pytorch/test/export/test_torchbind.py
angelayi e8836759d0 [export] Add effect token to export (#121424)
Following the creation of effect tokens (https://github.com/pytorch/pytorch/pull/120296), we want to now add support for these tokens in export because the calling/returning convention has changed. The inputs are now `(tokens, params, buffers, constants, user_inputs)` and the outputs are `(tokens, buffer_mutations, user_mutations, user_outputs)`. The graph looks something like:
```
graph():
    %arg0_1 : [num_users=1] = placeholder[target=arg0_1]
    %attr : [num_users=2] = placeholder[target=attr]
    %arg1_1 : [num_users=2] = placeholder[target=arg1_1]
    %with_effects : [num_users=2] = call_function[target=torch._higher_order_ops.effects.with_effects](args = (%arg0_1, _TorchScriptTesting.takes_foo.default, %attr, %arg1_1), kwargs = {})
    %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%with_effects, 0), kwargs = {})
    %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%with_effects, 1), kwargs = {})
    %with_effects_1 : [num_users=2] = call_function[target=torch._higher_order_ops.effects.with_effects](args = (%getitem, _TorchScriptTesting.takes_foo.default, %attr, %getitem_1), kwargs = {})
    %getitem_2 : [num_users=1] = call_function[target=operator.getitem](args = (%with_effects_1, 0), kwargs = {})
    %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%with_effects_1, 1), kwargs = {})
    %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %getitem_3), kwargs = {})
    return (getitem_2, add)
```

During unlifting, we will first remove the tokens and with_effect calls using the `remove_effect_tokens` pass. (cc @SherlockNoMad on the pass to remove tokens). This is so that this won't change the calling conventions when retracing. The graph after unlifting looks something like:
```
graph():
    %attr_1 : [num_users=2] = get_attr[target=attr]
    %arg1_1 : [num_users=2] = placeholder[target=arg1_1]
    %takes_foo_default_1 : [num_users=1] = call_function[target=torch.ops._TorchScriptTesting.takes_foo.default](args = (%attr_1, %arg1_1), kwargs = {})
    %takes_foo_default : [num_users=1] = call_function[target=torch.ops._TorchScriptTesting.takes_foo.default](args = (%attr_1, %takes_foo_default_1), kwargs = {})
    %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %takes_foo_default), kwargs = {})
    return (add,)
```

Serialization support will be added in a followup.
Note: tokens only affect custom ops that take in ScriptObjects, not ScriptObject methods yet.

Differential Revision: [D54639390](https://our.internmc.facebook.com/intern/diff/D54639390)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121424
Approved by: https://github.com/tugsbayasgalan
2024-03-09 02:43:26 +00:00

