pytorch/caffe2/python/core_test.py
Lu Fang 664fe34e0a
[Caffe2][fbcode=>GH sync] Update from facebook 4323b18ce13c (#7116)
* [fix] Re-enable events in RNN ops

We have earlier added event disabling in RNN ops as back then we didn't use
events, with current use cases this is no longer true
(https://fburl.com/8vd0lp8y)

* use ops with cude impl

* Revert D7729695: [caffe2][fix] Re-enable events in RNN ops

This reverts commit 4b215c7496fb724656ff4c776933a15bdbbcde5e

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [observer] Clean up observer_config.h

#accept2ship

* [1/n] Refactor dataio_test.py

Replace code duplication with a common function

* Add barrier net that runs before training nets

Add a synchonize barrier net that is run before training nets.  With this net, shards that are faster will wait for other shards before start training.  This reduce chances of the faster shards timing out during GLOO AllReduce.

Removed explicit data_parallel_model.py.synchronize call in holmes workflow.  Similar change in speech/asr_training workflow will come in another diff.

* Support the dnnlowp backend in caffe2_benchmark

This is for SHARE operator latency evaluation

* Migrate integral_image_op to main caffe2

migrate integral_image_op(GPU version) given by https://fburl.com/yvqezigi
to caffe2/caffe2/operators and implement its CPU version. Write up a test
using the hypothesis_test mechanism

* [pos_disc, fbcode] Implement unjoined lr loss

As explained in https://our.intern.facebook.com/intern/wiki/Model_Based_Calibration/, when the dataset is an joined data set, where labels might change later, we need to use unjoined logloss.

The implementation is almost the same as in Sigrid (https://fburl.com/1trngsls), where
    loss = y (log(p) - log(1-p)) + (1-y)(log(1-p)) = xy - (1-y)x - (1-y)log(1+exp(-x))

For x < 0, to ensure stability and avoid overflow, we reformulate the above exp as
    loss = xy - (1-y)x - (1-y)x + (1-y)log(1+exp(x)) = xy + (1-y)log(1+exp(x))

Then the final expression becomes
    loss = xy + (y - 1) x (x >= 0) - (1 - y) log(1 + exp(x - 2 x (x >= 0)))

where y is the true label, x is the dot product and p = logistic(x).

This kind of implementation is align with the current implementation of the original cross entropy in
https://phabricator.intern.facebook.com/diffusion/FBS/browse/master/fbcode/caffe2/caffe2/operators/cross_entropy_op.cc;0bae3b5d0f825897c5e0dd0ff10f489d7271bf25$7-13

* Keep the array to fix the conflict

* [C2] Compute Adagrad effective LR

The AdagradWithLR op outputs an extra blob which is contains the average effective learning rate across all weights in this blob.

* Open-source extractMetaNetDef & runGlobalInitialization, add new Predictor constructor from db file, and add run_map_outputs

1. Open-source extractMetaNetDef and runGlobalInitialization, for use in
2. new Predictor constructor from db file.
3. Add new run function that returns outputs as TensorMap

* Disable eigen cpu

Disable eigen cpu in transpose and reduce

* Introduce request_only/object_only property of ModelLayer

by default this is False

* A simple TC Caffe2 benchmark

We can run tunner, get MappingOptions and then use them to
compare against cuBLAS

currently broken due to LLVM issues. How to run:

hg checkout eec1ab31b59c03b8deded1c755a9abaf8c45be01
add D7401202
add D7434625
add D7506031
add D7540728

buck run @mode/dev-nosan tc/tc/benchmarks_python:caffe2_benchmark

* Move Caffe2 feature_maps_ops to open source

Need feature maps operators in open source project facebookresearch/BlueWhale

* Manually fix the conflicts in channel shuffle op

* Fix the inconsistency between different gh and fbcode

* Skip Adagrad GPU Test (Because some gpu implementation is missing)

* Fix another test to make sure it won't run on gpu when implementation is not available yet
2018-05-01 20:49:00 -07:00

