mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-08 07:39:33 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/74646 The OpInfo-based test, given an operator and sample inputs, checks all permutations of {inputs, grad_output} being either {CompositeCompliantTensor, regular Tensor}, running them through a forward pass and a backward pass. Test Plan: - wait for tests Reviewed By: albanD Differential Revision: D35186860 Pulled By: zou3519 fbshipit-source-id: 8b2577dd6106c05db2ab583bbefd10545fdd8adf (cherry picked from commit 3f5c3793715af9a8d4db06690c5faa7256a82645)
403 lines
16 KiB
Python
403 lines
16 KiB
Python
import torch
|
|
from torch import Tensor
|
|
import contextlib
|
|
import itertools
|
|
from typing import Iterator
|
|
from torch.utils._pytree import tree_map, tree_flatten, tree_unflatten
|
|
from functools import partial
|
|
from torch.utils._python_dispatch import enable_python_mode
|
|
import re
|
|
|
|
# TODO: move this into library proper
|
|
@contextlib.contextmanager
|
|
def no_dispatch() -> Iterator[None]:
|
|
guard = torch._C._DisableTorchDispatch() # type: ignore[attr-defined]
|
|
try:
|
|
yield
|
|
finally:
|
|
del guard
|
|
|
|
def check_attr_consistency(wrapper_tensor, metadata_name, metadata_accessor):
|
|
elem = wrapper_tensor.elem
|
|
metadata_wrapper_tensor = metadata_accessor(wrapper_tensor)
|
|
metadata_elem = metadata_accessor(elem)
|
|
if metadata_wrapper_tensor == metadata_elem:
|
|
return
|
|
raise RuntimeError(
|
|
f"This operator is not Composite Compliant: the "
|
|
f"{metadata_name} of the tensor was modified directly without "
|
|
f"going through the PyTorch dispatcher.")
|
|
|
|
def check_metadata_consistency(wrapper_tensor):
|
|
if not isinstance(wrapper_tensor, CompositeCompliantTensor):
|
|
return
|
|
things_to_check = {
|
|
'shape': Tensor.size,
|
|
'dtype': lambda x: x.dtype,
|
|
'device': lambda x: x.device,
|
|
'numel': Tensor.numel,
|
|
'stride': Tensor.stride,
|
|
'storage_offset': Tensor.storage_offset,
|
|
}
|
|
for metadata_name, metadata_accessor in things_to_check.items():
|
|
check_attr_consistency(wrapper_tensor, metadata_name, metadata_accessor)
|
|
|
|
def is_view_fn(func):
|
|
return func.overloadpacket.__name__ in {
|
|
'as_strided',
|
|
'detach',
|
|
'diagonal',
|
|
'expand',
|
|
'expand_as',
|
|
'movedim',
|
|
'narrow',
|
|
'permute',
|
|
'select',
|
|
'squeeze',
|
|
'transpose',
|
|
't',
|
|
'real',
|
|
'imag',
|
|
'view_as_real',
|
|
'view_as_complex',
|
|
'unflatten',
|
|
'unfold',
|
|
'unsqueeze',
|
|
'view',
|
|
'view_as',
|
|
'unbind',
|
|
'split',
|
|
'split_with_sizes',
|
|
'vsplit',
|
|
'hsplit',
|
|
'tensor_split',
|
|
'chunk',
|
|
'swapaxes',
|
|
'slice',
|
|
'_reshape_alias',
|
|
'_unsafe_view',
|
|
'_conj',
|
|
'alias',
|
|
}
|
|
|
|
# manually populated from native_functions that have inplace_view: True.
|
|
# In the future we will probably be able to grab that list directly
|
|
def is_inplace_view_fn(func):
|
|
return func.overloadpacket.__name__ in {
|
|
'as_strided_',
|
|
'detach_',
|
|
'squeeze_',
|
|
'swapaxes_',
|
|
'swapdims_',
|
|
't_',
|
|
'transpose_',
|
|
'unsqueeze_',
|
|
}
|
|
|
|
|
|
# Introspection please save us
|
|
def is_inplace(func):
|
|
name = func.overloadpacket.__name__
|
|
if re.match('__i.+__', name):
|
|
return True
|
|
if re.match('__.+__', name):
|
|
return False
|
|
return name[-1] == '_'
|
|
|
|
|
|
class CompositeCompliantTensor(torch.Tensor):
|
|
elem: torch.Tensor
|
|
|
|
__slots__ = ['elem']
|
|
|
|
@staticmethod
|
|
def __new__(cls, elem, *args, **kwargs):
