|
void mark_dirty(const variable_list& inputs);
|
|
/// Marks outputs in the list as not requiring gradients. This should be
|
|
/// called at most once from inside of `forward` and all arguments should be
|
|
/// outputs.
|
|
void mark_non_differentiable(const variable_list& outputs);
|
|
// Sets whether undefined output grad tensors should be expanded to tensors
|
|
// full of zeros before calling backward function. Default value is true.
|
|
void set_materialize_grads(bool value);
|
|
|
|
/// Get the list of variables that were saved in `forward` using
|
|
/// `save_for_backward()`. Before returning them to the user, a check is made
|
|
/// to ensure that they were not modified by any in-place operations.
|
|
variable_list get_saved_variables() const;
|
|
const std::unordered_set<at::TensorImpl*>& get_and_bump_dirty() const;
|
|
const std::unordered_set<at::TensorImpl*>& get_non_differentiable() const;
|
|
|
|
/// Expose the Node's `task_should_compute_output` method to the cpp
|
|
/// custom autograd Function as `needs_input_grad`.
|
|
bool needs_input_grad(size_t output_edge_index) const;
|
|
bool needs_input_grad(std::initializer_list<IndexRange> idxs) const;
|
|
|
|
private:
|
|
std::unordered_set<at::TensorImpl*> non_differentiable_;
|
|
std::unordered_set<at::TensorImpl*> dirty_inputs_;
|
|
std::vector<torch::autograd::SavedVariable> saved_variables_;
|
|
variable_list to_save_;
|
|
bool materialize_grads_{true};
|
|
|
|
// The CppNode in the autograd graph that owns this AutogradContext. We need a
|
|
// weak_ptr to avoid a refcycle. Since grad_fn_ owns this AutogradContext, it
|
|
// will always be alive when we want to use it.
|
|
std::weak_ptr<Node> grad_fn_;
|
|
bool has_freed_buffers_{false};
|
|
|
|
// Compiled autograd overrides saved_variables() and needs_input_grad().
|
|
// We store the values we want to return here.
|
|
std::optional<variable_list> saved_variables_override_;
|
|
std::optional<std::vector<bool>> needs_input_grad_override_;
|
|
|
|
void save_variables();
|
|
|
|
template <class T>
|
|
friend struct CppNode;
|
|
template <class T>
|
|
friend variable_list CppNode_apply_functional(
|
|
variable_list&& inputs,
|
|
AutogradContext& ctx_,
|
|
const std::vector<bool>& is_variable_input_,
|
|
const std::vector<VariableInfo>& output_info_,
|
|
const std::string& name);
|
|
};
|
|
|
|
template <typename T>
|
|
inline variable_list CppNode_apply_functional(
|
|
// NOLINTNEXTLINE(cppcoreguidelines-rvalue-reference-param-not-moved)
|
|
variable_list&& inputs,
|
|
AutogradContext& ctx_,
|
|
const std::vector<bool>& is_variable_input_,
|
|
const std::vector<VariableInfo>& output_info_,
|
|
const std::string& name) {
|
|
at::OptionalDeviceGuard _device_guard;
|
|
|
|
auto num_inputs = inputs.size();
|
|
variable_list backward_inputs;
|
|
backward_inputs.reserve(num_inputs);
|
|
for (const auto i : c10::irange(num_inputs)) {
|
|
if (inputs[i].defined() || !ctx_.materialize_grads_) {
|
|
backward_inputs.emplace_back(std::move(inputs[i]));
|
|
} else {
|
|
backward_inputs.emplace_back(output_info_[i].zeros(_device_guard));
|
|
}
|
|
}
|
|
|
|
auto outputs = T::backward(&ctx_, backward_inputs);
|
|
|
|
const auto num_forward_inputs =
|
|
static_cast<int64_t>(is_variable_input_.size());
|
|
auto num_outputs = static_cast<int64_t>(outputs.size());
|
|
// Returning too many results is ok, but only as long as they're all
|
|
// undefined. Truncate the result vector in that case.