1083 lines
39 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from inspect import currentframe, getframeinfo
import unittest
import numpy as np
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace, test_util
from caffe2.python.task import Node, Task
class TestScopes(test_util.TestCase):
def testBlobReferenceIsIndependentFromNameScope(self):
blob_v = core.BlobReference("v")
with core.NameScope("foo"):
blob_w = core.BlobReference("w")
with core.NameScope("bar"):
blob_x = core.BlobReference("x")
self.assertEqual(str(blob_v), "v")
self.assertEqual(str(blob_w), "w")
self.assertEqual(str(blob_x), "x")
def testNameScopeWithOp(self):
global_x = core.BlobReference("x")
global_y = core.BlobReference("y")
with core.NameScope("foo"):
# Raw strings should have namescope prepended.
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
# BlobReferences should not.
op = core.CreateOperator("Relu", global_x, global_y)
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "y")
def testNameScopeWithReset(self):
with core.NameScope("foo"):
# foo/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
with core.NameScope("bar"):
# foo/bar/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/bar/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/bar/y")
# Back to foo/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
with core.NameScope("bar", reset=True):
# bar/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "bar/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "bar/y")
# Back to foo/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
def testDeviceScope(self):
# No device
op = core.CreateOperator("Relu", "x", "y")
self.assertFalse(op.HasField('device_option'))
# explicitly setting a device
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
op = core.CreateOperator("Relu", "x", "y", device_option=device_option)
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, caffe2_pb2.CUDA)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
with core.DeviceScope(device_option):
# from device scope
op = core.CreateOperator("Relu", "x", "y")
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, caffe2_pb2.CUDA)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
# from an overridden device option
override_device = caffe2_pb2.DeviceOption()
override_device.device_type = caffe2_pb2.CPU
op = core.CreateOperator(
"Relu", "x", "y", device_option=override_device)
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, caffe2_pb2.CPU)
# back from normal: no device
op = core.CreateOperator("Relu", "x", "y")
self.assertFalse(op.HasField('device_option'))
device_option = caffe2_pb2.DeviceOption()
def testNameAndDeviceScopeTogether(self):
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
with core.DeviceScope(device_option):
with core.NameScope("foo"):
op = core.CreateOperator("Relu", "x", "y")
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, caffe2_pb2.CUDA)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
class TestCloneNet(test_util.TestCase):
def testPartialClone(self):
params = core.Net('params')
p1 = params.ConstantFill([], ['p1'])
workspace.CreateNet(params)
workspace.RunNetOnce(params)
n = core.Net('original')
a1 = n.AddExternalInput('a1')
a2 = n.AddExternalInput('a2')
b1, b2 = n.Concat([a1, a2], ['b1', 'b2'], axis=0)
c1 = n.Sum([b1, p1], ['c1'])
c2 = n.Sum([b2], ['c2'])
d = n.Sum([c1, c2], ['d'])
# test that gradient ops are ignored when partial-cloning
n.AddGradientOperators([d])
# test some in-place ops
k = n.Sum([p1], ['k'])
e = n.Sum([d], ['e'])
e = n.Sum([e, k], [e])
e = n.Sum([e], [e])
f = n.Sum(e, ['f'])
def net_assert(net, num_ops, inputs, outputs, internals):
self.assertEqual(len(net.Proto().op), num_ops)
self.assertEqual(set(net.Proto().external_input), inputs)
self.assertEqual(set(net.Proto().external_output), outputs)
all_blobs = set(net.Proto().external_input)
all_blobs |= set(net.Proto().external_output)
for op in net.Proto().op:
all_blobs |= set(op.input) | set(op.output)
self.assertEqual(all_blobs, inputs | outputs | internals)
# create net to make sure its valid
for input in inputs:
workspace.FeedBlob(input, np.array([]))
workspace.CreateNet(net)
n2, (d22, ) = n.ClonePartial('f1', {a1: 'a11', a2: 'a22'}, [d])
