pytorch/torch/utils/model_zoo.py
Luke Yeager e7c1e6a8e3 [pep8] Fix most lint automatically with autopep8
Here's the command I used to invoke autopep8 (in parallel!):

    git ls-files | grep '\.py$' | xargs -n1 -P`nproc` autopep8 -i

Several rules are ignored in setup.cfg. The goal is to let autopep8
handle everything which it can handle safely, and to disable any rules
which are tricky or controversial to address. We may want to come back
and re-enable some of these rules later, but I'm trying to make this
patch as safe as possible.

Also configures flake8 to match pep8's behavior.

Also configures TravisCI to check the whole project for lint.
2017-01-28 01:15:51 +01:00

110 lines
3.5 KiB
Python

import torch
import hashlib
import os
import re
import shutil
import sys
import tempfile
if sys.version_info[0] == 2:
from urlparse import urlparse
from urllib2 import urlopen
else:
from urllib.request import urlopen
from urllib.parse import urlparse
try:
from tqdm import tqdm
except ImportError:
tqdm = None # defined below
# matches bfd8deac from resnet18-bfd8deac.pth
HASH_REGEX = re.compile(r'-([a-f0-9]*)\.')
def load_url(url, model_dir=None):
r"""Loads the Torch serialized object at the given URL.
If the object is already present in `model_dir`, it's deserialied and
returned. The filename part of the URL should follow the naming convention
``filename-<sha256>.ext`` where ``<sha256>`` is the first eight or more
digits of the SHA256 hash of the contents of the file. The hash is used to
ensure unique names and to verify the contents of the file.
The default value of `model_dir` is ``$TORCH_HOME/models`` where
``$TORCH_HOME`` defaults to ``~/.torch``. The default directory can be
overriden with the ``$TORCH_MODEL_ZOO`` environement variable.
Args:
url (string): URL of the object to download
model_dir (string, optional): directory in which to save the object
Example:
>>> state_dict = torch.utils.model_zoo.load_url('https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth')
"""
if model_dir is None:
torch_home = os.path.expanduser(os.getenv('TORCH_HOME', '~/.torch'))
model_dir = os.getenv('TORCH_MODEL_ZOO', os.path.join(torch_home, 'models'))
if not os.path.exists(model_dir):
os.makedirs(model_dir)
parts = urlparse(url)
filename = os.path.basename(parts.path)
cached_file = os.path.join(model_dir, filename)
if not os.path.exists(cached_file):
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
hash_prefix = HASH_REGEX.search(filename).group(1)
_download_url_to_file(url, cached_file, hash_prefix)
return torch.load(cached_file)
def _download_url_to_file(url, dst, hash_prefix):
u = urlopen(url)
meta = u.info()
if hasattr(meta, 'getheaders'):
file_size = int(meta.getheaders("Content-Length")[0])
else:
file_size = int(meta.get_all("Content-Length")[0])
f = tempfile.NamedTemporaryFile(delete=False)
try:
sha256 = hashlib.sha256()
with tqdm(total=file_size) as pbar:
while True:
buffer = u.read(8192)
if len(buffer) == 0:
break
f.write(buffer)
sha256.update(buffer)
pbar.update(len(buffer))
f.close()
digest = sha256.hexdigest()
if digest[:len(hash_prefix)] != hash_prefix:
raise RuntimeError('invalid hash value (expected "{}", got "{}")'
.format(hash_prefix, digest))
shutil.move(f.name, dst)
finally:
f.close()
if os.path.exists(f.name):
os.remove(f.name)
if tqdm is None:
# fake tqdm if it's not installed
class tqdm(object):
def __init__(self, total):
self.total = total
self.n = 0
def update(self, n):
self.n += n
sys.stderr.write("\r{0:.1f}%".format(100 * self.n / float(self.total)))
sys.stderr.flush()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
sys.stderr.write('\n')