|
|
# The storage of CompositeCompliantTensor should never be used directly
|
|
# by a Composite operation; if the Composite
|
|
# operator attempts to read from the storage without dispatching then it'll
|
|
# raise a RuntimeError due to it being a meta storage.
|
|
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
|
|
cls, elem.size(),
|
|
dtype=elem.dtype, layout=elem.layout,
|
|
device=elem.device, requires_grad=elem.requires_grad,
|
|
strides=elem.stride(), storage_offset=elem.storage_offset())
|
|
|
|
# CompositeCompliantTensor steals the "requires_grad"-ness.
|
|
if elem.requires_grad:
|
|
# Why clone? Because sometimes OpInfo shares inputs between tests...
|
|
r.elem = elem.detach().clone()
|
|
else:
|
|
r.elem = elem
|
|
return r
|
|
|
|
def __repr__(self):
|
|
return f"CompositeCompliantTensor({self.elem})"
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
def unwrap(e):
|
|
return e.elem if isinstance(e, CompositeCompliantTensor) else e
|
|
|
|
def wrap(e):
|
|
return CompositeCompliantTensor(e) if isinstance(e, torch.Tensor) else e
|
|
|
|
if func.overloadpacket.__name__ in ('set_', 'resize_'):
|
|
raise RuntimeError(
|
|
f"{func.__name__} is not allowed to be called inside of "
|
|
f"Composite operators.")
|
|
|
|
if is_inplace(func):
|
|
# NB: We are making an assumption that if the function is in-place,
|
|
# then the first argument is being written to. Introspection please save us!
|
|
mutated_argument = args[0]
|
|
if not isinstance(mutated_argument, CompositeCompliantTensor) and \
|
|
any([isinstance(a, CompositeCompliantTensor) for a in args[1:]]):
|
|
raise RuntimeError(
|
|
'Not composite compliant: performing in-place operation '
|
|
f'{func.__name__} where the Tensor being written to is '
|
|
'regular Tensor but the other tensors are Tensor Subclasses. '
|
|
'Please try to avoid this in-place operation.')
|
|
|
|
with no_dispatch():
|
|
unwrapped_args = tree_map(unwrap, args)
|
|
unwrapped_kwargs = tree_map(unwrap, kwargs)
|
|
unwrapped_rs = func(*unwrapped_args, **unwrapped_kwargs)
|
|
rs = tree_map(wrap, unwrapped_rs)
|
|
|
|
if is_view_fn(func):
|
|
# Autograd asserts that for B = A.view_fn(...), B and A's storages
|
|
# are the same. Here we try to make B alias A to avoid those asserts.
|
|
# See https://github.com/pytorch/pytorch/issues/65339 for more information
|
|
# about the issue.
|
|
with no_dispatch():
|
|
# Idea: this is a weird way of getting a storage that aliases the input.
|
|
# This is a workaround for #65339.
|
|
# 1. under no_dispatch, all of the wrapper tensors look like regular
|
|
# tensors with special storage (the storage is nullptr and
|
|
# advertises CPU/CUDA device.
|
|
# 2. we run func, which ends up running the view operation
|
|
# 3. All view operations reuse the input's storage and return
|
|
# result Tensor(s) with new sizes/strides/offset that alias
|
|
# the input.
|
|
# 4. we set the storage (and sizes/strides/offset) of the wrapper
|
|
# tensor results to be that of the tensors that alias the input
|
|
result = func(*args, **kwargs)
|
|
if isinstance(result, tuple) or isinstance(result, list):
|
|
for a, b in zip(rs, result):
|
|
a.set_(b)
|
|
else:
|
|
rs.set_(result)
|
|
|
|
# Some operations are allowed to in-place modify the metadata of the
|
|
# inputs. The only ones are the "inplace view functions"; when we
|
|
# run into these, we manually modify the metadata of the input.
|
|
with no_dispatch():
|
|
if is_inplace_view_fn(func):
|
|
func(*args, **kwargs)