net_assert(
n2, 4, {'p1', 'a11', 'a22'}, {'f1/d'},
{'f1/b1', 'f1/b2', 'f1/c1', 'f1/c2', 'p1'})
self.assertTrue(isinstance(d22, core.BlobReference))
self.assertEqual(d22.Net(), n2)
self.assertEqual(str(d22), 'f1/d')
n3, (d22, ) = n.ClonePartial('f2', [b1, b2], [d])
net_assert(
n3, 3, {'p1', 'b1', 'b2'}, {'f2/d'}, {'f2/c1', 'f2/c2', 'p1'})
self.assertEqual(str(d22), 'f2/d')
n4, (c22, ) = n.ClonePartial('f3', [b1], [c1])
net_assert(n4, 1, {'p1', 'b1'}, {'f3/c1'}, {'p1'})
self.assertEqual(str(c22), 'f3/c1')
n5, (c11, c22) = n.ClonePartial('f4', [b1, b2], [c1, c2])
net_assert(n5, 2, {'p1', 'b1', 'b2'}, {'f4/c1', 'f4/c2'}, {'p1'})
self.assertEqual(str(c11), 'f4/c1')
self.assertEqual(str(c22), 'f4/c2')
with self.assertRaises(AssertionError):
n.ClonePartial('f4', [a1, a2, c2], [d])
n6, (e22, ) = n.ClonePartial('f5', [d], [e])
net_assert(n6, 4, {'p1', 'd'}, {'f5/e'}, {'f5/k', 'p1'})
self.assertEqual(str(e22), 'f5/e')
n8, (e22, f22) = n.ClonePartial('f7', [d], [e, f])
net_assert(n8, 5, {'p1', 'd'}, {'f7/e', 'f7/f'}, {'p1', 'f7/k'})
self.assertEqual(str(e22), 'f7/e')
self.assertEqual(str(f22), 'f7/f')
params._CheckLookupTables()
n._CheckLookupTables()
class TestCreateOperator(test_util.TestCase):
def testCreate(self):
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
op = core.CreateOperator(
"Ludicrous", "x", "y", name="ludicrous",
control_input="z", device_option=device_option,
engine="WARP", arg1=1, arg2="2", arg3=[1, 2, 3])
self.assertEqual(op.type, "Ludicrous")
self.assertEqual(op.name, "ludicrous")
self.assertEqual(op.engine, "WARP")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "y")
self.assertEqual(len(op.control_input), 1)
self.assertEqual(op.control_input[0], "z")
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, caffe2_pb2.CUDA)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertTrue(len(op.arg), 3)
# can't guarantee ordering of kwargs, so generate a set of args
# to test with
arg_map = {}
for arg in op.arg:
arg_map[arg.name] = arg
# Check all elements exist that should
self.assertEqual("arg1" in arg_map, True)
self.assertEqual("arg2" in arg_map, True)
self.assertEqual("arg3" in arg_map, True)
# Now test that all args were initialized correctly
self.assertEqual(arg_map["arg1"].i, 1)
self.assertEqual(arg_map["arg2"].s, b"2")
self.assertEqual(list(arg_map["arg3"].ints), [1, 2, 3])
class TestAutoNaming(test_util.TestCase):
def assertOperatorListEqual(self, operatorDefList1, operatorDefList2):
for op in operatorDefList1:
op.debug_info = ""
for op in operatorDefList2:
op.debug_info = ""
self.assertEqual(operatorDefList1, operatorDefList2)
"""
Test that operators are named with different names, and that automatically
named blob names don't clash intra or inter networks.
"""
def test_next_blob(self):
def create_net():
net = core.Net('net')
with core.NameScope('foo'):
net.Add(['a', 'b'], net.NextScopedBlob('ab'))
net.Add(['c', 'd'], net.NextBlob('cd'))
return net
net_a = create_net()
net_b = create_net()
# created net proto is predicatable.
self.assertOperatorListEqual(net_a.Proto().op,
net_b.Proto().op)
self.assertEqual(net_a.Proto().op[0].output[0], 'foo/ab')
self.assertEqual(net_a.Proto().op[1].output[0], 'cd')
net_c = core.Net('net')
# different calls return different blob names
self.assertNotEqual(str(net_c.NextBlob('b')), str(net_c.NextBlob('b')))
def test_auto_naming(self):
a = core.Net('net')
b = core.Net('net')
self.assertNotEqual(a.Proto().name, b.Proto().name)
a_in1 = a.AddExternalInput('a')
b_in1 = b.AddExternalInput('b')
all_outputs_single = []
all_outputs_list = []
def add_ops():
all_outputs_single.append(a.Sum([a_in1, a_in1]))
all_outputs_single.append(a.Sum([a_in1, a_in1]))
all_outputs_single.append(b.Sum([b_in1, b_in1]))
all_outputs_single.append(b.Sum([b_in1, b_in1]))
all_outputs_list.append(a.Sum([a_in1, a_in1], outputs=2))
all_outputs_list.append(a.Sum([a_in1, a_in1], outputs=2))
all_outputs_list.append(b.Sum([b_in1, b_in1], outputs=2))
all_outputs_list.append(b.Sum([b_in1, b_in1], outputs=2))
add_ops()
with core.NameScope('n1'):
add_ops()
# Force reset of lookup tables
a.Proto().name
with core.NameScope('n2'):
add_ops()
all_outputs = []
for s in all_outputs_single:
all_outputs.append(str(s))
