mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: BC NOTE: This change makes it so modules saved with torch.jit.save in PyTorch 1.6 can be loaded by previous versions of PyTorch unless they use torch.div or (soon) torch.full. It also lets tensors saved using torch.save be loaded by previous versions. So this is the opposite of BC-breaking, but I'm using that label to highlight this issue since we don't have a "BC-improving" label. PR NOTE: When an operator's semantics change in PyTorch we want to do two things: 1) Preserve the semantics of older serialized Torchscript programs that use the operator 2) Ensure the new semantics are respected Historically, this meant writing a Versioned Symbol that would remap older versions of the operator into current PyTorch code (1), and bumping the produced file format version (2). Unfortunately, bumping the produced file format version is a nuclear option for ensuring semantics are respected, since it also prevents older versions of PyTorch from loading anything (even tensors!) from newer versions. Dynamic versioning addresses the nuclear consequences of bumping the produced file format version by only bumping it when necessary. That is, when an operator with changed semantics is detected in the serialized Torchscript. This will prevent Torchscript programs that use the changed operator from loading on earlier versions of PyTorch, as desired, but will have no impact on programs that don't use the changed operator. Note that this change is only applicable when using torch.jit.save and torch.jit.load. torch.save pickles the given object using pickle (by default), which saves a function's Python directly. No new tests for this behavior are added since the existing tests for versioned division in test_save_load already validate that models with div are loaded correctly at version 4. Pull Request resolved: https://github.com/pytorch/pytorch/pull/40279 Reviewed By: dzhulgakov Differential Revision: D22168291 Pulled By: mruberry fbshipit-source-id: e71d6380e727e25123c7eedf6d80e5d7f1fe9f95
849 lines
33 KiB
Python
849 lines
33 KiB
Python
import difflib
|
|
import os
|
|
import io
|
|
import shutil
|
|
import struct
|
|
import sys
|
|
import torch
|
|
import tarfile
|
|
import tempfile
|
|
import warnings
|
|
from contextlib import closing, contextmanager
|
|
from ._utils import _import_dotted_name
|
|
from ._six import string_classes as _string_classes
|
|
from torch._utils_internal import get_source_lines_and_file
|
|
import copyreg
|
|
import pickle
|
|
import pathlib
|
|
|
|
DEFAULT_PROTOCOL = 2
|
|
|
|
LONG_SIZE = struct.Struct('=l').size
|
|
INT_SIZE = struct.Struct('=i').size
|
|
SHORT_SIZE = struct.Struct('=h').size
|
|
|
|
MAGIC_NUMBER = 0x1950a86a20f9469cfc6c
|
|
PROTOCOL_VERSION = 1001
|
|
STORAGE_KEY_SEPARATOR = ','
|
|
|
|
|
|
class SourceChangeWarning(Warning):
|
|
pass
|
|
|
|
|
|
@contextmanager
|
|
def mkdtemp():
|
|
path = tempfile.mkdtemp()
|
|
yield path
|
|
shutil.rmtree(path)
|
|
|
|
|
|
_package_registry = []
|
|
|
|
|
|
def _is_zipfile(f):
|
|
# This is a stricter implementation than zipfile.is_zipfile().
|
|
# zipfile.is_zipfile() is True if the magic number appears anywhere in the
|
|
# binary. Since we expect the files here to be generated by torch.save or
|
|
# torch.jit.save, it's safe to only check the start bytes and avoid
|
|
# collisions and assume the zip has only 1 file.
|
|
# See bugs.python.org/issue28494.
|
|
|
|
# Read the first 4 bytes of the file
|
|
read_bytes = []
|
|
start = f.tell()
|
|
|
|
byte = f.read(1)
|
|
while byte != "":
|
|
read_bytes.append(byte)
|
|
if len(read_bytes) == 4:
|
|
break
|
|
byte = f.read(1)
|
|
f.seek(start)
|
|
|
|
local_header_magic_number = [b'P', b'K', b'\x03', b'\x04']
|
|
return read_bytes == local_header_magic_number
|
|
|
|
|
|
def register_package(priority, tagger, deserializer):
|
|
queue_elem = (priority, tagger, deserializer)
|
|
_package_registry.append(queue_elem)
|
|
_package_registry.sort()
|
|
|
|
|
|
def check_module_version_greater_or_equal(module, req_version_tuple, error_if_malformed=True):
|
|
'''
|
|
Check if a module's version satisfies requirements
|
|
|
|
Usually, a module's version string will be like 'x.y.z', which would be represented
|
|
as a tuple (x, y, z), but sometimes it could be an unexpected format. If the version
|
|
string does not match the given tuple's format up to the length of the tuple, then
|
|
error and exit or emit a warning.
