pytorch/test/onnx/debug_embed_params.py
Ksenija Stanojevic e845b0ab51 [Resending] [ONNX] Add eliminate_unused_items pass (#42743)
Summary:
This PR:

- Adds eliminate_unused_items pass that removes unused inputs and initializers.
- Fixes run_embed_params function so it doesn't export unnecessary parameters.
- Removes test_modifying_params in test_verify since it's no longer needed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42743

Reviewed By: hl475

Differential Revision: D23058954

Pulled By: houseroad

fbshipit-source-id: cd1e81463285a0bf4e60766c8c87fc9a350d9c7e
2020-08-11 20:30:50 -07:00

59 lines
1.6 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import sys
import torch
import torch.jit
from torch.autograd import Variable
import onnx
import caffe2.python.onnx.backend as c2
from test_pytorch_common import flatten
torch.set_default_tensor_type('torch.FloatTensor')
try:
import torch
except ImportError:
print('Cannot import torch, hence caffe2-torch test will not run.')
sys.exit(0)
def run_embed_params(proto, model, input, state_dict=None, use_gpu=True):
"""
This is only a helper debug function so we can test embed_params=False
case as well on pytorch front
This should likely be removed from the release version of the code
"""
device = 'CPU'
if use_gpu:
device = 'CUDA'
model_def = onnx.ModelProto.FromString(proto)
onnx.checker.check_model(model_def)
prepared = c2.prepare(model_def, device=device)
if state_dict:
parameters = []
# Passed in state_dict may have a different order. Make
# sure our order is consistent with the model's order.
# TODO: Even better: keyword arguments!
for k in model.state_dict():
if k in state_dict:
parameters.append(state_dict[k])
else:
parameters = list(model.state_dict().values())
W = {}
for k, v in zip(model_def.graph.input, flatten((input, parameters))):
if isinstance(v, Variable):
W[k.name] = v.data.cpu().numpy()
else:
W[k.name] = v.cpu().numpy()
caffe2_out = prepared.run(inputs=W)
return caffe2_out