for l in all_outputs_list:
for o in l:
all_outputs.append(str(o))
for i, o1 in enumerate(all_outputs):
for j, o2 in enumerate(all_outputs):
if i != j:
self.assertNotEqual(str(o1), str(o2))
a._CheckLookupTables()
b._CheckLookupTables()
class TestAppendNet(test_util.TestCase):
def test_external_inputs_merged_correctly(self):
netA = core.Net("A")
netA.Sum(["in1", "in2"], ["sum1"])
self.assertTrue("in1" in netA.external_inputs)
netB = core.Net("B")
netB.Sum(["in3", "in4"], ["in1"])
netB.AppendNet(netA)
self.assertFalse("in1" in netB.external_inputs)
def test_external_inputs_merged_correctlyB(self):
netA = core.Net("A")
netA.Sum(["in1", "in2"], ["sum1"])
self.assertTrue("in1" in netA.external_inputs)
netB = core.Net("B")
netB.Sum(["in3", "in4"], ["in1"])
netA.AppendNet(netB) # note different order than in prev test
self.assertTrue("in1" in netA.external_inputs)
class TestExtractPredictorNet(test_util.TestCase):
def test_extract_simple(self):
from caffe2.python import brew
from caffe2.python.model_helper import ModelHelper, ExtractPredictorNet
model = ModelHelper(name="test", arg_scope={'order': 'NCHW'})
[data, label] = brew.image_input(
model,
"reader", ["xx/data", "label"],
is_test=1,
)
cnv = brew.conv(model, data, 'cnv', 32, 32, 4)
a = brew.fc(model, cnv, 'a', 100, 200)
pred = brew.fc(model, a, 'pred', 200, 5)
brew.softmax(model, [pred, label], "softmax")
(predict_net, export_blobs) = ExtractPredictorNet(
net_proto=model.net.Proto(),
input_blobs=["xx/data"],
output_blobs=["pred"],
renames={"xx/data": "image"},
)
export_blobs = set(export_blobs)
ops = list(predict_net.Proto().op)
for op in ops:
self.assertFalse(op.type == "Softmax")
self.assertFalse("xx/data" in op.input)
# Note: image input should not be included
self.assertEquals(ops[0].type, "Conv")
self.assertEquals(ops[1].type, "FC")
self.assertEquals(ops[2].type, "FC")
self.assertEquals(len(ops), 3)
# test rename happened
self.assertEquals(ops[0].input[0], "image")
# Check export blobs
self.assertTrue("image" not in export_blobs)
self.assertTrue("xx/data" not in export_blobs)
self.assertEqual(set([str(p) for p in model.params]), export_blobs)
# Check external inputs/outputs
self.assertTrue("image" in predict_net.Proto().external_input)
self.assertEquals(set(["pred"]), set(predict_net.Proto().external_output))
self.assertEqual(
set(predict_net.Proto().external_input) -
set([str(p) for p in model.params]), set(["image"])
)
class TestOperatorTraceback(test_util.TestCase):
def op_name_check(self, net, cf, line, func):
net.PopulateProtoWithFileName()
filename = getframeinfo(cf).filename
self.assertEqual(net.Proto().op[0].name, '{}:{}:{}'.format(
filename, line, func))
def test_operator_constructor_traceback(self):
net = core.Net("test")
a, b = net.AddExternalInput("a", "b")
net.Mul([a, b], "c"); cf = currentframe(); line = cf.f_lineno
func = cf.f_code.co_name
with self.assertRaises(Exception):
workspace.RunNetOnce(net)
with self.assertRaises(Exception):
workspace.CreateNet(net)
self.op_name_check(net, cf, line, func)
def test_operator_runtime_traceback(self):
net = core.Net("test")
a = net.AddExternalInput("a")
workspace.blobs[a] = np.array([1, 2, 3], dtype=np.float32)
net.Split(a, ["b", "c"], axis=0); cf = currentframe(); line = cf.f_lineno
func = cf.f_code.co_name
with self.assertRaises(Exception):
workspace.RunNetOnce(net)
workspace.CreateNet(net)
with self.assertRaises(Exception):
workspace.RunNet(net)
self.op_name_check(net, cf, line, func)
def test_c_workspace_constructor(self):
net = core.Net("test")
a, b = net.AddExternalInput("a", "b")
net.Mul([a, b], "c"); cf = currentframe(); line = cf.f_lineno
func = cf.f_code.co_name
ws = workspace.C.Workspace()
with self.assertRaises(Exception):
ws.run(net)
with self.assertRaises(Exception):
ws.create_net(net)
self.op_name_check(net, cf, line, func)
def test_c_workspace_runtime(self):
net = core.Net("test")
a = net.AddExternalInput("a")
net.Split(a, ["b", "c"], axis=0); cf = currentframe(); line = cf.f_lineno
func = cf.f_code.co_name
ws = workspace.C.Workspace()
ws.create_blob(str(a)).feed(np.array([1, 2, 3], dtype=np.float32))
ws.create_net(net)
with self.assertRaises(Exception):
ws.run(net)
self.op_name_check(net, cf, line, func)