184 lines
6.2 KiB
Python

# Owner(s): ["oncall: export"]
import unittest
import torch
from torch._higher_order_ops.torchbind import enable_torchbind_tracing
from torch.export import export
from torch.testing._internal.common_utils import (
find_library_location,
IS_FBCODE,
IS_MACOS,
IS_SANDCASTLE,
IS_WINDOWS,
run_tests,
skipIfTorchDynamo,
TestCase,
)
@skipIfTorchDynamo("torchbind not supported with dynamo yet")
class TestExportTorchbind(TestCase):
def setUp(self):
if IS_MACOS:
raise unittest.SkipTest("non-portable load_library call used in test")
elif IS_SANDCASTLE or IS_FBCODE:
torch.ops.load_library(
"//caffe2/test/cpp/jit:test_custom_class_registrations"
)
elif IS_WINDOWS:
lib_file_path = find_library_location("torchbind_test.dll")
torch.ops.load_library(str(lib_file_path))
else:
lib_file_path = find_library_location("libtorchbind_test.so")
torch.ops.load_library(str(lib_file_path))
def _test_export_same_as_eager(self, f, args, kwargs=None, strict=True):
kwargs = kwargs or {}
with enable_torchbind_tracing():
exported_program = export(f, args, kwargs, strict=strict)
reversed_kwargs = {key: kwargs[key] for key in reversed(kwargs)}
self.assertEqual(exported_program.module()(*args, **kwargs), f(*args, **kwargs))
self.assertEqual(
exported_program.module()(*args, **reversed_kwargs),
f(*args, **reversed_kwargs),
)
def test_none(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.attr = torch.classes._TorchScriptTesting._Foo(10, 20)
def forward(self, x, n):
return x + self.attr.add_tensor(x)
self._test_export_same_as_eager(
MyModule(), (torch.ones(2, 3), None), strict=False
)
def test_attribute(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.attr = torch.classes._TorchScriptTesting._Foo(10, 20)
def forward(self, x):
return x + self.attr.add_tensor(x)
self._test_export_same_as_eager(MyModule(), (torch.ones(2, 3),), strict=False)
def test_attribute_as_custom_op_argument(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.attr = torch.classes._TorchScriptTesting._Foo(10, 20)
def forward(self, x):
return x + torch.ops._TorchScriptTesting.takes_foo(self.attr, x)
self._test_export_same_as_eager(MyModule(), (torch.ones(2, 3),), strict=False)
def test_input(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, cc):
return x + cc.add_tensor(x)
cc = torch.classes._TorchScriptTesting._Foo(10, 20)
self._test_export_same_as_eager(
MyModule(), (torch.ones(2, 3), cc), strict=False
)
def test_input_as_custom_op_argument(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, cc):
return x + torch.ops._TorchScriptTesting.takes_foo(cc, x)
cc = torch.classes._TorchScriptTesting._Foo(10, 20)
self._test_export_same_as_eager(
MyModule(), (torch.ones(2, 3), cc), strict=False
)
def test_unlift_custom_obj(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.attr = torch.classes._TorchScriptTesting._Foo(10, 20)
def forward(self, x):
a = torch.ops._TorchScriptTesting.takes_foo(self.attr, x)
b = torch.ops._TorchScriptTesting.takes_foo(self.attr, a)
return x + b
m = MyModule()
input = torch.ones(2, 3)
with enable_torchbind_tracing():
ep = torch.export.export(m, (input,), strict=False)
unlifted = ep.module()
self.assertEqual(m(input), unlifted(input))
with enable_torchbind_tracing():
ep2 = torch.export.export(unlifted, (input,), strict=False)
self.assertEqual(m(input), ep2.module()(input))
def test_custom_obj_list_out(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.attr = torch.classes._TorchScriptTesting._Foo(10, 20)
def forward(self, x):
a = torch.ops._TorchScriptTesting.takes_foo_list_return(self.attr, x)
y = a[0] + a[1] + a[2]
b = torch.ops._TorchScriptTesting.takes_foo(self.attr, y)
return x + b
m = MyModule()
input = torch.ones(2, 3)
with enable_torchbind_tracing():
ep = torch.export.export(m, (input,), strict=False)
unlifted = ep.module()
self.assertEqual(m(input), unlifted(input))
with enable_torchbind_tracing():
ep2 = torch.export.export(unlifted, (input,), strict=False)
self.assertEqual(m(input), ep2.module()(input))
def test_custom_obj_tuple_out(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.attr = torch.classes._TorchScriptTesting._Foo(10, 20)
def forward(self, x):
a = torch.ops._TorchScriptTesting.takes_foo_tuple_return(self.attr, x)
y = a[0] + a[1]
b = torch.ops._TorchScriptTesting.takes_foo(self.attr, y)
return x + b
m = MyModule()
input = torch.ones(2, 3)
with enable_torchbind_tracing():
ep = torch.export.export(m, (input,), strict=False)
unlifted = ep.module()
self.assertEqual(m(input), unlifted(input))
with enable_torchbind_tracing():
ep2 = torch.export.export(unlifted, (input,), strict=False)
self.assertEqual(m(input), ep2.module()(input))
if __name__ == "__main__":
run_tests()