mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34230 This PR adds some benchmarks that we used to assess tensor expressions performance. Differential Revision: D20251830 Test Plan: Imported from OSS Pulled By: ZolotukhinM fbshipit-source-id: bafd66ce32f63077e3733112d854f5c750d5b1af
53 lines
1.4 KiB
Python
53 lines
1.4 KiB
Python
import framework
|
|
import scipy.special
|
|
import numpy as np
|
|
import torch
|
|
|
|
|
|
class SwishBench(framework.Benchmark):
|
|
def __init__(self, mode, device, M, N):
|
|
super().__init__(mode, device)
|
|
self.M = M
|
|
self.N = N
|
|
self.data = self.rand([M, N], device=device, requires_grad=self.requires_grad)
|
|
self.inputs = [self.data]
|
|
self.zeros = torch.zeros(M, N, device=device)
|
|
self.six = self.zeros + 6.0
|
|
self.three = self.zeros + 3.0
|
|
self.sixth = self.zeros + 1.0 / 6.0
|
|
|
|
def forward(self, inp):
|
|
y = inp * (torch.min(torch.relu(inp), self.six) + self.three) * self.sixth
|
|
return y
|
|
|
|
def reference(self):
|
|
return self.numpy(self.forward(self.data))
|
|
|
|
def config(self):
|
|
return [self.M, self.N]
|
|
|
|
@staticmethod
|
|
def module():
|
|
return "swish"
|
|
|
|
def memory_workload(self):
|
|
if self.mode == "fwd":
|
|
sol_count = 1 + 1
|
|
algorithmic_count = 3 + 1
|
|
else:
|
|
sol_count = (1 + 1) + (1 + 1)
|
|
algorithmic_count = (3 + 1) + (3 + 1)
|
|
|
|
buffer_size = self.M * self.N * 4
|
|
return {
|
|
"sol": buffer_size * sol_count,
|
|
"algorithmic": buffer_size * algorithmic_count,
|
|
}
|
|
|
|
@staticmethod
|
|
def default_configs():
|
|
return [[128, 1 << 16]]
|
|
|
|
|
|
framework.register_benchmark_class(SwishBench)
|