def test_async_exception_handling(self):
net = core.Net("test")
net.Proto().type = 'dag' # this runs operators on background threads
a = net.AddExternalInput("a")
net.Split(a, ["b", "c"], axis=0); cf = currentframe(); line = cf.f_lineno
func = cf.f_code.co_name
workspace.FeedBlob(a, np.array([1, 2, 3], dtype=np.float32))
with self.assertRaises(Exception) as enforceNotMet:
workspace.RunNetOnce(net)
self.assertIn('enforce fail', str(enforceNotMet.exception))
self.op_name_check(net, cf, line, func)
class TestCreatePlan(test_util.TestCase):
def test_create_plan_from_proto_correctly(self):
from caffe2.python.net_builder import ops
with Node('trainer'), Task(name='my_task', num_instances=2) as task:
with ops.task_init():
globl = ops.Const(0)
with ops.task_instance_init():
local = ops.Const(0)
with ops.loop(100):
ops.Copy(globl, local)
with ops.task_instance_exit():
ops.Add([globl, local], [globl])
with ops.task_exit():
ops.Mul([globl, globl], [globl])
plan = core.Plan(task.get_step())
test_plan = core.Plan.create_from_proto(plan.Proto())
self.assertEqual(len(plan.Steps()), 1)
self.assertEqual(len(test_plan.Steps()), 1)
self.assertEqual(plan.Steps()[0].Name(), test_plan.Steps()[0].Name())
self.assertEqual(len(plan.Nets()), len(test_plan.Nets()))
for idx in range(0, len(plan.Nets())):
# When we create Net for test_plan, we will end up with new Net
# name with postfix.
net_1 = plan.Nets()[idx]
net_2 = test_plan.Nets()[idx]
trim_size = len(net_1.Name())
self.assertEqual(net_1.Name(), net_2.Name()[:trim_size])
class TestOpRegistryKey(test_util.TestCase):
def test_is_operator(self):
self.assertTrue(core.IsOperator('Relu'))
self.assertFalse(core.IsOperator('NOEXIST'))
def test_is_operator_with_engine(self):
self.assertTrue(core.IsOperatorWithEngine('Relu', 'DEFAULT'))
self.assertFalse(core.IsOperatorWithEngine('Relu', 'NOEXIST'))
class TestDeviceOption(test_util.TestCase):
def test_check_equal_node_name(self):
opt1 = core.DeviceOption(0)
opt2 = core.DeviceOption(0)
self.assertTrue(core.device_option_equal(opt1, opt2))
opt2.node_name = 'test'
self.assertTrue(core.device_option_equal(opt1, opt2))
self.assertFalse(core.device_option_equal(opt1, opt2, ignore_node_name=False))
opt1.node_name = 'test'
self.assertTrue(core.device_option_equal(opt1, opt2, ignore_node_name=False))
def test_check_equal_default_value(self):
opt1 = caffe2_pb2.DeviceOption()
opt2 = caffe2_pb2.DeviceOption()
opt1.device_type = 0
self.assertTrue(core.device_option_equal(opt1, opt2))
opt1.cuda_gpu_id = 5
# opt1 still is on CPU, so the options should be equal
self.assertTrue(core.device_option_equal(opt1, opt2))
opt2.device_type = 0
self.assertTrue(core.device_option_equal(opt1, opt2))
opt1.device_type = 1
self.assertFalse(core.device_option_equal(opt1, opt2))
class TestInferDeviceCpuOnly(test_util.TestCase):
def test_inject_copy(self):
'''
Test inject cross device copies - this is a no-op on CPU only devices.
'''
send_node = 'node:0'
recv_node = 'node:1'
# Using placeholder ops for send/recv. Placeholder ops are
# decorator/fake ops that don't have operator schema.
placeholder_send = 'Placeholder:Dummy:Send'
placeholder_recv = 'Placeholder:Dummy:Recv'
# init_net.
init_net = core.Net("init_net")
with core.DeviceScope(0, node_name=send_node):
init_net.XavierFill([], 'fc_w', shape=[10, 100])
init_net.ConstantFill([], 'fc_b', shape=[10, ])
# train_net.
train_net = core.Net("train_net")
train_net.Proto().external_input.extend(['fc_w', 'fc_b'])
with core.DeviceScope(0, node_name=send_node):
op = core.CreateOperator(
placeholder_send, ["fc_w", 'fc_b'], [],
dst_node=recv_node)
train_net.Proto().op.extend([op])
with core.DeviceScope(0, node_name=recv_node):
# Let's rename the recv blob i.e. fc_w -> fc_w_recv.
op = core.CreateOperator(
placeholder_recv, [], ['fc_w_recv', 'fc_b'],
src_node=send_node)
train_net.Proto().op.extend([op])
train_net.FC(["data", 'fc_w_recv', 'fc_b'], "fc1")
# Inject cross device copies.
init_net, x_dev_state = core.InjectCrossDeviceCopies(
init_net,
placeHolderOps=[placeholder_send, placeholder_recv])
train_net, x_dev_state = core.InjectCrossDeviceCopies(
train_net, x_dev_state,
placeHolderOps=[placeholder_send, placeholder_recv])
