mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Correctly propagate request_only tag to all layer. Reviewed By: kennyhorror Differential Revision: D4751496 fbshipit-source-id: e65fd8cfe56d2989213d44e684a528ede691d316
179 lines
6.7 KiB
Python
179 lines
6.7 KiB
Python
## @package sparse_lookup
|
|
# Module caffe2.python.layers.sparse_lookup
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import core, schema
|
|
from caffe2.python.layers.layers import (
|
|
get_categorical_limit,
|
|
IdList,
|
|
IdScoreList,
|
|
LayerParameter,
|
|
LayerPsParam,
|
|
ModelLayer,
|
|
)
|
|
import functools
|
|
import math
|
|
import numpy as np
|
|
import operator
|
|
|
|
|
|
class SparseLookup(ModelLayer):
|
|
_supported_reducers = ['PositionWeighted', 'LogMeanExp', 'LogSumExp', 'Max',
|
|
'Mean', 'Sum', 'Sqrt']
|
|
|
|
def __init__(self, model, input_record, inner_shape, reducer,
|
|
weight_init=None, weight_optim=None,
|
|
name='sparse_lookup', **kwargs):
|
|
super(SparseLookup, self).__init__(model, name, input_record, **kwargs)
|
|
|
|
if isinstance(inner_shape, int):
|
|
inner_shape = [inner_shape]
|
|
assert isinstance(inner_shape, list) or isinstance(inner_shape, tuple),\
|
|
"Unexpected type for inner_shape, expected list or tuple, got {0}".\
|
|
format(type(inner_shape))
|
|
|
|
# TODO Add some asserts about input type
|
|
assert reducer in self._supported_reducers, "Unsupported reducer: {}".\
|
|
format(reducer)
|
|
self.reducer = reducer
|
|
|
|
input_dim = get_categorical_limit(input_record)
|
|
|
|
assert input_dim is not None, "Unbounded features are not supported"
|
|
|
|
self.output_schema = schema.Scalar(
|
|
(np.float32, inner_shape),
|
|
model.net.NextScopedBlob(name + '_output'),
|
|
)
|
|
|
|
scale = math.sqrt(1.0 / input_dim)
|
|
self.shape = [input_dim] + inner_shape
|
|
self.weight_init = weight_init if weight_init else (
|
|
'UniformFill', {'min': -scale, 'max': scale})
|
|
|
|
self.w = model.net.NextScopedBlob(name + "_w")
|
|
if schema.equal_schemas(self.input_record, IdList):
|
|
sparse_key = self.input_record.items()
|
|
elif schema.equal_schemas(self.input_record, IdScoreList):
|
|
sparse_key = self.input_record.keys()
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
if self.input_record.lengths.metadata:
|
|
avg_length = self.input_record.lengths.metadata.expected_value
|
|
else:
|
|
avg_length = None
|
|
self.params.append(
|
|
LayerParameter(
|
|
parameter=self.w,
|
|
initializer=core.CreateOperator(self.weight_init[0],
|
|
[],
|
|
self.w,
|
|
shape=self.shape,
|
|
**self.weight_init[1]
|
|
),
|
|
optimizer=weight_optim,
|
|
ps_param=LayerPsParam(
|
|
sparse_key=sparse_key,
|
|
average_length=avg_length
|
|
)
|
|
))
|
|
|
|
if reducer == 'PositionWeighted':
|
|
self.pos_w = model.net.NextScopedBlob(name + "_pos_w")
|
|
self.params.append(
|
|
LayerParameter(
|
|
parameter=self.pos_w,
|
|
initializer=core.CreateOperator('ConstantFill',
|
|
[],
|
|
self.pos_w,
|
|
shape=[input_dim, ],
|
|
value=1.0
|
|
),
|
|
optimizer=weight_optim
|
|
))
|
|
|
|
def get_memory_usage(self):
|
|
return functools.reduce(operator.mul, self.shape) * 4
|
|
|
|
def get_fp16_compatible_parameters(self):
|
|
return [self.w]
|
|
|
|
def add_ops(self, net):
|
|
if schema.equal_schemas(self.input_record, IdList):
|
|
if self.reducer == 'Sum':
|
|
net.SparseLengthsSum(
|
|
[
|
|
self.w,
|
|
self.input_record.items(),
|
|
self.input_record.lengths()
|
|
],
|
|
self.output_schema.field_blobs(),
|
|
engine='fp16'
|
|
)
|
|
elif self.reducer == 'PositionWeighted':
|
|
inc_seq = net.LengthsRangeFill(
|
|
[self.input_record.lengths()],
|
|
self.input_record.lengths() + '_seq'
|
|
)
|
|
gather_pos_w = net.Gather(
|
|
[self.pos_w, inc_seq], self.pos_w + '_gather')
|
|
|
|
net.SparseLengthsWeightedSum(
|
|
[
|
|
self.w,
|
|
gather_pos_w,
|
|
self.input_record.items(),
|
|
self.input_record.lengths()
|
|
],
|
|
self.output_schema.field_blobs(),
|
|
grad_on_weights=1,
|
|
engine='fp16'
|
|
)
|
|
elif self.reducer == 'Sqrt':
|
|
sqrt_weight = net.LengthsToWeights(
|
|
[self.input_record.lengths()],
|
|
[self.input_record.lengths() + '_sqrt'],
|
|
power=0.5
|
|
)
|
|
net.SparseLengthsWeightedSum(
|
|
[
|
|
self.w,
|
|
sqrt_weight,
|
|
self.input_record.items(),
|
|
self.input_record.lengths()
|
|
],
|
|
self.output_schema.field_blobs(),
|
|
engine='fp16'
|
|
)
|
|
else:
|
|
table_rows = net.Gather([self.w, self.input_record.items()])
|
|
segment_ids = net.LengthsToSegmentIds(
|
|
self.input_record.lengths(),
|
|
self.input_record.lengths() + '_sid')
|
|
net.__getattr__('SortedSegmentRange' + self.reducer)(
|
|
[table_rows, segment_ids],
|
|
self.output_schema.field_blobs(),
|
|
engine='fp16'
|
|
)
|
|
elif schema.equal_schemas(self.input_record, IdScoreList):
|
|
if self.reducer == 'Sum':
|
|
net.SparseLengthsWeightedSum(
|
|
[
|
|
self.w,
|
|
self.input_record.values(),
|
|
self.input_record.keys(),
|
|
self.input_record.lengths()
|
|
],
|
|
self.output_schema.field_blobs(),
|
|
engine='fp16'
|
|
)
|
|
else:
|
|
raise "Only Sum is supported for IdScoreList input." +\
|
|
"Trying to create with {}".format(self.reducer)
|
|
else:
|
|
raise "Unsupported input type {0}".format(self.input_record)
|