|
|
if (num_outputs > num_forward_inputs) {
|
|
bool all_undef = true;
|
|
for (const auto i : c10::irange(num_forward_inputs, num_outputs)) {
|
|
all_undef &= (!outputs[i].defined());
|
|
}
|
|
if (all_undef) {
|
|
outputs.resize(num_forward_inputs);
|
|
num_outputs = num_forward_inputs;
|
|
}
|
|
}
|
|
|
|
if (num_outputs != num_forward_inputs) {
|
|
std::string msg("function ");
|
|
msg += name + " returned an incorrect number of gradients (expected ";
|
|
msg += std::to_string(num_forward_inputs) + ", got ";
|
|
msg += std::to_string(num_outputs) + ")";
|
|
throw std::runtime_error(msg);
|
|
}
|
|
|
|
variable_list results;
|
|
results.reserve(num_outputs);
|
|
for (const auto i : c10::irange(num_outputs)) {
|
|
if (!is_variable_input_[i]) {
|
|
if (outputs[i].defined()) {
|
|
std::string msg("function ");
|
|
msg += name +
|
|
" returned a gradient different that is defined at position ";
|
|
msg += std::to_string(i + 1) +
|
|
", std the corresponding forward input was not a Variable";
|
|
throw std::runtime_error(msg);
|
|
}
|
|
continue;
|
|
}
|
|
results.emplace_back(outputs[i]);
|
|
}
|
|
return results;
|
|
}
|
|
|
|
template <typename T>
|
|
inline variable_list CppNode_apply_functional_ivalue(
|
|
const variable_list& inputs,
|
|
const std::vector<c10::IValue>& args) {
|
|
auto packed_args = PackedArgs(args);
|
|
auto ctx = AutogradContext(packed_args);
|
|
auto output_info = packed_args.unpack<std::vector<VariableInfo>>();
|
|
auto is_variable_input = packed_args.unpack<std::vector<bool>>();
|
|
auto name = packed_args.unpack<std::string>();
|
|
return CppNode_apply_functional<T>(
|
|
variable_list(inputs), ctx, is_variable_input, output_info, name);
|
|
}
|
|
|
|
// CppNode<T> is the Node in the autograd graph that represents the user defined
|
|
// backward function for Function<T>. Calls to CppNode::apply are forward to
|
|
// T::backward().
|
|
template <class T>
|
|
struct CppNode : public Node {
|
|
variable_list apply(variable_list&& inputs) override;
|
|
AutogradContext ctx_;
|
|
std::vector<bool> is_variable_input_;
|
|
std::vector<VariableInfo> input_info_;
|
|
std::vector<VariableInfo> output_info_;
|
|
|
|
void release_variables() override;
|
|
|
|
void set_ctx_grad_fn(const std::shared_ptr<Node>& node);
|
|
void save_variables_to_ctx();
|
|
|
|
void compiled_args(CompiledNodeArgs& args) override {
|
|
static_assert(
|
|
std::is_same_v<std::remove_cv_t<decltype(T::is_traceable)>, bool>);
|
|
if (!T::is_traceable) {
|
|
throw std::runtime_error(
|
|
std::string(
|
|
"Attempting to trace a potentially unsafe C++ autograd function: ") +
|
|
name() +
|
|