# Verify: No Copy operators should be injected since it is CPU only.
op = train_net.Proto().op[0]
self.assertEqual(op.type, placeholder_send)
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.input[0], "fc_w")
self.assertEqual(op.input[1], "fc_b")
op = train_net.Proto().op[1]
self.assertEqual(op.type, placeholder_recv)
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.output[0], "fc_w_recv")
self.assertEqual(op.output[1], "fc_b")
op = train_net.Proto().op[2]
self.assertEqual(op.type, "FC")
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.input[1], "fc_w_recv")
self.assertEqual(op.input[2], "fc_b")
@unittest.skipIf(not workspace.has_gpu_support, 'No GPU support')
class TestInferDevice(test_util.TestCase):
def setUp(self):
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
self.cuda_option = device_option
self.cpu_option = caffe2_pb2.DeviceOption()
def _test_op(
self,
op_name,
in_option,
out_option,
op_option=None,
inputs=None,
outputs=None
):
op_option = self.cuda_option if not op_option else op_option
inputs = ["blob_1"] if not inputs else inputs
outputs = ["blob_2"] if not outputs else outputs
with core.DeviceScope(op_option):
op = core.CreateOperator(op_name, inputs, outputs)
input_dev, output_dev = core.InferOpBlobDevices(op)
for in_dev in input_dev:
self.assertEqual(in_dev, in_option)
for out_dev in output_dev:
self.assertEqual(out_dev, out_option)
def test_infer_device(self):
self._test_op(
"FC",
self.cuda_option,
self.cuda_option,
op_option=self.cuda_option,
inputs=["data", "fc_w", "fc_b"],
outputs=["fc_1"]
)
def test_infer_device_cross_device(self):
self._test_op("CopyGPUToCPU", self.cuda_option, self.cpu_option)
self._test_op("CopyCPUToGPU", self.cpu_option, self.cuda_option)
self._test_op("EnsureCPUOutput", self.cuda_option, self.cpu_option)
self._test_op("CopyFromCPUInput", self.cpu_option, self.cuda_option)
self._test_op(
"EnsureCPUOutput",
self.cpu_option,
self.cpu_option,
op_option=self.cpu_option
)
self._test_op(
"CopyFromCPUInput",
self.cpu_option,
self.cpu_option,
op_option=self.cpu_option
)
def test_device_inference_function(self):
# ConcatOp.
op_option = self.cuda_option
with core.DeviceScope(op_option):
op = core.CreateOperator(
'Concat',
['X_{}'.format(i) for i in range(4)],
['concat_result', 'split_info'],
axis=1)
input_dev, output_dev = core.InferOpBlobDevices(op)
# 2nd output's type is CPU irrespective of Concat op's device option.
self.assertEqual(output_dev[1], self.cpu_option)
#SplitOp.
op_option = self.cuda_option
with core.DeviceScope(op_option):
op = core.CreateOperator(
'Split',
['input', 'split'],
['X_{}'.format(i) for i in range(4)],
axis=0)
input_dev, output_dev = core.InferOpBlobDevices(op)
# 2nd input's type is CPU irrespective of Split op's device option.
self.assertEqual(input_dev[1], self.cpu_option)
def test_inject_copy(self):
net = core.Net("test")
init_net = core.Net("init")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
weight = init_net.XavierFill([], 'fc_w', shape=[10, 100])
bias = init_net.ConstantFill([], 'fc_b', shape=[10, ])
with core.DeviceScope(device_option):
net.FC(["data", weight, bias], "fc1")
_, blob_to_device = core.InjectCrossDeviceCopies(init_net)
new_net, blob_to_device = core.InjectCrossDeviceCopies(
net, blob_to_device
)
op = new_net._net.op[-1]
self.assertEqual(op.type, "FC")
self.assertEqual(op.input[0], "data_cuda_1")
self.assertEqual(op.input[1], "fc_w_cuda_1")
self.assertEqual(op.input[2], "fc_b_cuda_1")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertEqual(new_net._net.op[-2].type, "CopyCPUToGPU")
self.assertEqual(new_net._net.op[0].type, "CopyCPUToGPU")
self.assertNotEqual(blob_to_device["fc_w"], device_option)
def test_cross_nets(self):
net = core.Net("test")
init_net = core.Net("init")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
weight = init_net.XavierFill([], 'fc_w', shape=[10, 100])
bias = init_net.ConstantFill([], 'fc_b', shape=[10, ])
const = init_net.ConstantFill([], 'const', shape=[], value=1.)
with core.DeviceScope(device_option):
const = init_net.Add([const, const], [const])
fc_out = net.FC(["data", weight, bias], "fc1")
net.Add([fc_out, const], [fc_out])
data_remap = {'data': device_option}
nets, _ = core.InjectDeviceCopiesAmongNets(
