mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39412 This PR introduces changes to enable running the weight observer standalone in the graph It extracts the nodes from the graph that correspond to the observed weight value and adds all the related nodes to a new subgraph The subgraph is then executed using GraphFunction Test Plan: python test/test_quantization.py TestGraphMostPostTrainingStatic python test/test_quantization.py TestQuantizeDynamicScript Imported from OSS Differential Revision: D21872940 fbshipit-source-id: 55f1dcc2caef193531e2b807c8e56288b9794520
964 lines
39 KiB
Python
964 lines
39 KiB
Python
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import math
|
|
import warnings
|
|
from abc import ABCMeta, abstractmethod
|
|
from functools import partial
|
|
from typing import List, Tuple, Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
def _with_args(cls_or_self, **kwargs):
|
|
r"""Wrapper that allows creation of class factories.
|
|
|
|
This can be useful when there is a need to create classes with the same
|
|
constructor arguments, but different instances.
|
|
|
|
Example::
|
|
|
|
>>> Foo.with_args = classmethod(_with_args)
|
|
>>> foo_builder = Foo.with_args(a=3, b=4).with_args(answer=42)
|
|
>>> foo_instance1 = foo_builder()
|
|
>>> foo_instance2 = foo_builder()
|
|
>>> id(foo_instance1) == id(foo_instance2)
|
|
False
|
|
"""
|
|
class _PartialWrapper(object):
|
|
def __init__(self, p):
|
|
self.p = p
|
|
|
|
def __call__(self, *args, **keywords):
|
|
return self.p(*args, **keywords)
|
|
|
|
def __repr__(self):
|
|
return self.p.__repr__()
|
|
|
|
with_args = _with_args
|
|
r = _PartialWrapper(partial(cls_or_self, **kwargs))
|
|
return r
|
|
|
|
|
|
ABC = ABCMeta(str("ABC"), (object,), {}) # compatible with Python 2 *and* 3:
|
|
|
|
|
|
class ObserverBase(ABC, nn.Module):
|
|
r"""Base observer Module.
|
|
Any observer implementation should derive from this class.
|
|
|
|
Concrete observers should follow the same API. In forward, they will update
|
|
the statistics of the observed Tensor. And they should provide a
|
|
`calculate_qparams` function that computes the quantization parameters given
|
|
the collected statistics.
|
|
|
|
Args:
|
|
dtype: Quantized data type
|
|
"""
|
|
def __init__(self, dtype):
|
|
super(ObserverBase, self).__init__()
|
|
self.dtype = dtype
|
|
|
|
@abstractmethod
|
|
def forward(self, x):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def calculate_qparams(self, **kwargs):
|
|
pass
|
|
|
|
with_args = classmethod(_with_args)
|
|
|
|
|
|
class _ObserverBase(ObserverBase):
|
|
r"""Internal common base for all qint/quint8 observers.
|
|
|
|
This base is for commonly used paramters used internally.
|
|
Users should use `~torch.quantization.observer.ObserverBase` as a base class
|
|
for custom observers.
|
|
|
|
Args:
|
|
dtype: Quantized data type.
|
|
qscheme: Quantization scheme to be used.
|
|
reduce_range: Reduces the range of the quantized data type by 1 bit.
|
|
This is sometimes required to avoid instruction overflow.
|
|
|
|
.. warning::
|
|
|
|
:attr:`dtype` can only take ``torch.qint8`` or ``torch.quint8``.
|
|
|
|
.. warning::
|
|
|
|
:attr:`qscheme` can only take one of the following options:
|
|
|
|
- ``torch.per_tensor_affine``
|
|
- ``torch.per_tensor_symmetric``
|
|
- ``torch.per_channel_affine``
|
|
- ``torch.per_channel_symmetric``
|
|
"""
|
|
|
|
def __init__(self, dtype=torch.quint8, qscheme=torch.per_tensor_affine,
|
|
reduce_range=False):
|
|
super(_ObserverBase, self).__init__(dtype=dtype)
|
|
self.qscheme = qscheme
|
|
self.reduce_range = reduce_range
|
|
|
|
self.eps = torch.finfo(torch.float32).eps
|
|
assert self.qscheme in (
|
|
torch.per_tensor_affine,
|
|
torch.per_tensor_symmetric,
|
|
torch.per_channel_affine,
|
|
torch.per_channel_symmetric,
|
|
), "Default Observer only works for per_tensor_affine, \
|
|
per_tensor_symmetric, per_channel_affine and \
|
|
per_channel_symmetric quantization scheme"
|
|
assert self.dtype in (
|
|
torch.qint8,
|
|
torch.quint8,
|
|
), "Default Observer only works for qint8 and quint8 data type"
|
|
|
|
@torch.jit.export
|
|
def _calculate_qparams(self, min_val, max_val):
|
|
# type: (Tensor, Tensor) -> Tuple[Tensor, Tensor]
|
|
r"""Calculates the quantization parameters, given min and max
|
|
value tensors. Works for both per tensor and per channel cases
|
|
|
|
Args:
|
|
min_val: Minimum values per channel
|
|
max_val: Maximum values per channel
|
|
|
|
Returns:
|
|
scales: Scales tensor of shape (#channels,)
|
|