". It may be possible to trace it safely, please refer to the instructions in: https://docs.google.com/document/d/11VucFBEewzqgkABIjebZIzMvrXr3BtcY1aGKpX61pJY/.");
|
|
}
|
|
|
|
// although neither of the 2 methods below have uniqueness guarantees
|
|
// it is unlikely for them to collide at the same time
|
|
args.collect(static_cast<uint64_t>(typeid(T).hash_code()));
|
|
args.collect(std::string(typeid(T).name()));
|
|
|
|
args.collect(ctx_.saved_data);
|
|
TORCH_INTERNAL_ASSERT(ctx_.non_differentiable_.empty());
|
|
TORCH_INTERNAL_ASSERT(ctx_.dirty_inputs_.empty());
|
|
args.collect(
|
|
ctx_.saved_variables_, true); // always unpacked as output in eager
|
|
TORCH_INTERNAL_ASSERT(ctx_.to_save_.empty());
|
|
args.collect(ctx_.materialize_grads_);
|
|
args.collect(ctx_.has_freed_buffers_);
|
|
args.collect(is_variable_input_);
|
|
args.collect(input_info_);
|
|
args.collect(output_info_);
|
|
}
|
|
|
|
variable_list apply_with_saved(
|
|
const variable_list& inputs,
|
|
SwapSavedVariables& saved) override {
|
|
saved.before(ctx_.saved_data);
|
|
TORCH_INTERNAL_ASSERT(ctx_.non_differentiable_.empty());
|
|
TORCH_INTERNAL_ASSERT(ctx_.dirty_inputs_.empty());
|
|
saved.before(ctx_.saved_variables_);
|
|
TORCH_INTERNAL_ASSERT(ctx_.to_save_.empty());
|
|
saved.before(ctx_.materialize_grads_);
|
|
saved.before(ctx_.has_freed_buffers_);
|
|
saved.before(input_info_);
|
|
saved.before(output_info_);
|
|
|
|
PackedArgs packed_args;
|
|
packed_args.pack_saved_data(ctx_.saved_data);
|
|
variable_list saved_variables = ctx_.get_saved_variables();
|
|
packed_args.pack(saved_variables);
|
|
packed_args.pack(ctx_.materialize_grads_);
|
|
packed_args.pack(ctx_.has_freed_buffers_);
|
|
|
|
std::vector<bool> needs_input_grad;
|
|
{
|
|
auto ptr = ctx_.grad_fn_.lock();
|
|
TORCH_INTERNAL_ASSERT(ptr);
|
|
for (const auto i : c10::irange(ptr->next_edges().size())) {
|
|
needs_input_grad.push_back(ptr->task_should_compute_output(i));
|
|
}
|
|
}
|
|
packed_args.pack(needs_input_grad);
|
|
|
|
packed_args.pack(output_info_);
|
|
packed_args.pack(is_variable_input_);
|
|
packed_args.pack(name());
|
|
auto args = std::move(packed_args).vec();
|
|
|
|
auto output_metadata = torch::dynamo::autograd::
|
|
IValuePacker<std::vector<std::optional<InputMetadata>>>::pack(
|
|
torch::dynamo::autograd::get_input_metadata(next_edges()));
|
|
|
|
const auto& pyinterface = torch::dynamo::autograd::getPyCompilerInterface();
|
|
|
|
// Each time apply_with_saved is called, we bind a new function to Python.
|
|
// This is because the schema might be different on compiled autograd cache
|
|
// misses. An alternative is to pass the schema to Python so that it can be
|
|
// an input to a function, but the schema can't be put into an FX graph
|
|
// right now.