|
|
|
|
Args:
|
|
module: the module to check the version of
|
|
req_version_tuple: tuple (usually of ints) representing the required version
|
|
error_if_malformed: whether we should exit if module version string is malformed
|
|
|
|
Returns:
|
|
requirement_is_met: bool
|
|
'''
|
|
try:
|
|
version_strs = module.__version__.split('.')
|
|
# Cast module version fields to match the types of the required version
|
|
module_version = tuple(
|
|
type(req_field)(version_strs[idx]) for idx, req_field in enumerate(req_version_tuple)
|
|
)
|
|
requirement_is_met = module_version >= req_version_tuple
|
|
|
|
except Exception as e:
|
|
message = (
|
|
"'%s' module version string is malformed '%s' and cannot be compared"
|
|
" with tuple %s"
|
|
) % (
|
|
module.__name__, module.__version__, str(req_version_tuple)
|
|
)
|
|
if error_if_malformed:
|
|
raise RuntimeError(message)
|
|
else:
|
|
warnings.warn(message + ', but continuing assuming that requirement is met')
|
|
requirement_is_met = True
|
|
|
|
return requirement_is_met
|
|
|
|
|
|
def _cpu_tag(obj):
|
|
if type(obj).__module__ == 'torch':
|
|
return 'cpu'
|
|
|
|
|
|
def _cuda_tag(obj):
|
|
if type(obj).__module__ == 'torch.cuda':
|
|
return 'cuda:' + str(obj.get_device())
|
|
|
|
|
|
def _cpu_deserialize(obj, location):
|
|
if location == 'cpu':
|
|
return obj
|
|
|
|
|
|
def validate_cuda_device(location):
|
|
device = torch.cuda._utils._get_device_index(location, True)
|
|
|
|
if not torch.cuda.is_available():
|
|
raise RuntimeError('Attempting to deserialize object on a CUDA '
|
|
'device but torch.cuda.is_available() is False. '
|
|
'If you are running on a CPU-only machine, '
|
|
'please use torch.load with map_location=torch.device(\'cpu\') '
|
|
'to map your storages to the CPU.')
|
|
if device >= torch.cuda.device_count():
|
|
raise RuntimeError('Attempting to deserialize object on CUDA device '
|
|
'{device} but torch.cuda.device_count() is {device_count}. Please use '
|
|
'torch.load with map_location to map your storages '
|
|
'to an existing device.'.format(
|
|
device=device, device_count=torch.cuda.device_count()))
|
|
return device
|
|
|
|
|
|
def _cuda_deserialize(obj, location):
|
|
if location.startswith('cuda'):
|
|
device = validate_cuda_device(location)
|
|
if getattr(obj, "_torch_load_uninitialized", False):
|
|
storage_type = getattr(torch.cuda, type(obj).__name__)
|
|
with torch.cuda.device(device):
|
|
return storage_type(obj.size())
|
|
else:
|
|
return obj.cuda(device)
|
|
|
|
|
|
register_package(10, _cpu_tag, _cpu_deserialize)
|
|
register_package(20, _cuda_tag, _cuda_deserialize)
|
|
|
|
|
|
def location_tag(storage):
|
|
for _, tagger, _ in _package_registry:
|
|
location = tagger(storage)
|
|
if location:
|
|
return location
|
|
raise RuntimeError("don't know how to determine data location of "
|
|
+ torch.typename(storage))
|
|
|
|
|
|
def default_restore_location(storage, location):
|
|
for _, _, fn in _package_registry:
|
|
result = fn(storage, location)
|
|
if result is not None:
|
|
return result
|
|
raise RuntimeError("don't know how to restore data location of "
|
|
+ torch.typename(storage) + " (tagged with "
|
|
+ location + ")")
|
|
|
|
|
|
def normalize_storage_type(storage_type):
|
|
return getattr(torch, storage_type.__name__)
|
|
|
|
|
|
def storage_to_tensor_type(storage):
|
|
storage_type = type(storage)
|
|
module = _import_dotted_name(storage_type.__module__)
|
|
return getattr(module, storage_type.__name__.replace('Storage', 'Tensor'))
|
|
|
|
|
|
def _is_path(name_or_buffer):
|
|
return isinstance(name_or_buffer, str) or \
|
|
(sys.version_info[0] == 3 and isinstance(name_or_buffer, pathlib.Path))
|
|
|
|
|
|
class _opener(object):
|
|
def __init__(self, file_like):
|
|
self.file_like = file_like
|
|
|
|
def __enter__(self):
|
|
return self.file_like
|
|
|
|
def __exit__(self, *args):
|
|
pass
|
|
|
|
|
|
class _open_file(_opener):
|
|
def __init__(self, name, mode):
|
|
super(_open_file, self).__init__(open(name, mode))