[init_net, net], blob_to_device_init=data_remap
)
op = nets[1]._net.op[0]
self.assertEqual(op.type, "CopyCPUToGPU")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertEqual(op.output[0], "fc_w_cuda_1")
op = nets[1]._net.op[1]
self.assertEqual(op.type, "CopyCPUToGPU")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertEqual(op.output[0], "fc_b_cuda_1")
op = nets[1]._net.op[2]
self.assertEqual(op.type, "FC")
self.assertEqual(op.input[0], "data")
self.assertEqual(op.input[1], "fc_w_cuda_1")
self.assertEqual(op.input[2], "fc_b_cuda_1")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
op = nets[1]._net.op[3]
self.assertEqual(op.type, "Add")
self.assertEqual(op.input[0], "fc1")
self.assertEqual(op.input[1], "const_cuda_1")
# check that moved blob is in input to the new net
for c in ["data", "fc_w", "fc_b", "const_cuda_1"]:
self.assertTrue(c in nets[1]._net.external_input)
"""
For reference, net.Proto() should be like:
name: ""
op {
input: "fc_w"
output: "fc_w_cuda_1"
name: ""
type: "CopyCPUToGPU"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
op {
input: "fc_b"
output: "fc_b_cuda_1"
name: ""
type: "CopyCPUToGPU"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
op {
input: "data"
input: "fc_w_cuda_1"
input: "fc_b_cuda_1"
output: "fc1"
name: ""
type: "FC"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
op {
input: "fc1"
input: "const_cuda_1"
output: "fc1"
name: ""
type: "Add"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
external_input: "data"
external_input: "fc_w"
external_input: "fc_b"
external_input: "const"
external_input: "const_cuda_1"
"""
def test_cross_nets_no_change(self):
net = core.Net("test")
init_net = core.Net("init")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
with core.DeviceScope(device_option):
weight = init_net.XavierFill([], 'fc_w', shape=[10, 100])
bias = init_net.ConstantFill([], 'fc_b', shape=[10, ])
net.FC(["data", weight, bias], "fc1")
data_remap = {'data': device_option}
nets = core.InjectDeviceCopiesAmongNetsWithoutB2D(
[init_net, net], blob_to_device_init=data_remap
)
op = nets[1]._net.op[0]
self.assertEqual(op.type, "FC")
self.assertEqual(op.input[0], "data")
self.assertEqual(op.input[1], "fc_w")
self.assertEqual(op.input[2], "fc_b")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
"""
For reference, net.Proto() should be like:
name: ""
op {
input: "data"
input: "fc_w"
input: "fc_b"
output: "fc1"
name: ""
type: "FC"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
external_input: "data"
external_input: "fc_w"
external_input: "fc_b"
"""
def test_inject_copy_multi_use(self):
net = core.Net("test")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
with core.DeviceScope(device_option):
net.Relu("data", "relu1")
net.Relu("data", "relu2")
with core.DeviceScope(device_option):
net.Relu("data", "relu3")
net.Relu("data", "relu4")
device_option.cuda_gpu_id = 0
with core.DeviceScope(device_option):
net.Relu("data", "relu5")
device_option.cuda_gpu_id = 1
with core.DeviceScope(device_option):
net.Relu("data", "relu6")
new_net, _ = core.InjectCrossDeviceCopies(net)
op = new_net._net.op[0]
self.assertEqual(op.type, "CopyCPUToGPU")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertEqual(op.output[0], "data_cuda_1")
op = new_net._net.op[1]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertEqual(op.output[0], "relu1")
op = new_net._net.op[2]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.output[0], "relu2")
op = new_net._net.op[3]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertEqual(op.input[0], "data_cuda_1")
self.assertEqual(op.output[0], "relu3")
op = new_net._net.op[4]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.output[0], "relu4")
op = new_net._net.op[5]
self.assertEqual(op.type, "CopyCPUToGPU")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 0)
self.assertEqual(op.output[0], "data_cuda_0")
op = new_net._net.op[6]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 0)
self.assertEqual(op.input[0], "data_cuda_0")
self.assertEqual(op.output[0], "relu5")
op = new_net._net.op[7]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertEqual(op.input[0], "data_cuda_1")
self.assertEqual(op.output[0], "relu6")
"""