zero_points: Zero points tensor of shape (#channels,)
|
|
"""
|
|
if min_val.numel() == 0 or max_val.numel() == 0:
|
|
warnings.warn(
|
|
"must run observer before calling calculate_qparams.\
|
|
Returning default scale and zero point "
|
|
)
|
|
return torch.tensor([1.0]), torch.tensor([0])
|
|
|
|
if min_val.dim() == 0 or max_val.dim() == 0:
|
|
assert min_val <= max_val, "min {} should be less than max {}".format(
|
|
min_val, max_val
|
|
)
|
|
else:
|
|
assert torch.sum(min_val <= max_val) == len(min_val), "min {} should be less than max {}".format(
|
|
min_val, max_val
|
|
)
|
|
|
|
if self.dtype == torch.qint8:
|
|
if self.reduce_range:
|
|
qmin, qmax = -64, 63
|
|
else:
|
|
qmin, qmax = -128, 127
|
|
else:
|
|
if self.reduce_range:
|
|
qmin, qmax = 0, 127
|
|
else:
|
|
qmin, qmax = 0, 255
|
|
|
|
min_val = torch.min(min_val, torch.zeros_like(min_val))
|
|
max_val = torch.max(max_val, torch.zeros_like(max_val))
|
|
|
|
scale = torch.ones(min_val.size(), dtype=torch.float32)
|
|
zero_point = torch.zeros(min_val.size(), dtype=torch.int64)
|
|
device = 'cuda' if min_val.is_cuda else 'cpu'
|
|
|
|
if self.qscheme == torch.per_tensor_symmetric or self.qscheme == torch.per_channel_symmetric:
|
|
max_val = torch.max(-min_val, max_val)
|
|
scale = max_val / (float(qmax - qmin) / 2)
|
|
scale = torch.max(scale, torch.tensor(self.eps, device=device, dtype=scale.dtype))
|
|
if self.dtype == torch.quint8:
|
|
zero_point = zero_point.new_full(zero_point.size(), 128)
|
|
else:
|
|
scale = (max_val - min_val) / float(qmax - qmin)
|
|
scale = torch.max(scale, torch.tensor(self.eps, device=device, dtype=scale.dtype))
|
|
zero_point = qmin - torch.round(min_val / scale)
|
|
zero_point = torch.max(zero_point, torch.tensor(qmin, device=device, dtype=zero_point.dtype))
|
|
zero_point = torch.min(zero_point, torch.tensor(qmax, device=device, dtype=zero_point.dtype))
|
|
|
|
# For scalar values, cast them to Tensors of size 1 to keep the shape
|
|
# consistent with default values in FakeQuantize.
|
|
if len(scale.shape) == 0:
|
|
# TODO: switch to scale.item() after adding JIT support
|
|
scale = torch.tensor([float(scale)], dtype=scale.dtype)
|
|
if len(zero_point.shape) == 0:
|
|
# TODO: switch to zero_point.item() after adding JIT support
|
|
zero_point = torch.tensor([int(zero_point)], dtype=zero_point.dtype)
|
|
|
|
return scale, zero_point
|
|
|
|
|
|
class MinMaxObserver(_ObserverBase):
|
|
r"""Observer module for computing the quantization parameters based on the
|
|
running min and max values.
|
|
|
|
This observer uses the tensor min/max statistics to compute the quantization
|
|
parameters. The module records the running minimum and maximum of incoming
|
|
tensors, and uses this statistic to compute the quantization parameters.
|
|
|
|
Args:
|
|
dtype: Quantized data type
|
|
qscheme: Quantization scheme to be used
|
|
reduce_range: Reduces the range of the quantized data type by 1 bit
|
|
|
|
Given running min/max as :math:`x_\text{min}` and :math:`x_\text{max}`,
|
|
scale :math:`s` and zero point :math:`z` are computed as:
|
|
|
|
The running minimum/maximum :math:`x_\text{min/max}` is computed as:
|
|
|
|
.. math::
|
|
|
|
\begin{array}{ll}
|
|
x_\text{min} &= \begin{cases}
|
|
\min(X) & \text{if~}x_\text{min} = \text{None} \\
|
|
\min\left(x_\text{min}, \min(X)\right) & \text{otherwise}
|
|
\end{cases}\\
|
|
x_\text{max} &= \begin{cases}
|
|
\max(X) & \text{if~}x_\text{max} = \text{None} \\
|
|
\max\left(x_\text{max}, \max(X)\right) & \text{otherwise}
|
|
\end{cases}\\
|
|
\end{array}
|
|
|
|
where :math:`X` is the observed tensor.
|
|
|
|
The scale :math:`s` and zero point :math:`z` are then computed as:
|
|
|
|
.. math::
|
|
|
|
\begin{aligned}
|
|
\text{if Symmetric:}&\\
|
|
&s = 2 \max(|x_\text{min}|, x_\text{max}) /
|
|
\left( Q_\text{max} - Q_\text{min} \right) \\
|
|
&z = \begin{cases}
|
|
0 & \text{if dtype is qint8} \\
|
|
128 & \text{otherwise}
|
|
\end{cases}\\
|
|
\text{Otherwise:}&\\
|
|
&s = \left( x_\text{max} - x_\text{min} \right ) /
|
|
\left( Q_\text{max} - Q_\text{min} \right ) \\
|
|
&z = Q_\text{min} - \text{round}(x_\text{min} / s)
|
|
\end{aligned}
|
|
|
|
where :math:`Q_\text{min}` and :math:`Q_\text{max}` are the minimum and
|
|
maximum of the quantized data type.
|
|
|
|
.. warning:: Only works with ``torch.per_tensor_symmetric`` quantization scheme
|
|
|
|
.. warning:: :attr:`dtype` can only take ``torch.qint8`` or ``torch.quint8``.
|
|
|
|
.. note:: If the running minimum equals to the running maximum, the scale
|
|
and zero_point are set to 1.0 and 0.