|
|
|
|
def __exit__(self, *args):
|
|
self.file_like.close()
|
|
|
|
|
|
class _open_buffer_reader(_opener):
|
|
def __init__(self, buffer):
|
|
super(_open_buffer_reader, self).__init__(buffer)
|
|
_check_seekable(buffer)
|
|
|
|
|
|
class _open_buffer_writer(_opener):
|
|
def __exit__(self, *args):
|
|
self.file_like.flush()
|
|
|
|
|
|
def _open_file_like(name_or_buffer, mode):
|
|
if _is_path(name_or_buffer):
|
|
return _open_file(name_or_buffer, mode)
|
|
else:
|
|
if 'w' in mode:
|
|
return _open_buffer_writer(name_or_buffer)
|
|
elif 'r' in mode:
|
|
return _open_buffer_reader(name_or_buffer)
|
|
else:
|
|
raise RuntimeError("Expected 'r' or 'w' in mode but got {}".format(mode))
|
|
|
|
|
|
class _open_zipfile_reader(_opener):
|
|
def __init__(self, name_or_buffer):
|
|
super(_open_zipfile_reader, self).__init__(torch._C.PyTorchFileReader(name_or_buffer))
|
|
|
|
|
|
class _open_zipfile_writer_file(_opener):
|
|
def __init__(self, name):
|
|
super(_open_zipfile_writer_file, self).__init__(torch._C.PyTorchFileWriter(str(name)))
|
|
|
|
def __exit__(self, *args):
|
|
self.file_like.write_end_of_file()
|
|
|
|
|
|
class _open_zipfile_writer_buffer(_opener):
|
|
def __init__(self, buffer):
|
|
self.buffer = buffer
|
|
super(_open_zipfile_writer_buffer, self).__init__(torch._C.PyTorchFileWriter(buffer))
|
|
|
|
def __exit__(self, *args):
|
|
self.file_like.write_end_of_file()
|
|
self.buffer.flush()
|
|
|
|
|
|
def _open_zipfile_writer(name_or_buffer):
|
|
if _is_path(name_or_buffer):
|
|
container = _open_zipfile_writer_file
|
|
else:
|
|
container = _open_zipfile_writer_buffer
|
|
return container(name_or_buffer)
|
|
|
|
|
|
def _is_compressed_file(f):
|
|
compress_modules = ['gzip']
|
|
try:
|
|
return f.__module__ in compress_modules
|
|
except AttributeError:
|
|
return False
|
|
|
|
|
|
def _should_read_directly(f):
|
|
"""
|
|
Checks if f is a file that should be read directly. It should be read
|
|
directly if it is backed by a real file (has a fileno) and is not a
|
|
a compressed file (e.g. gzip)
|
|
"""
|
|
if _is_compressed_file(f):
|
|
return False
|
|
try:
|
|
return f.fileno() >= 0
|
|
except io.UnsupportedOperation:
|
|
return False
|
|
except AttributeError:
|
|
return False
|
|
|
|
|
|
def _check_seekable(f):
|
|
|
|
def raise_err_msg(patterns, e):
|
|
for p in patterns:
|
|
if p in str(e):
|
|
msg = (str(e) + ". You can only torch.load from a file that is seekable."
|
|
+ " Please pre-load the data into a buffer like io.BytesIO and"
|
|
+ " try to load from it instead.")
|
|
raise type(e)(msg)
|
|
raise e
|
|
|
|
try:
|
|
f.seek(f.tell())
|
|
return True
|
|
except (io.UnsupportedOperation, AttributeError) as e:
|
|
raise_err_msg(["seek", "tell"], e)
|
|
|
|
def _check_dill_version(pickle_module):
|
|
'''Checks if using dill as the pickle module, and if so, checks if it is the correct version.
|
|
If dill version is lower than 0.3.1, a ValueError is raised.
|
|
|
|
Args:
|
|
pickle_module: module used for pickling metadata and objects
|
|
|
|
'''
|
|
if pickle_module.__name__ == 'dill':
|
|
required_dill_version = (0, 3, 1)
|
|
if not check_module_version_greater_or_equal(pickle_module, required_dill_version, False):
|
|
raise ValueError((
|
|
"'torch' supports dill >= %s, but you have dill %s."
|
|
" Please upgrade dill or switch to 'pickle'"
|
|
) % (
|
|
'.'.join([str(num) for num in required_dill_version]),
|
|
pickle_module.__version__
|
|
))
|
|
|
|
def save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL, _use_new_zipfile_serialization=True):
|
|
"""Saves an object to a disk file.
|
|
|
|
See also: :ref:`recommend-saving-models`
|
|
|
|
Args:
|
|
obj: saved object
|
|
f: a file-like object (has to implement write and flush) or a string
|
|
containing a file name
|
|
pickle_module: module used for pickling metadata and objects
|
|
pickle_protocol: can be specified to override the default protocol
|
|
|
|
.. note::
|
|
A common PyTorch convention is to save tensors using .pt file extension.