|
|
std::vector<at::TypePtr> schema;
|
|
schema.reserve(args.size());
|
|
for (const auto& ivalue : args) {
|
|
if (ivalue.isTensor()) {
|
|
schema.emplace_back(at::TensorType::get());
|
|
} else {
|
|
schema.emplace_back(ivalue.type());
|
|
}
|
|
}
|
|
auto fn_name = pyinterface->bind_function(
|
|
saved.get_py_compiler(),
|
|
std::string(typeid(T).name()),
|
|
CppNode_apply_functional_ivalue<T>,
|
|
schema,
|
|
/*is_custom_function*/ true);
|
|
|
|
auto results = pyinterface->call_function(
|
|
saved.get_py_compiler(),
|
|
"apply_functional",
|
|
fn_name,
|
|
inputs,
|
|
args,
|
|
output_metadata);
|
|
|
|
saved.after(ctx_.saved_data);
|
|
TORCH_INTERNAL_ASSERT(ctx_.non_differentiable_.empty());
|
|
TORCH_INTERNAL_ASSERT(ctx_.dirty_inputs_.empty());
|
|
saved.after(ctx_.saved_variables_);
|
|
TORCH_INTERNAL_ASSERT(ctx_.to_save_.empty());
|
|
saved.after(ctx_.materialize_grads_);
|
|
saved.after(ctx_.has_freed_buffers_);
|
|
saved.after(input_info_);
|
|
saved.after(output_info_);
|
|
return results;
|
|
}
|
|
};
|
|
|
|
struct ExtractVariables : IterArgs<ExtractVariables> {
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
|
std::vector<bool>& is_var_;
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
|
variable_list& list_;
|
|
ExtractVariables(std::vector<bool>& is_var, variable_list& list)
|
|
: is_var_(is_var), list_(list) {}
|
|
void operator()(const std::optional<at::Tensor>& x) {
|
|
if (x.has_value() && x.value().defined()) {
|
|
is_var_.push_back(true);
|
|
list_.emplace_back(x.value());
|
|
} else {
|
|
is_var_.push_back(false);
|
|
}
|
|
}
|
|
void operator()(const at::Tensor& x) {
|
|
is_var_.push_back(true);
|
|
list_.emplace_back(x);
|
|
}
|
|
void operator()(const at::TensorList& list) {
|
|
for (const at::Tensor& x : list) {
|
|
is_var_.push_back(true);
|
|
list_.emplace_back(x);
|
|
}
|
|
}
|
|
template <typename T>
|
|
void operator()(const T& x) {
|
|
is_var_.push_back(false);
|
|
}
|
|
};
|
|
|
|
template <typename... Args>
|
|
inline void extract_vars(
|
|
std::vector<bool>& is_var,
|
|
variable_list& list,
|
|
Args&&... args) {
|
|
ExtractVariables(is_var, list).apply(std::forward<Args>(args)...);
|
|
}
|
|
|
|
template <typename T>
|
|
std::enable_if_t<std::is_same_v<T, variable_list>, T> to_output_type(
|
|
std::vector<std::optional<Variable>>& output_list) {
|
|
variable_list result;
|
|
std::transform(
|
|
output_list.begin(),
|
|
output_list.end(),
|
|
std::back_inserter(result),
|
|
[](const std::optional<Variable>& var) { return *var; });
|
|
return result;
|
|
}
|
|
|
|
template <typename T>
|
|
std::enable_if_t<std::is_same_v<T, Variable>, T> to_output_type(
|
|
std::vector<std::optional<Variable>>& output_list) {
|
|
return *output_list[0];
|
|
}
|
|
|
|
inline std::vector<std::optional<Variable>> to_optional(Variable& output) {
|
|
return std::vector<std::optional<Variable>>{output};
|
|
}
|
|
|
|
inline std::vector<std::optional<Variable>> to_optional(variable_list& output) {
|
|
std::vector<std::optional<Variable>> result;
|
|
std::transform(
|
|
output.begin(),
|
|
output.end(),
|
|
std::back_inserter(result),
|
|
[](const Variable& var) { return var; });
|
|
return result;
|
|
}
|
|
|
|
template <class T>
|
|
template <typename X, typename... Args>
|
|
auto Function<T>::apply(Args&&... args)
|
|
-> std::enable_if_t<std::is_same_v<X, T>, forward_t<X, Args...>> {
|
|
const auto& functorch_tls = at::functorch::functorchTLSAccessor();
|
|
if (functorch_tls) {
|
|
// Function support for functorch is handled in Python.
|
|
// Here we are dealing with a (C++) Function, which is not supported.
|
|
// Let's raise an error instead of being silently incorrect.
