pytorch/test/distributed/fsdp/test_fsdp_freezing_weights.py
Yuanyuan Chen e925dfcc6b Enable all SIM rules except disabled ones (#164645)
`SIM` rules are useful for simplifying boolean expressions and enhances code readability.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164645
Approved by: https://github.com/ezyang, https://github.com/mlazos
2025-10-17 07:27:11 +00:00

253 lines
7.3 KiB
Python

# Owner(s): ["oncall: distributed"]
import contextlib
import sys
from enum import Enum
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_full_params
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
device_type = acc.type if (acc := torch.accelerator.current_accelerator()) else "cpu"
class Model(nn.Module):
def __init__(
self,
with_fsdp,
freeze_after_wrap_fsdp,
disable_autograd,
fsdp_kwargs,
):
super().__init__()
self.trunk = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d(output_size=(1, 1)),
nn.Flatten(),
)
self.head = nn.Linear(64, 10)
if with_fsdp and freeze_after_wrap_fsdp:
self.fsdp_wrap(fsdp_kwargs)
self.autograd_ctx = (
torch.no_grad if disable_autograd else contextlib.nullcontext
)
def fsdp_wrap(self, fsdp_kwargs):
self.trunk = FSDP(self.trunk, **fsdp_kwargs)
self.head = FSDP(self.head, **fsdp_kwargs)
def forward(self, x):
with self.autograd_ctx():
x = self.trunk(x)
return self.head(x)
class NestedTrunkModel(nn.Module):
def __init__(
self,
with_fsdp,
freeze_after_wrap_fsdp,
disable_autograd,
fsdp_kwargs,
):
super().__init__()
self.trunk = nn.Sequential(
self._create_block(3, 64, with_fsdp, freeze_after_wrap_fsdp),
self._create_block(64, 64, with_fsdp, freeze_after_wrap_fsdp),
)
self.head = nn.Sequential(
nn.AdaptiveAvgPool2d(output_size=(1, 1)),
nn.Flatten(),
nn.Linear(64, 10),
)
if with_fsdp and freeze_after_wrap_fsdp:
self.fsdp_wrap(fsdp_kwargs)
self.autograd_ctx = (
torch.no_grad if disable_autograd else contextlib.nullcontext
)
def fsdp_wrap(self, fsdp_kwargs):
for name, child in self.trunk.named_children():
wrapped_child = FSDP(child, **fsdp_kwargs)
setattr(self.trunk, name, wrapped_child)
self.trunk = FSDP(self.trunk, **fsdp_kwargs)
self.head = FSDP(self.head, **fsdp_kwargs)
def forward(self, x):
with self.autograd_ctx():
x = self.trunk(x)
return self.head(x)
def _create_block(
self, in_channels, out_channels, with_fsdp, freeze_after_wrap_fsdp
):
block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3),
nn.ReLU(inplace=True),
)
return block
class FreezingMethod(str, Enum):
GradToNone = "grad_to_none"
RequiresGrad = "requires_grad"
class TestFreezingWeights(FSDPTest):
def _create_model(
self,
with_fsdp,
with_nested_trunk,
freeze_after_wrap_fsdp,
disable_autograd,
fsdp_kwargs,
):
if with_nested_trunk:
model = NestedTrunkModel(
with_fsdp, freeze_after_wrap_fsdp, disable_autograd, fsdp_kwargs
)
else:
model = Model(
with_fsdp, freeze_after_wrap_fsdp, disable_autograd, fsdp_kwargs
)
return model
def _dist_train(
self,
with_nested_trunk,
freezing_method,
freeze_after_wrap_fsdp,
with_fsdp,
disable_autograd,
forward_prefetch,
):
torch.manual_seed(0)
batch = torch.randn(size=(2, 3, 224, 224)).to(device_type)
fsdp_kwargs = {
"device_id": self.rank,
"forward_prefetch": forward_prefetch,
}
ddp_kwargs = {
"device_ids": [self.rank],
"find_unused_parameters": bool(disable_autograd),
}
model = self._create_model(
with_fsdp,
with_nested_trunk,
freeze_after_wrap_fsdp,
disable_autograd,
fsdp_kwargs,
)
model = model.to(device_type)
# freezing the trunk using requires_grad.
if freezing_method == FreezingMethod.RequiresGrad:
for param in model.trunk.parameters():
param.requires_grad = False
if with_fsdp:
if not freeze_after_wrap_fsdp:
model.fsdp_wrap(fsdp_kwargs)
model = FSDP(model, **fsdp_kwargs)
else:
model = DistributedDataParallel(model, **ddp_kwargs)
target = torch.tensor([0, 1], dtype=torch.long).to(device_type)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
for _ in range(3):
out = model(batch)
fake_loss = criterion(out, target)
optimizer.zero_grad()
fake_loss.backward()
if freezing_method == FreezingMethod.GradToNone:
for param in model.module.trunk.parameters():
param.grad = None
optimizer.step()
if with_fsdp:
return get_full_params(model)
return list(model.parameters())
@skip_if_lt_x_gpu(2)
@parametrize("with_nested_trunk", [True, False])
@parametrize(
"freezing_method", [FreezingMethod.RequiresGrad, FreezingMethod.GradToNone]
)
@parametrize("freeze_after_wrap_fsdp", [True, False])
@parametrize("disable_autograd", [True, False])
@parametrize("forward_prefetch", [True, False])
def test_freezing_weights(
self,
with_nested_trunk,
freezing_method,
freeze_after_wrap_fsdp,
disable_autograd,
forward_prefetch,
):
# DDP
ddp_state = self._dist_train(
with_nested_trunk,
freezing_method,
freeze_after_wrap_fsdp,
with_fsdp=False,
disable_autograd=disable_autograd,
forward_prefetch=False, # does not apply to DDP
)
# FSDP
fsdp_state = self._dist_train(
with_nested_trunk,
freezing_method,
freeze_after_wrap_fsdp,
with_fsdp=True,
disable_autograd=disable_autograd,
forward_prefetch=forward_prefetch,
)
self.assertEqual(
ddp_state,
fsdp_state,
exact_device=True,
msg="FullyShardedDataParallel states didn't match PyTorch DDP states",
)
if freezing_method == FreezingMethod.RequiresGrad:
for ddp_param, fsdp_param in zip(ddp_state, fsdp_state):
self.assertEqual(ddp_param.requires_grad, fsdp_param.requires_grad)
instantiate_parametrized_tests(TestFreezingWeights)
if __name__ == "__main__":
run_tests()