|
|
|
|
.. note::
|
|
The 1.6 release of PyTorch switched ``torch.save`` to use a new
|
|
zipfile-based file format. ``torch.load`` still retains the ability to
|
|
load files in the old format. If for any reason you want ``torch.save``
|
|
to use the old format, pass the kwarg ``_use_new_zipfile_serialization=False``.
|
|
|
|
Example:
|
|
>>> # Save to file
|
|
>>> x = torch.tensor([0, 1, 2, 3, 4])
|
|
>>> torch.save(x, 'tensor.pt')
|
|
>>> # Save to io.BytesIO buffer
|
|
>>> buffer = io.BytesIO()
|
|
>>> torch.save(x, buffer)
|
|
"""
|
|
_check_dill_version(pickle_module)
|
|
|
|
if _use_new_zipfile_serialization:
|
|
with _open_zipfile_writer(f) as opened_file:
|
|
_save(obj, opened_file, pickle_module, pickle_protocol)
|
|
return
|
|
|
|
with _open_file_like(f, 'wb') as opened_file:
|
|
_legacy_save(obj, opened_file, pickle_module, pickle_protocol)
|
|
|
|
|
|
def _legacy_save(obj, f, pickle_module, pickle_protocol):
|
|
import torch.nn as nn
|
|
serialized_container_types = {}
|
|
serialized_storages = {}
|
|
|
|
def persistent_id(obj):
|
|
# FIXME: the docs say that persistent_id should only return a string
|
|
# but torch store returns tuples. This works only in the binary protocol
|
|
# see
|
|
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
|
|
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
|
|
if isinstance(obj, type) and issubclass(obj, nn.Module):
|
|
if obj in serialized_container_types:
|
|
return None
|
|
serialized_container_types[obj] = True
|
|
source_file = source = None
|
|
try:
|
|
source_lines, _, source_file = get_source_lines_and_file(obj)
|
|
source = ''.join(source_lines)
|
|
except Exception: # saving the source is optional, so we can ignore any errors
|
|
warnings.warn("Couldn't retrieve source code for container of "
|
|
"type " + obj.__name__ + ". It won't be checked "
|
|
"for correctness upon loading.")
|
|
return ('module', obj, source_file, source)
|
|
|
|
elif torch.is_storage(obj):
|
|
storage_type = normalize_storage_type(type(obj))
|
|
# Offset is always 0, but we keep it for backwards compatibility
|
|
# with the old serialization format (which supported storage views)
|
|
offset = 0
|
|
obj_key = str(obj._cdata)
|
|
location = location_tag(obj)
|
|
serialized_storages[obj_key] = obj
|
|
is_view = obj._cdata != obj._cdata
|
|
if is_view:
|
|
view_metadata = (str(obj._cdata), offset, obj.size())
|
|
else:
|
|
view_metadata = None
|
|
|
|
return ('storage',
|
|
storage_type,
|
|
obj_key,
|
|
location,
|
|
obj.size(),
|
|
view_metadata)
|
|
return None
|
|
|
|
sys_info = dict(
|
|
protocol_version=PROTOCOL_VERSION,
|
|
little_endian=sys.byteorder == 'little',
|
|
type_sizes=dict(
|
|
short=SHORT_SIZE,
|
|
int=INT_SIZE,
|
|
long=LONG_SIZE,
|
|
),
|
|
)
|
|
|
|
pickle_module.dump(MAGIC_NUMBER, f, protocol=pickle_protocol)
|
|
pickle_module.dump(PROTOCOL_VERSION, f, protocol=pickle_protocol)
|
|
pickle_module.dump(sys_info, f, protocol=pickle_protocol)
|
|
pickler = pickle_module.Pickler(f, protocol=pickle_protocol)
|
|
pickler.persistent_id = persistent_id
|
|
pickler.dump(obj)
|
|
|
|
serialized_storage_keys = sorted(serialized_storages.keys())
|
|
pickle_module.dump(serialized_storage_keys, f, protocol=pickle_protocol)
|
|
f.flush()
|
|
for key in serialized_storage_keys:
|
|
serialized_storages[key]._write_file(f, _should_read_directly(f), True)
|
|
|
|
|
|
def _save(obj, zip_file, pickle_module, pickle_protocol):
|
|
serialized_storages = {}
|
|
|
|
def persistent_id(obj):
|
|
# FIXME: the docs say that persistent_id should only return a string
|
|
# but torch store returns tuples. This works only in the binary protocol
|
|
# see
|
|
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
|
|
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
|
|
if torch.is_storage(obj):
|
|
storage_type = normalize_storage_type(type(obj))
|
|
obj_key = str(obj._cdata)
|
|
location = location_tag(obj)
|
|
serialized_storages[obj_key] = obj
|
|
|
|
return ('storage',
|
|
storage_type,
|
|
obj_key,
|
|
location,
|
|
obj.size())
|
|
return None
|
|
|
|
# Write the pickle data for `obj`
|
|
data_buf = io.BytesIO()
|
|
