pytorch/functorch/examples/compilation/eager_fusion.py
Edward Z. Yang e6ec0efaf8 Apply UFMT to all non test/torch files (#106205)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106205
Approved by: https://github.com/albanD
2023-07-29 02:56:24 +00:00

58 lines
1.1 KiB
Python

import time
import torch
import torch.utils
from functorch.compile import aot_function, tvm_compile
a = torch.randn(2000, 1, 4, requires_grad=True)
b = torch.randn(1, 2000, 4)
def f(a):
return (a * b).sum(dim=0)
fw_compiler = tvm_compile(target="llvm", tuning_logfile="fw_keops")
bw_compiler = tvm_compile(target="llvm", tuning_logfile="bw_keops")
compiled_f = aot_function(f, fw_compiler, bw_compiler)
# fw_compiler = lambda x, _: x
# bw_compiler = lambda x, _: x
iters = 10
out = compiled_f(a)
out.sum().backward()
def bench(func):
begin = time.time()
for _ in range(iters):
out = func(a).sin()
out.sum().backward()
a.grad = None
print(time.time() - begin)
def bench_jax():
import jax
import jax.numpy as jnp
jax_a = jnp.array(a.detach().numpy())
jax_b = jnp.array(b.detach().numpy())
def f(a):
return jnp.sin((a * jax_b).sum(axis=[0])).sum()
jit_f = jax.jit(jax.grad(f))
jit_f(jax_a)
begin = time.time()
for _ in range(iters):
out = jit_f(jax_a)
out.block_until_ready()
print(time.time() - begin)
# for
bench(f)
bench(compiled_f)
# bench_jax()