|
|
"""
|
|
|
|
def __init__(self, dtype=torch.quint8, qscheme=torch.per_tensor_affine,
|
|
reduce_range=False):
|
|
# For x86 quantized kernels, we need to ensure that the vpmaddubsw
|
|
# instruction does not overflow. We allow for a reduce_range argument to
|
|
# observers that reduces the quantized range to (0,127) or (-64, 63).
|
|
# For more details see aten/src/ATen/native/quantized/cpu/qconv.cpp
|
|
# This is not an optimal choice for non x86 backends as it loses a bit
|
|
# of precision for activations.
|
|
|
|
super(MinMaxObserver, self).__init__(dtype=dtype,
|
|
qscheme=qscheme,
|
|
reduce_range=reduce_range)
|
|
self.register_buffer('min_val', torch.tensor([]))
|
|
self.register_buffer('max_val', torch.tensor([]))
|
|
if self.qscheme == torch.per_tensor_symmetric and \
|
|
self.reduce_range and \
|
|
self.dtype == torch.quint8:
|
|
raise NotImplementedError("Cannot reduce range for symmetric \
|
|
quantization for quint8")
|
|
|
|
def forward(self, x_orig):
|
|
r"""Records the running minimum and maximum of ``x``."""
|
|
x = x_orig.detach() # avoid keeping autograd tape
|
|
x = x.to(self.min_val.dtype)
|
|
min_val = self.min_val
|
|
max_val = self.max_val
|
|
if min_val.numel() == 0 or max_val.numel() == 0:
|
|
min_val = torch.min(x)
|
|
max_val = torch.max(x)
|
|
else:
|
|
min_val = torch.min(torch.min(x), min_val)
|
|
max_val = torch.max(torch.max(x), max_val)
|
|
self.min_val.resize_(min_val.shape)
|
|
self.max_val.resize_(max_val.shape)
|
|
self.min_val.copy_(min_val)
|
|
self.max_val.copy_(max_val)
|
|
return x_orig
|
|
|
|
@torch.jit.export
|
|
def calculate_qparams(self):
|
|
r"""Calculates the quantization parameters."""
|
|
return self._calculate_qparams(self.min_val, self.max_val)
|
|
|
|
@torch.jit.export
|
|
def extra_repr(self):
|
|
return "min_val={}, max_val={}".format(self.min_val, self.max_val)
|
|
|
|
def _save_to_state_dict(self, destination, prefix, keep_vars):
|
|
super(MinMaxObserver, self)._save_to_state_dict(destination, prefix, keep_vars)
|
|
destination[prefix + 'min_val'] = self.min_val
|
|
destination[prefix + 'max_val'] = self.max_val
|
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
|
|
missing_keys, unexpected_keys, error_msgs):
|
|
|
|
local_state = ['min_val', 'max_val']
|
|
for name in local_state:
|
|
key = prefix + name
|
|
if key in state_dict:
|
|
val = state_dict[key]
|
|
setattr(self, name, val)
|
|
elif strict:
|
|
missing_keys.append(key)
|
|
super(MinMaxObserver, self)._load_from_state_dict(state_dict, prefix, local_metadata, strict,
|
|
missing_keys, unexpected_keys, error_msgs)
|
|
|
|
|
|
class MovingAverageMinMaxObserver(MinMaxObserver):
|
|
r"""Observer module for computing the quantization parameters based on the
|
|
moving average of the min and max values.
|
|
|
|
This observer computes the quantization parameters based on the moving
|
|
averages of minimums and maximums of the incoming tensors. The module
|
|
records the average minimum and maximum of incoming tensors, and uses this
|
|
statistic to compute the quantization parameters.
|
|
|
|
Args:
|
|
averaging_constant: Averaging constant for min/max.
|
|
dtype: Quantized data type
|
|
qscheme: Quantization scheme to be used
|
|
reduce_range: Reduces the range of the quantized data type by 1 bit
|
|
|
|
The moving average min/max is computed as follows
|
|
|
|
.. math::
|
|
|
|
\begin{array}{ll}
|
|
x_\text{min} = \begin{cases}
|
|
\min(X) & \text{if~}x_\text{min} = \text{None} \\
|
|
(1 - c) x_\text{min} + c \min(X) & \text{otherwise}
|
|
\end{cases}\\
|
|
x_\text{max} = \begin{cases}
|
|
\max(X) & \text{if~}x_\text{max} = \text{None} \\
|
|
(1 - c) x_\text{max} + c \max(X) & \text{otherwise}
|
|
\end{cases}\\
|
|
\end{array}
|
|
|
|
where :math:`x_\text{min/max}` is the running average min/max, :math:`X` is
|
|
is the incoming tensor, and :math:`c` is the ``averaging_constant``.
|
|
|
|
The scale and zero point are then computed as in
|
|
:class:`~torch.quantization.observer.MinMaxObserver`.
|
|
|
|
.. note:: Only works with ``torch.per_tensor_affine`` quantization shceme.
|
|
|
|
.. note:: If the running minimum equals to the running maximum, the scale
|
|
and zero_point are set to 1.0 and 0.
