pytorch/test/dynamo/test_frame_init.py
Edward Z. Yang e836ee1955 Enhancements to recompiles logs (#130043)
----

- We now record on CacheEntry what the compile id that populated it was, so now we can say why a specific frame was rejected
- Add structured log for recompiles under name artifact "recompile_reasons". As it stands, it's not terribly structured, but this was the easiest thing I could do to start
- Slightly reformat multi-reason printing; since we only report one guard failure seems better to have it as a single line

Example output:

```
V0703 10:34:13.273000 140345997743104 torch/_dynamo/guards.py:2590] [0/1] [__recompiles] Recompiling function f in /data/users/ezyang/a/pytorch/b.py:3
V0703 10:34:13.273000 140345997743104 torch/_dynamo/guards.py:2590] [0/1] [__recompiles]     triggered by the following guard failure(s):
V0703 10:34:13.273000 140345997743104 torch/_dynamo/guards.py:2590] [0/1] [__recompiles]     - 0/0: tensor 'L['x']' size mismatch at index 0. expected 4, actual 5
```

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130043
Approved by: https://github.com/anijain2305
2024-07-09 03:40:56 +00:00

129 lines
3.9 KiB
Python

# Owner(s): ["module: dynamo"]
import torch
import torch._dynamo.test_case
from torch._guards import CompileId
def target_with_varkwargs(arg1, /, positional_only_arg, *, keyword_only_arg, **kwargs):
local = 1
return {
"local": local,
"arg1": arg1,
"positional_only_arg": positional_only_arg,
"keyword_only_arg": keyword_only_arg,
"kwargs": kwargs,
}
def varkwargs_code1(arg1, /, positional_only_arg, *, keyword_only_arg, **kwargs):
# remove a local variable: local = 1
return {
"local": 1,
"arg1": arg1,
"positional_only_arg": positional_only_arg,
"keyword_only_arg": keyword_only_arg,
"kwargs": kwargs,
}
def varkwargs_code2(arg1, /, positional_only_arg, *, keyword_only_arg, **kwargs):
# introduce a local variable
local1 = 0
local2 = 1
return {
"local": local1 + local2,
"arg1": arg1,
"positional_only_arg": positional_only_arg,
"keyword_only_arg": keyword_only_arg,
"kwargs": kwargs,
}
def target_with_varargs(arg1, /, positional_only_arg, *varargs, **kwargs):
local = 1
return {
"local": local,
"arg1": arg1,
"positional_only_arg": positional_only_arg,
"varargs": varargs,
"kwargs": kwargs,
}
def varargs_code1(arg1, /, positional_only_arg, *varargs, **kwargs):
# remove a local variable: local = 1
return {
"local": 1,
"arg1": arg1,
"positional_only_arg": positional_only_arg,
"varargs": varargs,
"kwargs": kwargs,
}
def varargs_code2(arg1, /, positional_only_arg, *varargs, **kwargs):
# introduce a local variable
local1 = 0
local2 = 1
return {
"local": local1 + local2,
"arg1": arg1,
"positional_only_arg": positional_only_arg,
"varargs": varargs,
"kwargs": kwargs,
}
class FrameInitTests(torch._dynamo.test_case.TestCase):
def test_frame_init(self):
code_map1 = {
target_with_varargs.__code__: varargs_code1.__code__,
target_with_varkwargs.__code__: varkwargs_code1.__code__,
}
code_map2 = {
target_with_varargs.__code__: varargs_code2.__code__,
target_with_varkwargs.__code__: varkwargs_code2.__code__,
}
def callback1(frame, cache_entry, frame_state):
if frame.f_code in code_map1:
transformed_code = code_map1[frame.f_code]
return torch._dynamo.types.GuardedCode(
transformed_code, lambda f_locals: True, CompileId(0, 0)
)
return None
def callback2(frame, cache_entry, frame_state):
if frame.f_code in code_map2:
transformed_code = code_map2[frame.f_code]
return torch._dynamo.types.GuardedCode(
transformed_code, lambda f_locals: True, CompileId(0, 0)
)
return None
for callback in [callback1, callback2]:
torch._dynamo.reset()
expected_varargs_output = target_with_varargs(
1, 2, 3, 4, name1=1, name2=2, name3=3
)
expected_kwargs_output = target_with_varkwargs(
1, 2, keyword_only_arg=1, name2=2, name3=3
)
original = torch._dynamo.eval_frame.set_eval_frame(callback1)
real_varargs_output = target_with_varargs(
1, 2, 3, 4, name1=1, name2=2, name3=3
)
real_kwargs_output = target_with_varkwargs(
1, 2, keyword_only_arg=1, name2=2, name3=3
)
self.assertEqual(real_varargs_output, expected_varargs_output)
self.assertEqual(real_kwargs_output, expected_kwargs_output)
torch._dynamo.eval_frame.set_eval_frame(original)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()