|
|
|
|
# For each CompositeCompliantTensor t, we check that t and t.elem
|
|
# have consistent metadata. If they don't have consistent metadata,
|
|
# that means the operator did something fishy.
|
|
check = partial(check_metadata_consistency)
|
|
tree_map(check, args)
|
|
tree_map(check, kwargs)
|
|
tree_map(check, rs)
|
|
return rs
|
|
|
|
|
|
def is_tensorlist(lst):
|
|
if not isinstance(lst, list) and not isinstance(lst, tuple):
|
|
return False
|
|
if len(lst) == 0:
|
|
return False
|
|
all_tensors = all([isinstance(elt, torch.Tensor) for elt in lst])
|
|
if all_tensors:
|
|
return True
|
|
exists_one_tensor = all([isinstance(elt, torch.Tensor) for elt in lst])
|
|
if exists_one_tensor:
|
|
raise RuntimeError('This test assumes that PyTorch APIs cannot take '
|
|
'mixed lists of Tensor and other things')
|
|
return False
|
|
|
|
|
|
def maybe_map(fn, should_map, arg):
|
|
return fn(arg) if should_map else arg
|
|
|
|
|
|
def wrap(arg):
|
|
if isinstance(arg, torch.Tensor):
|
|
return CompositeCompliantTensor(arg)
|
|
if is_tensorlist(arg):
|
|
return [CompositeCompliantTensor(a) for a in arg]
|
|
raise RuntimeError("wrap assumes that the input can be wrapped")
|
|
|
|
|
|
# Given a list of flat arguments, some of which may be Tensors, return all
|
|
# possible ways some of the arguments could be CompositeCompliantTensors (CCT).
|
|
# For example, given Tensors A, B, C and flat_args = [A, 1, B],
|
|
# We would return the following 4 options:
|
|
# [CCT(A), 1, CCT(B)]
|
|
# [CCT(A), 1, B]
|
|
# [A, 1, CCT(B)]
|
|
# [A, 1, B]
|
|
# NB: Yes, this is exponential. No, we don't care too much because PyTorch ops
|
|
# don't accept that many input Tensors.
|
|
def generate_subclass_choices(flat_args):
|
|
is_tensor_likes = [isinstance(arg, torch.Tensor) or is_tensorlist(arg) for arg in flat_args]
|
|
subclass_options = [[False, True] if is_tensor_like else [False] for is_tensor_like in is_tensor_likes]
|
|
|
|
for which_args_are_wrapped in itertools.product(*subclass_options):
|
|
result = [maybe_map(wrap, should_wrap_arg, arg)
|
|
for should_wrap_arg, arg in zip(which_args_are_wrapped, flat_args)]
|
|
yield result, which_args_are_wrapped
|
|
|
|
|
|
# For an operation f(*args, **kwargs), each Tensor argument may either be
|
|
# a regular Tensor or a Tensor Subclass. This iterator iterates through
|
|
# all of those options.
|
|
def generate_subclass_choices_args_kwargs(args, kwargs):
|
|
flat_kwargs, spec = tree_flatten(kwargs)
|
|
flat_args_kwargs = list(args) + list(flat_kwargs)
|
|
for choice, debug_metadata in generate_subclass_choices(flat_args_kwargs):
|
|
new_args = choice[:len(args)]
|
|
new_kwargs = tree_unflatten(choice[len(args):], spec)
|
|
which_args_are_wrapped = debug_metadata[:len(args)]
|
|
which_kwargs_are_wrapped = tree_unflatten(debug_metadata[len(args):], spec)
|
|
yield new_args, new_kwargs, which_args_are_wrapped, which_kwargs_are_wrapped
|
|
|
|
|
|
def raise_composite_compliance_error(err, additional_info=''):
|
|
raise RuntimeError(
|
|
"Composite compilance check failed with "
|
|
"the above error.\n"
|
|
f"{additional_info}"
|
|
"If you are adding an OpInfo of an "
|
|
"existing operator, please feel free to skip this test "
|
|
"because the problem was pre-existing and file an issue. "
|
|
"Otherwise, if you added a new operator, please read "
|
|
"through the Composite Compliance section in "
|
|
"aten/src/ATen/native/README.md for how to resolve this. "
|
|
) from err
|
|
|
|
|
|
# This test checks ALL possible permutations of calling `op` with arguments
|
|
# that are individually either a regular Tensor or a Tensor subclass.
|
|
#
|
|
# The general strategy is to wrap some Tensor args and kwargs in
|
|
# CompositeCompliantTensor wrappers and call the operation.
|
|
|
|
# If some composite operation does any non-compliant behavior,
|
|
# CompositeCompliantTensor will raise an error.
|
|
def check_all_permutations(op, args, kwargs):
|
|
def wrap(e):
|
|
return CompositeCompliantTensor(e) if isinstance(e, torch.Tensor) else e
|
|
|
|
for choice in generate_subclass_choices_args_kwargs(args, kwargs):
|
|
new_args, new_kwargs, which_args_are_wrapped, which_kwargs_are_wrapped = choice
|
|
|
|
try:
|
|
op(*new_args, **new_kwargs)