|
|
"""
|
|
def __init__(self, averaging_constant=0.01, dtype=torch.quint8,
|
|
qscheme=torch.per_tensor_affine, reduce_range=False):
|
|
self.averaging_constant = averaging_constant
|
|
super(MovingAverageMinMaxObserver, self).__init__(dtype=dtype,
|
|
qscheme=qscheme,
|
|
reduce_range=reduce_range)
|
|
|
|
def forward(self, x_orig):
|
|
x = x_orig.detach() # avoid keeping autograd tape
|
|
x = x.to(self.min_val.dtype)
|
|
min_val = self.min_val
|
|
max_val = self.max_val
|
|
if min_val.numel() == 0 or max_val.numel() == 0:
|
|
min_val = torch.min(x)
|
|
max_val = torch.max(x)
|
|
else:
|
|
min_val = min_val + self.averaging_constant * (torch.min(x) - min_val)
|
|
max_val = max_val + self.averaging_constant * (torch.max(x) - max_val)
|
|
self.min_val.resize_(min_val.shape)
|
|
self.max_val.resize_(max_val.shape)
|
|
self.min_val.copy_(min_val)
|
|
self.max_val.copy_(max_val)
|
|
return x_orig
|
|
|
|
|
|
class MinMaxDynamicQuantObserver(MinMaxObserver):
|
|
r"""Observer module for computing the quantization parameters based on the
|
|
tensor min and max values in dynamic quantization.
|
|
|
|
This observer will mimic the quantization steps followed in the operator
|
|
to compute the activation tensor quantization parameters at run-time.
|
|
|
|
Args:
|
|
dtype: Quantized data type
|
|
qscheme: Quantization scheme to be used
|
|
reduce_range: Reduces the range of the quantized data type by 1 bit
|
|
|
|
.. warning:: Only works with ``torch.per_tensor_symmetric`` quantization scheme
|
|
|
|
.. warning:: :attr:`dtype` can only take ``torch.qint8`` or ``torch.quint8``.
|
|
|
|
.. note:: If the running minimum equals to the running maximum, the scale
|
|
and zero_point are set to 0.1 and 0.
|
|
"""
|
|
|
|
@torch.jit.export
|
|
def calculate_qparams(self):
|
|
r"""Calculates the quantization parameters."""
|
|
|
|
if self.max_val.numel() == 0 or self.min_val.numel() == 0:
|
|
return torch.tensor([1.0]), torch.tensor([0])
|
|
|
|
assert self.min_val <= self.max_val, "min {} should be less than max {}".format(
|
|
self.min_val, self.max_val
|
|
)
|
|
|
|
if self.dtype == torch.qint8:
|
|
if self.reduce_range:
|
|
qmin, qmax = -64, 63
|
|
else:
|
|
qmin, qmax = -128, 127
|
|
else: # dtype == torch.quint8
|
|
if self.reduce_range:
|
|
qmin, qmax = 0, 127
|
|
else:
|
|
qmin, qmax = 0, 255
|
|
|
|
max_val, min_val = self.max_val.to(dtype=torch.float), self.min_val.to(dtype=torch.float)
|
|
|
|
# Extend the min_val and max_val to ensure that it contains 0.
|
|
min_val = torch.min(min_val, torch.tensor(0.).to(dtype=torch.float))
|
|
max_val = torch.max(max_val, torch.tensor(0.).to(dtype=torch.float))
|
|
|
|
scale = (max_val.to(dtype=torch.double) - min_val) / float(qmax - qmin)
|
|
|
|
if scale == 0.0 or torch.isinf(1.0 / scale):
|
|
scale = torch.tensor(0.1).to(dtype=torch.float)
|
|
zero_point = 0
|
|
|
|
zero_point_from_min = qmin - min_val / scale.to(dtype=torch.double)
|
|
zero_point_from_max = qmax - max_val / scale.to(dtype=torch.double)
|
|
zero_point_from_min_error = abs(qmin) - abs(min_val / scale.to(dtype=torch.double))
|
|
zero_point_from_max_error = abs(qmax) - abs(max_val / scale.to(dtype=torch.double))
|
|
|
|
if zero_point_from_min_error < zero_point_from_max_error:
|
|
initial_zero_point = zero_point_from_min
|
|
else:
|
|
initial_zero_point = zero_point_from_max
|
|
|
|
nudged_zero_point = 0
|
|
|
|
if initial_zero_point < qmin:
|
|
nudged_zero_point = qmin
|
|
elif initial_zero_point > qmax:
|
|
nudged_zero_point = qmax
|
|
else:
|
|
nudged_zero_point = int(initial_zero_point.round())
|
|
|
|
return scale.to(dtype=torch.float), torch.tensor([nudged_zero_point])
|
|
|
|
class PerChannelMinMaxObserver(_ObserverBase):
|
|
r"""Observer module for computing the quantization parameters based on the
|
|
running per channel min and max values.
|
|
|
|
This observer uses the tensor min/max statistics to compute the per channel
|
|
quantization parameters. The module records the running minimum and maximum
|
|
of incoming tensors, and uses this statistic to compute the quantization
|
|
parameters.
|
|
|
|
Args:
|
|
ch_axis: Channel axis
|
|
dtype: Quantized data type
|
|
qscheme: Quantization scheme to be used
|
|
reduce_range: Reduces the range of the quantized data type by 1 bit
|
|
|
|
The quantization parameters are computed the same way as in
|
|
:class:`~torch.quantization.observer.MinMaxObserver`, with the difference
|
|
that the running min/max values are stored per channel.
|
|
Scales and zero points are thus computed per channel as well.
|
|
|
|
.. note:: If the running minimum equals to the running maximum, the scales
|
|
and zero_points are set to 1.0 and 0.