pickler = pickle_module.Pickler(data_buf, protocol=pickle_protocol)
|
|
pickler.persistent_id = persistent_id
|
|
pickler.dump(obj)
|
|
data_value = data_buf.getvalue()
|
|
zip_file.write_record('data.pkl', data_value, len(data_value))
|
|
|
|
# Write each tensor to a file named tensor/the_tensor_key in the zip archive
|
|
for key in sorted(serialized_storages.keys()):
|
|
name = 'data/{}'.format(key)
|
|
storage = serialized_storages[key]
|
|
if storage.device.type == 'cpu':
|
|
# If it's on the CPU we can directly copy it into the zip file
|
|
num_bytes = storage.size() * storage.element_size()
|
|
zip_file.write_record(name, storage.data_ptr(), num_bytes)
|
|
else:
|
|
# Copy to a buffer, then serialize that
|
|
buf = io.BytesIO()
|
|
storage._write_file(buf, _should_read_directly(buf))
|
|
buf_value = buf.getvalue()
|
|
zip_file.write_record(name, buf_value, len(buf_value))
|
|
|
|
|
|
def load(f, map_location=None, pickle_module=pickle, **pickle_load_args):
|
|
"""Loads an object saved with :func:`torch.save` from a file.
|
|
|
|
:func:`torch.load` uses Python's unpickling facilities but treats storages,
|
|
which underlie tensors, specially. They are first deserialized on the
|
|
CPU and are then moved to the device they were saved from. If this fails
|
|
(e.g. because the run time system doesn't have certain devices), an exception
|
|
is raised. However, storages can be dynamically remapped to an alternative
|
|
set of devices using the :attr:`map_location` argument.
|
|
|
|
If :attr:`map_location` is a callable, it will be called once for each serialized
|
|
storage with two arguments: storage and location. The storage argument
|
|
will be the initial deserialization of the storage, residing on the CPU.
|
|
Each serialized storage has a location tag associated with it which
|
|
identifies the device it was saved from, and this tag is the second
|
|
argument passed to :attr:`map_location`. The builtin location tags are ``'cpu'``
|
|
for CPU tensors and ``'cuda:device_id'`` (e.g. ``'cuda:2'``) for CUDA tensors.
|
|
:attr:`map_location` should return either ``None`` or a storage. If
|
|
:attr:`map_location` returns a storage, it will be used as the final deserialized
|
|
object, already moved to the right device. Otherwise, :func:`torch.load` will
|
|
fall back to the default behavior, as if :attr:`map_location` wasn't specified.
|
|
|
|
If :attr:`map_location` is a :class:`torch.device` object or a string containing
|
|
a device tag, it indicates the location where all tensors should be loaded.
|
|
|
|
Otherwise, if :attr:`map_location` is a dict, it will be used to remap location tags
|
|
appearing in the file (keys), to ones that specify where to put the
|
|
storages (values).
|
|
|
|
User extensions can register their own location tags and tagging and
|
|
deserialization methods using :func:`torch.serialization.register_package`.
|
|
|
|
Args:
|
|
f: a file-like object (has to implement :meth:`read`, :meth`readline`, :meth`tell`, and :meth`seek`),
|
|
or a string containing a file name
|
|
map_location: a function, :class:`torch.device`, string or a dict specifying how to remap storage
|
|
locations
|
|
pickle_module: module used for unpickling metadata and objects (has to
|
|
match the :attr:`pickle_module` used to serialize file)
|
|
pickle_load_args: (Python 3 only) optional keyword arguments passed over to
|
|
:func:`pickle_module.load` and :func:`pickle_module.Unpickler`, e.g.,
|
|
:attr:`errors=...`.
|
|
|
|
.. warning::
|
|
:func:`torch.load()` uses ``pickle`` module implicitly, which is known to be insecure.
|
|
It is possible to construct malicious pickle data which will execute arbitrary code
|
|
during unpickling. Never load data that could have come from an untrusted
|
|
source, or that could have been tampered with. **Only load data you trust**.
|
|
|
|
.. note::
|
|
When you call :func:`torch.load()` on a file which contains GPU tensors, those tensors
|
|
will be loaded to GPU by default. You can call ``torch.load(.., map_location='cpu')``
|
|
and then :meth:`load_state_dict` to avoid GPU RAM surge when loading a model checkpoint.