|
|
functorch_tls->checkSupportsCppAutogradFunction();
|
|
}
|
|
|
|
std::shared_ptr<CppNode<T>> node(new CppNode<T>(), deleteNode);
|
|
variable_list input_vars;
|
|
|
|
const size_t num_inputs = sizeof...(Args);
|
|
input_vars.reserve(num_inputs);
|
|
node->is_variable_input_.reserve(num_inputs);
|
|
// TODO Add tracing here
|
|
extract_vars(node->is_variable_input_, input_vars, args...);
|
|
|
|
bool is_executable =
|
|
GradMode::is_enabled() && any_variable_requires_grad(input_vars);
|
|
auto next_edges =
|
|
(is_executable ? collect_next_edges(input_vars) : edge_list());
|
|
node->set_ctx_grad_fn(node);
|
|
node->set_next_edges(std::move(next_edges));
|
|
node->clear_input_metadata();
|
|
|
|
node->input_info_.reserve(input_vars.size());
|
|
for (auto& var : input_vars) {
|
|
node->input_info_.emplace_back(var);
|
|
}
|
|
|
|
using forward_return_t = forward_t<X, Args...>;
|
|
forward_return_t outputs;
|
|
{
|
|
AutoGradMode grad_mode(false);
|
|
outputs = T::forward(&node->ctx_, std::forward<Args>(args)...);
|
|
}
|
|
|
|
_jvp_fn_t jvp_fn = [](const variable_list& inputs,
|
|
const variable_list& gI) -> variable_list {
|
|
TORCH_CHECK(
|
|
false,
|
|
"jvp is not implemented for the c++ API of custom Function yet.",
|
|
"Please open a feature request on GitHub if you need this.");
|
|
};
|
|
|
|
auto view_as_self_fn = [](const at::Tensor& x) -> at::Tensor {
|
|
return x.view_as(x);
|
|
};
|
|
|
|
auto wrapped_outputs = _wrap_outputs(
|
|
input_vars,
|
|
node->ctx_.get_non_differentiable(),
|
|
node->ctx_.get_and_bump_dirty(),
|
|
to_optional(outputs),
|
|
is_executable ? node : nullptr,
|
|
jvp_fn,
|
|
{},
|
|
view_as_self_fn);
|
|
|
|
node->output_info_.reserve(wrapped_outputs.size());
|
|
for (auto& output : wrapped_outputs) {
|
|
if (is_executable && output.has_value()) {
|
|
node->output_info_.emplace_back(output.value());
|
|
} else if (is_executable) {
|
|
node->output_info_.emplace_back();
|
|
}
|
|
}
|
|
|
|
if (is_executable) {
|
|
node->save_variables_to_ctx();
|
|
}
|
|
|
|
// wrapped_outputs will be a variable_list so, convert it to the correct
|
|
// return type. Only Variable and variable_list are accepted as return types.
|
|
return to_output_type<forward_return_t>(wrapped_outputs);
|
|
}
|
|
|
|
// The logic here is the same as PyNode::apply, so changes to it should be done
|
|
// in both the places
|
|
template <class T>
|
|
// NOLINTNEXTLINE(cppcoreguidelines-rvalue-reference-param-not-moved)
|
|
variable_list CppNode<T>::apply(variable_list&& inputs) {
|
|
// Acquire lock to here protect thread safety on custom C++ Autograd Node
|
|
// This is needed for the custom Autograd Node since we don't know if the
|
|
// user defined Node will write to the shared data during backward.
|
|
// see Note [Thread Safety on Autograd Node]
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
return CppNode_apply_functional<T>(
|
|
std::move(inputs), ctx_, is_variable_input_, output_info_, name());
|
|
}
|
|
|
|
template <class T>
|
|
void CppNode<T>::release_variables() {
|
|
// lock to ensure thread safety, see [Thread Safety on Autograd Node]
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
ctx_.saved_variables_.clear();
|
|
ctx_.has_freed_buffers_ = true;
|
|
}
|
|
|
|
template <class T>
|
|
void CppNode<T>::save_variables_to_ctx() {
|
|
ctx_.save_variables();
|
|
}
|
|
|
|
template <class T>
|
|
void CppNode<T>::set_ctx_grad_fn(const std::shared_ptr<Node>& node) {
|
|
ctx_.grad_fn_ = node;
|
|
}
|
|
|
|
} // namespace torch::autograd
|