|
|
"""
|
|
|
|
def __init__(self, ch_axis=0, dtype=torch.quint8,
|
|
qscheme=torch.per_channel_affine, reduce_range=False):
|
|
super(PerChannelMinMaxObserver, self).__init__(dtype=dtype,
|
|
qscheme=qscheme,
|
|
reduce_range=reduce_range)
|
|
self.ch_axis = ch_axis
|
|
self.register_buffer('min_vals', torch.tensor([]))
|
|
self.register_buffer('max_vals', torch.tensor([]))
|
|
if (
|
|
self.qscheme == torch.per_channel_symmetric
|
|
and self.reduce_range
|
|
and self.dtype == torch.quint8
|
|
):
|
|
raise NotImplementedError(
|
|
"Cannot reduce range for symmetric quantization for quint8"
|
|
)
|
|
|
|
def forward(self, x_orig):
|
|
return self._forward(x_orig)
|
|
|
|
@torch.jit.ignore
|
|
def _forward(self, x_orig):
|
|
x = x_orig.detach() # avoid keeping autograd tape
|
|
min_vals = self.min_vals
|
|
max_vals = self.max_vals
|
|
x_dim = x.size()
|
|
|
|
new_axis_list = list(range(len(x_dim)))
|
|
new_axis_list[self.ch_axis] = 0
|
|
new_axis_list[0] = self.ch_axis
|
|
y = x.permute(tuple(new_axis_list))
|
|
# Need to match dtype of min/max because the updates to buffers
|
|
# are done in place and types need to match for comparisons
|
|
y = y.to(self.min_vals.dtype)
|
|
y = torch.flatten(y, start_dim=1)
|
|
if min_vals.numel() == 0 or max_vals.numel() == 0:
|
|
min_vals = torch.min(y, 1)[0]
|
|
max_vals = torch.max(y, 1)[0]
|
|
else:
|
|
min_vals = torch.min(torch.min(y, 1)[0], min_vals)
|
|
max_vals = torch.max(torch.max(y, 1)[0], max_vals)
|
|
self.min_vals.resize_(min_vals.shape)
|
|
self.max_vals.resize_(max_vals.shape)
|
|
self.min_vals.copy_(min_vals)
|
|
self.max_vals.copy_(max_vals)
|
|
return x_orig
|
|
|
|
@torch.jit.export
|
|
def calculate_qparams(self):
|
|
return self._calculate_qparams(self.min_vals, self.max_vals)
|
|
|
|
def extra_repr(self):
|
|
return "min_val={}, max_val={}".format(self.min_vals, self.max_vals)
|
|
|
|
def _save_to_state_dict(self, destination, prefix, keep_vars):
|
|
super(PerChannelMinMaxObserver, self)._save_to_state_dict(destination, prefix, keep_vars)
|
|
destination[prefix + 'min_vals'] = self.min_vals
|
|
destination[prefix + 'max_vals'] = self.max_vals
|
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
|
|
missing_keys, unexpected_keys, error_msgs):
|
|
local_state = ['min_vals', 'max_vals']
|
|
for name in local_state:
|
|
key = prefix + name
|
|
if key in state_dict:
|
|
val = state_dict[key]
|
|
setattr(self, name, val)
|
|
elif strict:
|
|
missing_keys.append(key)
|
|
super(PerChannelMinMaxObserver, self)._load_from_state_dict(state_dict, prefix, local_metadata, strict,
|
|
missing_keys, unexpected_keys, error_msgs)
|
|
|
|
class MovingAveragePerChannelMinMaxObserver(PerChannelMinMaxObserver):
|
|
r"""Observer module for computing the quantization parameters based on the
|
|
running per channel min and max values.
|
|
|
|
This observer uses the tensor min/max statistics to compute the per channel
|
|
quantization parameters. The module records the running minimum and maximum
|
|
of incoming tensors, and uses this statistic to compute the quantization
|
|
parameters.
|
|
|
|
Args:
|
|
averaging_constant: Averaging constant for min/max.
|
|
ch_axis: Channel axis
|
|
dtype: Quantized data type
|
|
qscheme: Quantization scheme to be used
|
|
reduce_range: Reduces the range of the quantized data type by 1 bit
|
|
|
|
The quantization parameters are computed the same way as in
|
|
:class:`~torch.quantization.observer.MovingAverageMinMaxObserver`, with the
|
|
difference that the running min/max values are stored per channel.
|
|
Scales and zero points are thus computed per channel as well.
|
|
|
|
.. note:: If the running minimum equals to the running maximum, the scales
|
|
and zero_points are set to 1.0 and 0.
|
|
"""
|
|
|
|
def __init__(self, averaging_constant=0.01, ch_axis=0, dtype=torch.quint8,
|
|
qscheme=torch.per_channel_affine, reduce_range=False):
|
|
super(MovingAveragePerChannelMinMaxObserver, self).__init__(
|
|
ch_axis=ch_axis, dtype=dtype, qscheme=qscheme,
|
|
reduce_range=reduce_range)
|
|
self.averaging_constant = averaging_constant
|
|
|
|
def forward(self, x_orig):
|
|
x = x_orig.detach() # avoid keeping autograd tape
|
|
x = x.to(self.min_vals.dtype)
|
|
min_vals = self.min_vals
|
|
max_vals = self.max_vals
|
|
x_dim = x.size()
|
|
|
|
new_axis_list = list(range(len(x_dim)))
|
|
new_axis_list[self.ch_axis] = 0
|
|
new_axis_list[0] = self.ch_axis
|
|
y = x.permute(tuple(new_axis_list))
|
|
y = torch.flatten(y, start_dim=1)
|
|
if min_vals.numel() == 0 or max_vals.numel() == 0:
|
|
min_vals = torch.min(y, 1)[0]
|
|
max_vals = torch.max(y, 1)[0]
|
|
else:
|
|
min_vals = min_vals + self.averaging_constant * (torch.min(y, 1)[0] - min_vals)
|
|
max_vals = max_vals + self.averaging_constant * (torch.max(y, 1)[0] - max_vals)
|
|
self.min_vals.resize_(min_vals.shape)
|
|
self.max_vals.resize_(max_vals.shape)
|
|
self.min_vals.copy_(min_vals)
|
|
self.max_vals.copy_(max_vals)
|
|
return x_orig
|
|
|
|
class HistogramObserver(_ObserverBase):
|
|
r"""
|
|
The module records the running histogram of tensor values along with
|
|
min/max values. ``calculate_qparams`` will calculate scale and zero_point.