For reference, net.Proto() should be like:
name: ""
op {
input: "data"
output: "data_cuda_1"
name: ""
type: "CopyCPUToGPU"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
op {
input: "data_cuda_1"
output: "relu1"
name: ""
type: "Relu"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
op {
input: "data"
output: "relu2"
name: ""
type: "Relu"
}
op {
input: "data_cuda_1"
output: "relu3"
name: ""
type: "Relu"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
op {
input: "data"
output: "relu4"
name: ""
type: "Relu"
}
op {
input: "data"
output: "data_cuda_0"
name: ""
type: "CopyCPUToGPU"
device_option {
device_type: 1
cuda_gpu_id: 0
}
}
op {
input: "data_cuda_0"
output: "relu5"
name: ""
type: "Relu"
device_option {
device_type: 1
cuda_gpu_id: 0
}
}
op {
input: "data_cuda_1"
output: "relu6"
name: ""
type: "Relu"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
external_input: "data"
"""
def test_inject_copy_placeholder_ops(self):
'''
Test inject cross device copies with placeholder ops. Placeholder ops
are decorator/fake ops that don't have operator schema.
'''
# Create CPU and GPU devices on 2 nodes.
cpu_device = []
gpu_device = []
for i in range(0, 2):
cpu_device.append(caffe2_pb2.DeviceOption())
cpu_device[i].node_name = 'node:' + str(i)
gpu_device.append(caffe2_pb2.DeviceOption())
gpu_device[i].device_type = caffe2_pb2.CUDA
gpu_device[i].cuda_gpu_id = 0
gpu_device[i].node_name = 'node:' + str(i)
send_node = 'node:0'
recv_node = 'node:1'
placeholder_send = 'Placeholder:Dummy:Send'
placeholder_recv = 'Placeholder:Dummy:Recv'
# init_net.
init_net = core.Net("init_net")
with core.DeviceScope(gpu_device[0]):
weight = init_net.XavierFill([], 'fc_w', shape=[10, 100])
bias = init_net.ConstantFill([], 'fc_b', shape=[10, ])
with core.DeviceScope(cpu_device[0]):
op = core.CreateOperator(
placeholder_send, [weight, bias], [],
dst_node=recv_node)
init_net._net.op.extend([op])
# train_net
train_net = core.Net("train_net")
with core.DeviceScope(cpu_device[1]):
# XXX. replace hardcoded op name. Move test to net_transforms.
op = core.CreateOperator(
placeholder_recv, [], [weight, bias],
src_node=send_node)
train_net._net.op.extend([op])
train_net.FC(["data", weight, bias], "fc1")
# Inject cross device copies.
init_net, x_dev_state = core.InjectCrossDeviceCopies(
init_net,
placeHolderOps=[placeholder_send, placeholder_recv])
train_net, x_dev_state = core.InjectCrossDeviceCopies(
train_net, x_dev_state,
placeHolderOps=[placeholder_send, placeholder_recv])
# Verify (init_net)
op = init_net._net.op[2]
self.assertEqual(op.type, "CopyGPUToCPU")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 0)
self.assertEqual(op.output[0], "fc_w_cpu")
op = init_net._net.op[3]
self.assertEqual(op.type, "CopyGPUToCPU")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 0)
self.assertEqual(op.output[0], "fc_b_cpu")
op = init_net._net.op[4]
self.assertEqual(op.type, placeholder_send)
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.input[0], "fc_w_cpu")
self.assertEqual(op.input[1], "fc_b_cpu")
# Verify (train_net)
op = train_net._net.op[0]
self.assertEqual(op.type, placeholder_recv)
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.output[0], "fc_w_cpu")
self.assertEqual(op.output[1], "fc_b_cpu")
op = train_net._net.op[3]
self.assertEqual(op.type, "FC")
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.input[1], "fc_w_cpu")
self.assertEqual(op.input[2], "fc_b_cpu")
def test_blob_inplace(self):
net = core.Net("test")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
net.Adagrad(['param', 'moment', 'grad', 'lr'], ['param', 'moment'])
with core.DeviceScope(device_option):
net.Relu("param", "param_relu_no_sense")
net, _ = core.InjectCrossDeviceCopies(net)
op = net._net.op[1]
self.assertEqual(op.type, 'CopyCPUToGPU')
self.assertEqual(op.input[0], 'param')
self.assertEqual(op.output[0], 'param_cuda_1')
op = net._net.op[2]
self.assertEqual(op.input[0], 'param_cuda_1')
net.Relu('nonsense_input', 'moment')
# should not raise inplace error
core.InjectCrossDeviceCopies(net)
with core.DeviceScope(device_option):
net.Relu('nonsense_input_gpu', 'moment')
with self.assertRaises(RuntimeError):
core.InjectCrossDeviceCopies(net)
if __name__ == '__main__':
unittest.main()