|
|
|
|
.. note::
|
|
By default, we decode byte strings as ``utf-8``. This is to avoid a common error
|
|
case ``UnicodeDecodeError: 'ascii' codec can't decode byte 0x...``
|
|
when loading files saved by Python 2 in Python 3. If this default
|
|
is incorrect, you may use an extra :attr:`encoding` keyword argument to specify how
|
|
these objects should be loaded, e.g., :attr:`encoding='latin1'` decodes them
|
|
to strings using ``latin1`` encoding, and :attr:`encoding='bytes'` keeps them
|
|
as byte arrays which can be decoded later with ``byte_array.decode(...)``.
|
|
|
|
Example:
|
|
>>> torch.load('tensors.pt')
|
|
# Load all tensors onto the CPU
|
|
>>> torch.load('tensors.pt', map_location=torch.device('cpu'))
|
|
# Load all tensors onto the CPU, using a function
|
|
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage)
|
|
# Load all tensors onto GPU 1
|
|
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1))
|
|
# Map tensors from GPU 1 to GPU 0
|
|
>>> torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'})
|
|
# Load tensor from io.BytesIO object
|
|
>>> with open('tensor.pt', 'rb') as f:
|
|
buffer = io.BytesIO(f.read())
|
|
>>> torch.load(buffer)
|
|
# Load a module with 'ascii' encoding for unpickling
|
|
>>> torch.load('module.pt', encoding='ascii')
|
|
"""
|
|
_check_dill_version(pickle_module)
|
|
|
|
if 'encoding' not in pickle_load_args.keys():
|
|
pickle_load_args['encoding'] = 'utf-8'
|
|
|
|
with _open_file_like(f, 'rb') as opened_file:
|
|
if _is_zipfile(opened_file):
|
|
with _open_zipfile_reader(f) as opened_zipfile:
|
|
if _is_torchscript_zip(opened_zipfile):
|
|
warnings.warn("'torch.load' received a zip file that looks like a TorchScript archive"
|
|
" dispatching to 'torch.jit.load' (call 'torch.jit.load' directly to"
|
|
" silence this warning)", UserWarning)
|
|
return torch.jit.load(f)
|
|
return _load(opened_zipfile, map_location, pickle_module, **pickle_load_args)
|
|
return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
|
|
|
|
|
|
# Register pickling support for layout instances such as
|
|
# torch.sparse_coo, etc
|
|
def _get_layout(name):
|
|
"""Get layout extension object from its string representation.
|
|
"""
|
|
cache = _get_layout.cache
|
|
if not cache:
|
|
for v in torch.__dict__.values():
|
|
if isinstance(v, torch.layout):
|
|
cache[str(v)] = v
|
|
return cache[name]
|
|
|
|
|
|
_get_layout.cache = {}
|
|
copyreg.pickle(torch.layout, lambda obj: (_get_layout, (str(obj),)))
|
|
|
|
|
|
def _legacy_load(f, map_location, pickle_module, **pickle_load_args):
|
|
deserialized_objects = {}
|
|
|
|
restore_location = _get_restore_location(map_location)
|
|
|
|
def _check_container_source(container_type, source_file, original_source):
|
|
try:
|
|
current_source = ''.join(get_source_lines_and_file(container_type)[0])
|
|
except Exception: # saving the source is optional, so we can ignore any errors
|
|
warnings.warn("Couldn't retrieve source code for container of "
|
|
"type " + container_type.__name__ + ". It won't be checked "
|
|
"for correctness upon loading.")
|
|
return
|
|
if original_source != current_source:
|
|
if container_type.dump_patches:
|
|
file_name = container_type.__name__ + '.patch'
|
|
diff = difflib.unified_diff(current_source.split('\n'),
|
|
original_source.split('\n'),
|
|
source_file,
|
|
source_file, lineterm="")
|
|
lines = '\n'.join(diff)
|
|
try:
|
|
with open(file_name, 'a+') as f:
|
|
file_size = f.seek(0, 2)
|
|
f.seek(0)
|
|
if file_size == 0:
|
|
f.write(lines)
|
|
elif file_size != len(lines) or f.read() != lines:
|
|
raise IOError
|
|
msg = ("Saved a reverse patch to " + file_name + ". "
|
|
"Run `patch -p0 < " + file_name + "` to revert your "
|
|
"changes.")
|
|
except IOError:
|
|
msg = ("Tried to save a patch, but couldn't create a "
|
|
"writable file " + file_name + ". Make sure it "
|
|
"doesn't exist and your working directory is "
|
|
"writable.")
|
|
else:
|
|
msg = ("you can retrieve the original source code by "
|
|
"accessing the object's source attribute or set "
|
|
"`torch.nn.Module.dump_patches = True` and use the "
|
|
"patch tool to revert the changes.")