|
|
|
|
Args:
|
|
bins: Number of bins to use for the histogram
|
|
upsample_rate: Factor by which the histograms are upsampled, this is
|
|
used to interpolate histograms with varying ranges across observations
|
|
dtype: Quantized data type
|
|
qscheme: Quantization scheme to be used
|
|
reduce_range: Reduces the range of the quantized data type by 1 bit
|
|
|
|
The scale and zero point are computed as follows:
|
|
|
|
1. Create the histogram of the incoming inputs.
|
|
The histogram is computed continuously, and the ranges per bin change
|
|
with every new tensor observed.
|
|
2. Search the distribution in the histogram for optimal min/max values.
|
|
The search for the min/max values ensures the minimization of the
|
|
quantization error with respect to the floating point model.
|
|
3. Compute the scale and zero point the same way as in the
|
|
:class:`~torch.quantization.MinMaxObserver`
|
|
"""
|
|
|
|
def __init__(self, bins=2048, upsample_rate=128, dtype=torch.quint8,
|
|
qscheme=torch.per_tensor_affine, reduce_range=False):
|
|
# bins: The number of bins used for histogram calculation.
|
|
super(HistogramObserver, self).__init__(dtype=dtype,
|
|
qscheme=qscheme,
|
|
reduce_range=reduce_range)
|
|
self.bins = bins
|
|
self.register_buffer('histogram', torch.zeros(self.bins))
|
|
self.register_buffer('min_val', torch.tensor([]))
|
|
self.register_buffer('max_val', torch.tensor([]))
|
|
self.dst_nbins = 2 ** torch.iinfo(self.dtype).bits
|
|
self.upsample_rate = upsample_rate
|
|
|
|
@torch.jit.ignore
|
|
def _non_linear_param_search(self):
|
|
r"""Non-linear parameter search.
|
|
|
|
An approximation for L2 error minimization for selecting min/max.
|
|
By selecting new min/max, we filter out outliers in input distribution.
|
|
This follows the implementation of NormMinimization::NonlinearQuantizationParamsSearch in
|
|
caffe2/quantization/server/norm_minimization.cc
|
|
"""
|
|
def _get_norm(delta_begin, delta_end, density, norm_type):
|
|
r"""
|
|
Compute the norm of the values uniformaly distributed between
|
|
delta_begin and delta_end.
|
|
|
|
norm = density * (integral_{begin, end} x^2)
|
|
= density * (end^3 - begin^3) / 3
|
|
"""
|
|
assert norm_type == "L2", "Only L2 norms are currently supported"
|
|
norm = 0.0
|
|
if norm_type == "L2":
|
|
norm = (
|
|
delta_end * delta_end * delta_end
|
|
- delta_begin * delta_begin * delta_begin
|
|
) / 3
|
|
return density * norm
|
|
|
|
def _compute_quantization_error(next_start_bin, next_end_bin, norm_type):
|
|
r"""
|
|
Compute the quantization error if we use start_bin to end_bin as the
|
|
min and max to do the quantization.
|
|
"""
|
|
bin_width = (self.max_val.item() - self.min_val.item()) / self.bins
|
|
|
|
norm = 0.0
|
|
dst_bin_width = bin_width * (next_end_bin - next_start_bin + 1) / self.dst_nbins
|
|
if dst_bin_width == 0.0:
|
|
return 0.0
|
|
for src_bin in range(self.bins):
