pytorch/torch/nn/parameter.pyi
Andrey Talman c6653b65d8 Back out "Make adding buffers more like adding parameters (#104069)" (#105581)
Summary:
D47537831 is breaking pyper tests: https://fb.workplace.com/groups/802176577445480/posts/1018902842439518/

with `TypeError: register_buffer() takes 3 positional arguments but 4 were given`

Original commit changeset: d4b4069fbd38

Original Phabricator Diff: D47537831

Test Plan:
```
buck2 run //caffe2/torch/fb/training_toolkit/integration_tests/training_lifecycle/cogwheel_tests/pyper_release_v2:cogwheel_smallworld_inline_cvr_infer_pyper_pyper__canary_offline_training-launcher -- --run-harness-in-tupperware --build-fbpkg ads_dper3 --build-fbpkg training_platform
```

Reviewed By: atalman

Differential Revision: D47600140

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105581
Approved by: https://github.com/mikaylagawarecki
2023-07-20 03:39:53 +00:00

41 lines
909 B
Python

import builtins
from typing import Optional, Tuple
import torch
from torch import Tensor
class Parameter(Tensor):
def __init__(
self,
data: Tensor = ...,
requires_grad: builtins.bool = ...,
): ...
def is_lazy(param: Tensor): ...
class UninitializedParameter(Tensor):
def __init__(
self,
data: Tensor = ...,
requires_grad: builtins.bool = ...,
): ...
def materialize(
self,
shape: Tuple[int, ...],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
): ...
class UninitializedBuffer(Tensor):
def __init__(
self,
data: Tensor = ...,
requires_grad: builtins.bool = ...,
): ...
def materialize(
self,
shape: Tuple[int, ...],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
): ...