|
|
msg = ("source code of class '{container_type}' has changed. {msg}"
|
|
.format(container_type=torch.typename(container_type), msg=msg))
|
|
warnings.warn(msg, SourceChangeWarning)
|
|
|
|
def legacy_load(f):
|
|
deserialized_objects = {}
|
|
|
|
def persistent_load(saved_id):
|
|
if isinstance(saved_id, tuple):
|
|
# Ignore containers that don't have any sources saved
|
|
if all(saved_id[1:]):
|
|
_check_container_source(*saved_id)
|
|
return saved_id[0]
|
|
return deserialized_objects[int(saved_id)]
|
|
|
|
with closing(tarfile.open(fileobj=f, mode='r:', format=tarfile.PAX_FORMAT)) as tar, \
|
|
mkdtemp() as tmpdir:
|
|
|
|
tar.extract('storages', path=tmpdir)
|
|
with open(os.path.join(tmpdir, 'storages'), 'rb', 0) as f:
|
|
num_storages = pickle_module.load(f, **pickle_load_args)
|
|
for i in range(num_storages):
|
|
args = pickle_module.load(f, **pickle_load_args)
|
|
key, location, storage_type = args
|
|
obj = storage_type._new_with_file(f)
|
|
obj = restore_location(obj, location)
|
|
deserialized_objects[key] = obj
|
|
|
|
storage_views = pickle_module.load(f, **pickle_load_args)
|
|
for target_cdata, root_cdata, offset, size in storage_views:
|
|
root = deserialized_objects[root_cdata]
|
|
deserialized_objects[target_cdata] = root[offset:offset + size]
|
|
|
|
tar.extract('tensors', path=tmpdir)
|
|
with open(os.path.join(tmpdir, 'tensors'), 'rb', 0) as f:
|
|
num_tensors = pickle_module.load(f, **pickle_load_args)
|
|
for _ in range(num_tensors):
|
|
args = pickle_module.load(f, **pickle_load_args)
|
|
key, storage_id, original_tensor_type = args
|
|
storage = deserialized_objects[storage_id]
|
|
tensor_type = storage_to_tensor_type(storage)
|
|
ndim, = struct.unpack('<i', f.read(4))
|
|
# skip next 4 bytes; legacy encoding treated ndim as 8 bytes
|
|
f.read(4)
|
|
size = struct.unpack('<{}q'.format(ndim), f.read(8 * ndim))
|
|
stride = struct.unpack('<{}q'.format(ndim), f.read(8 * ndim))
|
|
storage_offset, = struct.unpack('<q', f.read(8))
|
|
tensor = tensor_type().set_(storage, storage_offset, size, stride)
|
|
deserialized_objects[key] = tensor
|
|
|
|
pickle_file = tar.extractfile('pickle')
|
|
unpickler = pickle_module.Unpickler(pickle_file, **pickle_load_args)
|
|
unpickler.persistent_load = persistent_load
|
|
result = unpickler.load()
|
|
return result
|
|
|
|
deserialized_objects = {}
|
|
|
|
def persistent_load(saved_id):
|
|
assert isinstance(saved_id, tuple)
|
|
typename = _maybe_decode_ascii(saved_id[0])
|
|
data = saved_id[1:]
|
|
|
|
if typename == 'module':
|
|
# Ignore containers that don't have any sources saved
|
|
if all(data[1:]):
|
|
_check_container_source(*data)
|
|
return data[0]
|
|
elif typename == 'storage':
|
|
data_type, root_key, location, size, view_metadata = data
|
|
location = _maybe_decode_ascii(location)
|
|
if root_key not in deserialized_objects:
|
|
obj = data_type(size)
|
|
obj._torch_load_uninitialized = True
|
|
deserialized_objects[root_key] = restore_location(obj, location)
|
|
storage = deserialized_objects[root_key]
|
|
if view_metadata is not None:
|
|
view_key, offset, view_size = view_metadata
|
|
if view_key not in deserialized_objects:
|
|
deserialized_objects[view_key] = storage[offset:offset + view_size]
|
|
return deserialized_objects[view_key]
|
|
else:
|
|
return storage
|
|
else:
|
|
raise RuntimeError("Unknown saved id type: %s" % saved_id[0])
|
|
|
|
_check_seekable(f)
|
|
f_should_read_directly = _should_read_directly(f)
|
|
|
|
if f_should_read_directly and f.tell() == 0:
|
|
# legacy_load requires that f has fileno()
|
|
# only if offset is zero we can attempt the legacy tar file loader
|
|
try:
|
|
return legacy_load(f)
|
|
except tarfile.TarError:
|
|
if _is_zipfile(f):
|
|
# .zip is used for torch.jit.save and will throw an un-pickling error here
|
|
raise RuntimeError(
|
|
"{filename} is a zip archive (did you mean to use torch.jit.load()?)".format(filename=f.name))
|
|
# if not a tarfile, reset file offset and proceed
|
|
f.seek(0)
|
|
|
|
if not hasattr(f, 'readinto') and (3, 8, 0) <= sys.version_info < (3, 8, 2):
|
|
raise RuntimeError(
|
|
"torch.load does not work with file-like objects that do not implement readinto on Python 3.8.0 and 3.8.1. "
|
|
"Received object of type \"{}\". Please update to Python 3.8.2 or newer to restore this "
|
|
"functionality.".format(type(f)))
|
|
|
|
magic_number = pickle_module.load(f, **pickle_load_args)
|
|
if magic_number != MAGIC_NUMBER:
|
|
raise RuntimeError("Invalid magic number; corrupt file?")