|
|
# distances from the beginning of first dst_bin to the beginning and
|
|
# end of src_bin
|
|
src_bin_begin = (src_bin - next_start_bin) * bin_width
|
|
src_bin_end = src_bin_begin + bin_width
|
|
|
|
# which dst_bins the beginning and end of src_bin belong to?
|
|
dst_bin_of_begin = min(
|
|
self.dst_nbins - 1, max(0.0, math.floor(src_bin_begin / dst_bin_width))
|
|
)
|
|
dst_bin_of_end = min(
|
|
self.dst_nbins - 1, max(0.0, math.floor(src_bin_end / dst_bin_width))
|
|
)
|
|
dst_bin_of_begin_center = (
|
|
dst_bin_of_begin * dst_bin_width + dst_bin_width / 2
|
|
)
|
|
|
|
density = self.histogram[src_bin] / bin_width
|
|
if dst_bin_of_begin == dst_bin_of_end:
|
|
# if src_bin is entirely within 1 dst_bin
|
|
delta_begin = src_bin_begin - dst_bin_of_begin_center
|
|
delta_end = src_bin_end - dst_bin_of_begin_center
|
|
norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
|
|
else:
|
|
delta_begin = src_bin_begin - dst_bin_of_begin_center
|
|
delta_end = dst_bin_width / 2
|
|
norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
|
|
|
|
norm = norm + (dst_bin_of_end - dst_bin_of_begin - 1) * _get_norm(
|
|
-dst_bin_width / 2, dst_bin_width / 2, density, norm_type
|
|
)
|
|
|
|
dst_bin_of_end_center = (
|
|
dst_bin_of_end * dst_bin_width + dst_bin_width / 2
|
|
)
|
|
|
|
delta_begin = -dst_bin_width / 2
|
|
delta_end = src_bin_end - dst_bin_of_end_center
|
|
norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
|
|
return norm
|
|
|
|
assert self.histogram.size()[0] == self.bins, "bins mistmatch"
|
|
bin_width = (self.max_val - self.min_val) / self.bins
|
|
|
|
# cumulative sum
|
|
total = sum(self.histogram)
|
|
cSum = torch.cumsum(self.histogram, dim=0)
|
|
|
|
stepsize = 1e-5 # granularity
|
|
alpha = 0.0 # lower bound
|
|
beta = 1.0 # upper bound
|
|
start_bin = 0
|
|
end_bin = self.bins - 1
|
|
norm_min = float("inf")
|
|
|
|
while alpha < beta:
|
|
# Find the next step
|
|
next_alpha = alpha + stepsize
|
|
next_beta = beta - stepsize
|
|
|
|
# find the left and right bins between the quantile bounds
|
|
l = start_bin
|
|
r = end_bin
|
|
while l < end_bin and cSum[l] < next_alpha * total:
|
|
l = l + 1
|
|
while r > start_bin and cSum[r] > next_beta * total:
|
|
r = r - 1
|
|
|
|
# decide the next move
|
|
next_start_bin = start_bin
|
|
next_end_bin = end_bin
|
|
if (l - start_bin) > (end_bin - r):
|
|
# move the start bin
|
|
next_start_bin = l
|
|
alpha = next_alpha
|
|
else:
|
|
# move the end bin
|
|
next_end_bin = r
|
|
beta = next_beta
|
|
|
|
if next_start_bin == start_bin and next_end_bin == end_bin:
|
|
continue
|
|
|
|
# calculate the quantization error using next_start_bin and next_end_bin
|
|
norm = _compute_quantization_error(next_start_bin, next_end_bin, "L2")
|
|
|
|
if norm > norm_min:
|
|
break
|
|
norm_min = norm
|
|
start_bin = next_start_bin
|
|
end_bin = next_end_bin
|
|
|
|
new_min = self.min_val + bin_width * start_bin
|
|
new_max = self.min_val + bin_width * (end_bin + 1)
|
|
return new_min, new_max
|
|
|
|
@torch.jit.ignore
|
|
def _adjust_min_max(self, combined_min, combined_max, upsample_rate):
|
|
# type: (Tensor, Tensor, int) -> Tuple[Tensor, Tensor, int, int]
|
|
# We ensure that:
|
|
# (combined_max - combined_min)/(downsample_rate*Nbins) = (max - min)/(upsample_rate*Nbins)
|
|
# This allows us to have a common grid of resolution s, where we can align
|
|
# the input histogram
|
|
# start_idx maps min_val to the histogram bin index.
|
|
|
|
hist_bin_width = (self.max_val - self.min_val) / (self.bins * upsample_rate)
|
|
downsample_rate = torch.ceil((combined_max - combined_min) / (self.bins * hist_bin_width)).to(torch.int).item()
|
|
e = downsample_rate * (self.bins * hist_bin_width) - (combined_max - combined_min)
|
|
# Relax only the max, not the min, so that for one sided distributions, min stays at zero
|
|
combined_max = combined_max + e
|
|
combined_min = combined_min
|
|
start_idx = torch.round((self.min_val - combined_min) / hist_bin_width).to(torch.int).item()
|
|
return combined_min, combined_max, downsample_rate, start_idx
|
|
|
|
@torch.jit.ignore
|
|
def _combine_histograms(self, orig_hist, new_hist, upsample_rate, downsample_rate, start_idx, Nbins):
|
|
# type: (Tensor, Tensor, int, int, int, int) -> Tensor
|
|
# First up-sample the histogram with new data by a factor of L
|
|
# This creates an approximate probability density thats piecwise constant
|
|
upsampled_histogram = new_hist.repeat_interleave(upsample_rate)