|
|
# NOTE: [What errors are Composite Compiance trying to catch?]
|
|
#
|
|
# There's two things we want to catch:
|
|
# - errors that would raise within the torch_dispatch impl
|
|
# - data_ptr accesses
|
|
# The first is easy to filter for (we could make the error a different
|
|
# error class), the second is always going to be a RuntimeError due to
|
|
# how it is implemented (if you try to access the data_ptr of thex
|
|
# wrapper Tensor, it raises you some internal RuntimeError).
|
|
#
|
|
# So the most general thing to catch here was RuntimeError. If you
|
|
# are here and debugging why your test failed, it's plausible that
|
|
# the operator itself is broken and that there are other tests failing.
|
|
except RuntimeError as err:
|
|
raise_composite_compliance_error(
|
|
err,
|
|
f"- wrapped_args: {which_args_are_wrapped}\n"
|
|
f"- wrapped_kwargs: {which_kwargs_are_wrapped}\n"
|
|
)
|
|
|
|
# Checks via the usage of Python mode certain anti-patterns that
|
|
# are not composite compliant.
|
|
#
|
|
# In particular, the anti-pattern we are trying to prevent is a user
|
|
# creating an empty tensor and then resize_-ing it. Python Mode helps
|
|
# here because all factory functions will create tensors that are
|
|
# CompositeCompliantTensor.
|
|
#
|
|
# The general strategy is to wrap all Tensor args and kwargs in
|
|
# CompositeCompliantTensor wrappers. If an operator that is
|
|
# Composite does any non-compliant behavior,
|
|
# CompositeCompliantTensor will raise an error.
|
|
def check_with_mode(op, args, kwargs):
|
|
def wrap(e):
|
|
return CompositeCompliantTensor(e) if isinstance(e, torch.Tensor) else e
|
|
|
|
args = tree_map(wrap, args)
|
|
kwargs = tree_map(wrap, kwargs)
|
|
try:
|
|
with enable_python_mode(CompositeCompliantTensor):
|
|
op(*args, **kwargs)
|
|
# see NOTE: [What errors are Composite Compiance trying to catch?]
|
|
except RuntimeError as err:
|
|
raise_composite_compliance_error(err)
|
|
|
|
def gather_leaf_tensors(args, kwargs):
|
|
leaf_tensors = []
|
|
args, args_spec = tree_flatten(args)
|
|
kwargs, kwargs_spec = tree_flatten(kwargs)
|
|
args = args + kwargs
|
|
for arg in args:
|
|
if not isinstance(arg, torch.Tensor):
|
|
continue
|
|
if arg.requires_grad:
|
|
leaf_tensors.append(arg)
|
|
return leaf_tensors
|
|
|
|
|
|
# Checks if the backward formula is composite compliant by testing
|
|
# all possible permutations of {inputs, grad_outputs} being
|
|
# CompositeCompliantTensor or regular Tensors.
|
|
def check_backward_formula(op, args, kwargs):
|
|
assert op.supports_autograd
|
|
|
|
for choice in generate_subclass_choices_args_kwargs(args, kwargs):
|
|
new_args, new_kwargs, which_args_are_wrapped, which_kwargs_are_wrapped = choice
|
|
leaf_tensors = gather_leaf_tensors(new_args, new_kwargs)
|
|
assert len(leaf_tensors) > 0
|
|
|
|
try:
|
|
results = op(*new_args, **new_kwargs)
|
|
# see NOTE: [What errors are Composite Compiance trying to catch?]
|
|
except RuntimeError as err:
|
|
raise_composite_compliance_error(
|
|
err,
|
|
f"- wrapped_args: {which_args_are_wrapped}\n"
|
|
f"- wrapped_kwargs: {which_kwargs_are_wrapped}\n"
|
|
)
|
|
|
|
# Hack: tree_flatten doesn't handle torch.return_types yet,
|
|
# so we're gonna convert them to tuple.
|
|
# TODO: https://github.com/pytorch/pytorch/issues/74624
|
|
if isinstance(results, tuple):
|
|
results = tuple(results)
|
|
flat_results, _ = tree_flatten(results)
|
|
flat_diff_results = [r for r in flat_results if r.requires_grad]
|
|
assert len(flat_diff_results) > 0
|
|
|
|
# NB: ones, not ones_like, so we get a regular Tensor here
|
|
grads = [torch.ones(r.shape, device=r.device, dtype=r.dtype)
|
|
for r in flat_diff_results]
|
|
for flat_new_grads, which_grad_is_batched in generate_subclass_choices(grads):
|
|
try:
|
|
torch.autograd.grad(flat_diff_results, leaf_tensors, flat_new_grads,
|
|
allow_unused=True, retain_graph=True)
|
|
# see NOTE: [What errors are Composite Compiance trying to catch?]
|
|
except RuntimeError as err:
|
|
raise_composite_compliance_error(
|
|
err,
|
|
f"- wrapped_args: {which_args_are_wrapped}\n"
|
|
f"- wrapped_kwargs: {which_kwargs_are_wrapped}\n"
|
|
f"- wrapped_grads: {which_grad_is_batched}\n"
|
|
)
|