|
|
protocol_version = pickle_module.load(f, **pickle_load_args)
|
|
if protocol_version != PROTOCOL_VERSION:
|
|
raise RuntimeError("Invalid protocol version: %s" % protocol_version)
|
|
|
|
_sys_info = pickle_module.load(f, **pickle_load_args)
|
|
unpickler = pickle_module.Unpickler(f, **pickle_load_args)
|
|
unpickler.persistent_load = persistent_load
|
|
result = unpickler.load()
|
|
|
|
deserialized_storage_keys = pickle_module.load(f, **pickle_load_args)
|
|
|
|
offset = f.tell() if f_should_read_directly else None
|
|
for key in deserialized_storage_keys:
|
|
assert key in deserialized_objects
|
|
deserialized_objects[key]._set_from_file(f, offset, f_should_read_directly)
|
|
if offset is not None:
|
|
offset = f.tell()
|
|
|
|
return result
|
|
|
|
|
|
def _maybe_decode_ascii(bytes_str):
|
|
# When using encoding='bytes' in Py3, some **internal** keys stored as
|
|
# strings in Py2 are loaded as bytes. This function decodes them with
|
|
# ascii encoding, one that Py3 uses by default.
|
|
#
|
|
# NOTE: This should only be used on internal keys (e.g., `typename` and
|
|
# `location` in `persistent_load` below!
|
|
if isinstance(bytes_str, bytes):
|
|
return bytes_str.decode('ascii')
|
|
return bytes_str
|
|
|
|
|
|
def _get_restore_location(map_location):
|
|
if map_location is None:
|
|
restore_location = default_restore_location
|
|
elif isinstance(map_location, dict):
|
|
def restore_location(storage, location):
|
|
location = map_location.get(location, location)
|
|
return default_restore_location(storage, location)
|
|
elif isinstance(map_location, _string_classes):
|
|
def restore_location(storage, location):
|
|
return default_restore_location(storage, map_location)
|
|
elif isinstance(map_location, torch.device):
|
|
def restore_location(storage, location):
|
|
return default_restore_location(storage, str(map_location))
|
|
else:
|
|
def restore_location(storage, location):
|
|
result = map_location(storage, location)
|
|
if result is None:
|
|
result = default_restore_location(storage, location)
|
|
return result
|
|
return restore_location
|
|
|
|
|
|
def _load(zip_file, map_location, pickle_module, **pickle_load_args):
|
|
restore_location = _get_restore_location(map_location)
|
|
|
|
loaded_storages = {}
|
|
|
|
def load_tensor(data_type, size, key, location):
|
|
name = 'data/{}'.format(key)
|
|
dtype = data_type(0).dtype
|
|
|
|
storage = zip_file.get_storage_from_record(name, size, dtype).storage()
|
|
loaded_storages[key] = restore_location(storage, location)
|
|
|
|
def persistent_load(saved_id):
|
|
assert isinstance(saved_id, tuple)
|
|
typename = _maybe_decode_ascii(saved_id[0])
|
|
data = saved_id[1:]
|
|
|
|
assert typename == 'storage', \
|
|
"Unknown typename for persistent_load, expected 'storage' but got '{}'".format(typename)
|
|
data_type, key, location, size = data
|
|
if key not in loaded_storages:
|
|
load_tensor(data_type, size, key, _maybe_decode_ascii(location))
|
|
storage = loaded_storages[key]
|
|
return storage
|
|
|
|
# Load the data (which may in turn use `persistent_load` to load tensors)
|
|
data_file = io.BytesIO(zip_file.get_record('data.pkl'))
|
|
unpickler = pickle_module.Unpickler(data_file, **pickle_load_args)
|
|
unpickler.persistent_load = persistent_load
|
|
result = unpickler.load()
|
|
|
|
return result
|
|
|
|
|
|
def _is_torchscript_zip(zip_file):
|
|
for file_name in zip_file.get_all_records():
|
|
parts = file_name.split(os.sep)
|
|
if len(parts) > 1 and parts[1] == 'constants.pkl':
|
|
return True
|
|
return False
|