|
|
# Now insert the upsampled histogram into the output
|
|
# histogram, which is initialized with zeros.
|
|
# The offset at which the histogram is introduced is determined
|
|
# by the start index as the output histogram can cover a wider range
|
|
histogram_with_output_range = torch.zeros((Nbins * downsample_rate), device=orig_hist.device)
|
|
histogram_with_output_range[start_idx:Nbins * upsample_rate + start_idx] = upsampled_histogram
|
|
# Compute integral histogram, double precision is needed to ensure
|
|
# that there are no overflows
|
|
integral_histogram = torch.cumsum(histogram_with_output_range, 0,
|
|
dtype=torch.double)[downsample_rate - 1 :: downsample_rate]
|
|
# Finally perform interpolation
|
|
shifted_integral_histogram = torch.zeros((Nbins), device=orig_hist.device)
|
|
shifted_integral_histogram[1:Nbins] = integral_histogram[0:-1]
|
|
interpolated_histogram = (integral_histogram - shifted_integral_histogram) / upsample_rate
|
|
orig_hist = orig_hist + interpolated_histogram.to(torch.float)
|
|
return orig_hist
|
|
|
|
def forward(self, x_orig):
|
|
# type: (Tensor) -> Tensor
|
|
x = x_orig.detach()
|
|
min_val = self.min_val
|
|
max_val = self.max_val
|
|
if min_val.numel() == 0 or max_val.numel() == 0:
|
|
min_val = torch.min(x)
|
|
max_val = torch.max(x)
|
|
self.min_val.resize_(min_val.shape)
|
|
self.min_val.copy_(min_val)
|
|
self.max_val.resize_(max_val.shape)
|
|
self.max_val.copy_(max_val)
|
|
torch.histc(x, self.bins, min=min_val, max=max_val, out=self.histogram)
|
|
else:
|
|
new_min = torch.min(x)
|
|
new_max = torch.max(x)
|
|
combined_min = torch.min(new_min, min_val)
|
|
combined_max = torch.max(new_max, max_val)
|
|
# combine the existing histogram and new histogram into 1 histogram
|
|
# We do this by first upsampling the histogram to a dense grid
|
|
# and then downsampling the histogram efficiently
|
|
combined_min, combined_max, downsample_rate, start_idx = \
|
|
self._adjust_min_max(combined_min, combined_max, self.upsample_rate)
|
|
combined_histogram = torch.histc(x, self.bins, min=combined_min, max=combined_max)
|
|
if combined_min == min_val and combined_max == max_val:
|
|
combined_histogram += self.histogram
|
|
else:
|
|
combined_histogram = self._combine_histograms(
|
|
combined_histogram,
|
|
self.histogram,
|
|
self.upsample_rate,
|
|
downsample_rate,
|
|
start_idx,
|
|
self.bins)
|
|
|
|
self.histogram.resize_(combined_histogram.shape)
|
|
self.histogram.copy_(combined_histogram)
|
|
self.min_val.resize_(combined_min.shape)
|
|
self.min_val.copy_(combined_min)
|
|
self.max_val.resize_(combined_max.shape)
|
|
self.max_val.copy_(combined_max)
|
|
return x_orig
|
|
|
|
@torch.jit.export
|
|
def calculate_qparams(self):
|
|
if self.min_val.numel() == 0 or self.max_val.numel() == 0:
|
|
warnings.warn(
|
|
"must run observer before calling calculate_qparams.\
|
|
Returning default scale and zero point "
|
|
)
|
|
return torch.tensor([1.0]), torch.tensor([0])
|
|
assert self.bins == len(self.histogram), (
|
|
"The number of bins in histogram should be equal to the number of bins "
|
|
"supplied while making this observer"
|
|
)
|
|
|
|
new_min, new_max = self._non_linear_param_search()
|
|
|
|
return self._calculate_qparams(new_min, new_max)
|
|
|
|
def _save_to_state_dict(self, destination, prefix, keep_vars):
|
|
super(HistogramObserver, self)._save_to_state_dict(destination, prefix, keep_vars)
|
|
destination[prefix + 'min_val'] = self.min_val
|
|
destination[prefix + 'max_val'] = self.max_val
|
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
|
|
missing_keys, unexpected_keys, error_msgs):
|
|
|
|
local_state = ['min_val', 'max_val']
|
|
for name in local_state:
|
|
key = prefix + name
|
|
if key in state_dict:
|
|
val = state_dict[key]
|
|
setattr(self, name, val)
|
|
elif strict:
|
|
missing_keys.append(key)
|
|
super(HistogramObserver, self)._load_from_state_dict(state_dict, prefix, local_metadata, strict,
|
|
missing_keys, unexpected_keys, error_msgs)
|
|
|
|
class RecordingObserver(_ObserverBase):
|
|
r"""
|
|
The module is mainly for debug and records the tensor values during runtime.
|
|
|
|
Args:
|
|
dtype: Quantized data type
|
|
qscheme: Quantization scheme to be used
|
|
reduce_range: Reduces the range of the quantized data type by 1 bit
|
|
"""
|
|
__annotations__ = {"tensor_val": List[Optional[torch.Tensor]]}
|
|
|
|
def __init__(self, **kwargs):
|
|
super(RecordingObserver, self).__init__(**kwargs)
|
|
self.tensor_val = []
|
|
|
|
def forward(self, x):
|
|
self.tensor_val.append(x.clone())
|
|
return x
|
|
|
|
@torch.jit.export
|
|
def calculate_qparams(self):
|
|
raise Exception("calculate_qparams should not be called for RecordingObserver")
|
|
|
|
@torch.jit.export
|
|
def get_tensor_value(self):
|
|
return self.tensor_val
|
|
|
|
|
|
class NoopObserver(ObserverBase):
|
|
r"""
|
|
Observer that doesn't do anything and just passes its configuration to the
|
|
quantized module's ``.from_float()``.
|
|
|
|
Primarily used for quantization to float16 which doesn't require determining
|
|
ranges.
|
|
|
|
Args:
|
|
dtype: Quantized data type
|
|
"""
|
|
def __init__(self, dtype=torch.float16):
|
|
if dtype != torch.float16:
|
|
raise ValueError("Only float16 quantization can be used without calibration process")
|
|
super(NoopObserver, self).__init__(dtype=dtype)
|
|
|
|
def forward(self, x):
|
|
return x
|
|
|
|
@torch.jit.export
|
|
def calculate_qparams(self):
|
|
raise Exception("calculate_qparams should not be called for NoopObserver")
|
|
|
|
|
|
# Restrict activations to be in the range (0,127)
|
|
default_observer = MinMaxObserver.with_args(reduce_range=True)
|
|
default_debug_observer = RecordingObserver
|
|
default_weight_observer = MinMaxObserver.with_args(dtype=torch.qint8, qscheme=torch.per_tensor_symmetric)
|
|
default_histogram_observer = HistogramObserver.with_args(reduce_range=True)
|
|
default_per_channel_weight_observer = PerChannelMinMaxObserver.with_args(dtype=torch.qint8, qscheme=torch.per_channel_symmetric)
|
|
default_dynamic_quant_observer = MinMaxDynamicQuantObserver
|