pytorch/torch/csrc/jit/frontend/builtin_functions.cpp
Elias Ellison e68afe3ab9 [JIT] remove prim::shape op (#34286)
Summary:
Desugar prim::shape to aten::size so that passes don't need to reason about both ops. Serialized models still resolve to `prim::shape` so this doesn't break BC.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34286

Differential Revision: D20316818

Pulled By: eellison

fbshipit-source-id: d1585687212843f51e9396e07c108f5c08017818
2020-03-26 19:29:25 -07:00

136 lines
4.3 KiB
C++

#include <torch/csrc/jit/frontend/builtin_functions.h>
#include <torch/csrc/api/include/torch/jit.h>
#include <torch/csrc/jit/frontend/code_template.h>
#include <torch/csrc/jit/frontend/resolver.h>
namespace torch {
namespace jit {
auto scalar_operators_source = CodeTemplate(
R"SCRIPT(
def mul(a : ${Scalar}, b : Tensor) -> Tensor:
return b * a
def add(a : ${Scalar}, b : Tensor) -> Tensor:
return b + a
def ne(a : ${Scalar}, b : Tensor) -> Tensor:
return b != a
def eq(a : ${Scalar}, b : Tensor) -> Tensor:
return b == a
def lt(a : ${Scalar}, b : Tensor) -> Tensor:
return b > a
def le(a : ${Scalar}, b : Tensor) -> Tensor:
return b >= a
def gt(a : ${Scalar}, b : Tensor) -> Tensor:
return b < a
def ge(a : ${Scalar}, b : Tensor) -> Tensor:
return b <= a
def sub(a : ${Scalar}, b : Tensor) -> Tensor:
return torch.neg(b) + a
def div(a : ${Scalar}, b : Tensor) -> Tensor:
return torch.reciprocal(b) * a
)SCRIPT");
auto _ntuple_ops = CodeTemplate(
R"SCRIPT(
def _${name}(x: BroadcastingList${Length}[${Scalar}]) -> List[${Scalar}]:
return x
)SCRIPT");
auto floordiv = CodeTemplate(
R"SCRIPT(
def floordiv(self : Tensor, other : ${Rhs_Type}) -> Tensor:
return torch.floor_divide(self, other)
)SCRIPT");
auto tensor_properties =
R"SCRIPT(
def ndim(a : Tensor) -> int:
return a.dim()
def T(a : Tensor) -> Tensor:
return a.numpy_T()
def shape(a : Tensor) -> List[int]:
return a.size()
)SCRIPT";
struct BuiltinFunctionRegistry {
const std::vector<Function*>& getAllBuiltinFunctionsFor(Symbol name) {
const static std::vector<Function*> empty;
// when initializing the builtin function library, we will re-enter
// getAllBuiltinFunctionsFor since it is called in the compiler to
// lookup builtins and initializing the builtin functions calls the
// compiler. To avoid deadlocking, we use a recursive mutex (same thread can
// re-lock, the mutex without waiting), and report no loaded builtins during
// init.
std::lock_guard<std::recursive_mutex> guard(mutex);
if (state == INTIIALIZING) {
return empty;
} else if (state == UNINITIALIZED) {
state = INTIIALIZING;
loadBuiltinFunctions();
state = INITIALIZED;
}
AT_ASSERT(state == INITIALIZED);
auto it = builtins_by_name_.find(name);
if (it == builtins_by_name_.end())
return empty;
return it->second;
}
private:
void loadSource(const std::string& source, const std::string& the_namespace) {
std::shared_ptr<CompilationUnit> cu = std::make_shared<CompilationUnit>();
modules.emplace_back(cu);
cu->define(c10::nullopt, source, nativeResolver(), /*self=*/nullptr);
for (auto& method : cu->get_functions()) {
builtins_by_name_[Symbol::fromQualString(
the_namespace + "::" + method->name())]
.push_back(method);
}
}
void loadBuiltinFunctions() {
for (auto scalar : {"float", "int"}) {
TemplateEnv env;
env.s("Scalar", scalar);
loadSource(scalar_operators_source.format(env), "aten");
}
using str_pair = std::pair<std::string, std::string>;
const std::vector<str_pair> name_len = {
str_pair("single", "1"),
str_pair("pair", "2"),
str_pair("triple", "3"),
str_pair("quadruple", "4"),
};
for (const auto scalar : {"float", "int"}) {
for (const auto& pair : name_len) {
TemplateEnv env;
env.s("Scalar", scalar);
env.s("name", pair.first);
env.s("Length", pair.second);
loadSource(_ntuple_ops.format(env), "aten");
}
}
for (auto rhs : {"number", "Tensor"}) {
TemplateEnv env;
env.s("Rhs_Type", rhs);
loadSource(floordiv.format(env), "aten");
}
// These are under `prim` instead of `aten` since they exist to bind certain
// tensor property getters to correpsonding methods
loadSource(tensor_properties, "prim");
}
enum { UNINITIALIZED, INTIIALIZING, INITIALIZED } state = UNINITIALIZED;
std::recursive_mutex mutex;
std::vector<std::shared_ptr<CompilationUnit>> modules;
std::unordered_map<Symbol, std::vector<Function*>> builtins_by_name_;
};
const std::vector<Function*>& getAllBuiltinFunctionsFor(Symbol name) {
static BuiltinFunctionRegistry registry;
return registry.getAllBuiltinFunctionsFor(name);
}
} // namespace jit
} // namespace torch